/** @defgroup Gecode_and_ClPbBFDbC Programming Finite Domain Constraints in YAP/Gecode @ingroup Gecode @{ The gecode/clp(fd) interface is designed to use the GECODE functionality in a more CLP like style. It requires ~~~~~{.prolog} :- use_module(library(gecode/clpfd)). ~~~~~ Several example programs are available with the distribution. Integer variables are declared as: + _V_ in _A_.. _B_ declares an integer variable _V_ with range _A_ to _B_. + _Vs_ ins _A_.. _B_ declares a set of integer variabless _Vs_ with range _A_ to _B_. + boolvar( _V_) declares a boolean variable. + boolvars( _Vs_) declares a set of boolean variable. Constraints supported are: */ :- module(gecode_clpfd, [ op(100, yf, []), op(760, yfx, #<==>), op(750, xfy, #==>), op(750, yfx, #<==), op(740, yfx, #\/), op(730, yfx, #\), op(720, yfx, #/\), op(710, fy, #\), op(705, xfx, where), op(700, xfx, #>), op(700, xfx, #<), op(700, xfx, #>=), op(700, xfx, #=<), op(700, xfx, #=), op(700, xfx, #\=), op(700, xf, #>), op(700, xf, #<), op(700, xf, #>=), op(700, xf, #=<), op(700, xf, #=), op(700, xf, #\=), op(500, yfx, '<=>'), op(500, yfx, '=>'), op(450, xfx, ..), % should bind more tightly than \/ (#>)/2, (#<)/2, (#>=)/2, (#=<)/2, (#=)/2, (#\=)/2, (#>)/1, (#<)/1, (#>=)/1, (#=<)/1, (#=)/1, (#\=)/1, (#<==>)/2, (#==>)/2, (#<==)/2, (#\)/1, (#\/)/2, (#/\)/2, in/2 , ins/2, boolvar/1, boolvars/1, all_different/1, all_distinct/1, all_distinct/2, maximize/1, minimize/1, sum/3, lex_chain/1, minimum/2, min/2, maximum/2, max/2, scalar_product/4, element/2, extensional_constraint/2, in_relation/2, clause/4, dfa/4, in_dfa/2, in_dfa/4, /* tuples_in/2, */ labeling/2 /*, label/1, indomain/1, serialized/2, global_cardinality/2, global_cardinality/3, circuit/1, element/3, automaton/3, automaton/8, transpose/2, zcompare/3, chain/2, fd_var/1, fd_inf/2, fd_sup/2, fd_size/2, fd_dom/2 */ ]). /** @pred _X_ #< _B_ is det reified implication As an example. consider finding out the people who wanted to sit next to a friend and that are are actually sitting together: ~~~~~{.prolog} preference_satisfied(X-Y, B) :- abs(X - Y) #= 1 #<==> B. ~~~~~ Note that not all constraints may be reifiable. */ /** @pred _X_ #< _Y_ is semidet smaller or equal Arguments to this constraint may be an arithmetic expression with <tt>+</tt>, <tt>-</tt>, <tt>\\*</tt>, integer division <tt>/</tt>, <tt>min</tt>, <tt>max</tt>, <tt>sum</tt>, <tt>count</tt>, and <tt>abs</tt>. Boolean variables support conjunction (/\), disjunction (\/), implication (=>), equivalence (<=>), and xor. The <tt>sum</tt> constraint allows a two argument version using the `where` conditional, in Zinc style. The send more money equation may be written as: ~~~~~{.prolog} 1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R + E #= 10000*M + 1000*O + 100*N + 10*E + Y, ~~~~~ This example uses `where` to select from column _I_ the elements that have value under _M_: ~~~~~{.prolog} OutFlow[I] #= sum(J in 1..N where D[J,I]<M, X[J,I]) ~~~~~ The <tt>count</tt> constraint counts the number of elements that match a certain constant or variable (integer sets are not available). */ /** @pred _X_ #<==> _B_ is det reified equivalence */ /** @pred _X_ #= _Y_ is semidet equality */ /** @pred _X_ #=< _Y_ is semidet smaller */ /** @pred _X_ #==> _B_ is det Reified implication */ /** @pred _X_ #> _Y_ is semidet larger */ /** @pred _X_ #>= _Y_ is semidet larger or equal */ /** @pred _X_ #\= _Y_ is semidet disequality */ /** @pred labeling( _Opts_, _Xs_) performs labeling, several variable and value selection options are available. The defaults are `min` and `min_step`. Variable selection options are as follows: + leftmost choose the first variable + min choose one of the variables with smallest minimum value + max choose one of the variables with greatest maximum value + ff choose one of the most constrained variables, that is, with the smallest domain. Given that we selected a variable, the values chosen for branching may be: + min_step smallest value + max_step largest value + bisect median + enum all value starting from the minimum. */ /** @pred scalar_product(+ _Cs_, + _Vs_, + _Rel_, ? _V_ ) The product of constant _Cs_ by _Vs_ must be in relation _Rel_ with _V_ . */ :- use_module(library(gecode)). :- use_module(library(maplist)). :- reexport(library(matrix), [(<==)/2, op(800, xfx, '<=='), op(700, xfx, in), op(700, xfx, ins), op(450, xfx, ..), % should bind more tightly than \/ op(710, xfx, of), foreach/2, foreach/4, of/2]). % build array of constraints % matrix:array_extension(_.._ , gecode_clpfd:build). build( I..J, _, Size, L) :- length( L, Size ), L ins I..J. matrix:rhs_opaque(X) :- constraint(X). constraint( (_ #> _) ). constraint( (_ #< _) ). constraint( (_ #>= _) ). constraint( (_ #=< _) ). constraint( (_ #= _) ). constraint( (_ #\= _) ). constraint( (_ #\ _) ). constraint( (_ #<==> _) ). constraint( (_ #==> _) ). constraint( (_ #<== _) ). constraint( (_ #\/ _) ). constraint( (_ #/\ _) ). constraint( in(_, _) ). %2, constraint( ins(_, _) ). %2, constraint( all_different(_) ). %1, constraint( all_distinct(_) ). %1, constraint( all_distinct(_,_) ). %1, constraint( sum(_, _, _) ). %3, constraint( scalar_product(_, _, _, _) ). %4, constraint( min(_, _) ). %2, constraint( minimum(_, _) ). %2, constraint( max(_, _) ). %2, constraint( maximum(_, _) ). %2, constraint( in_relation(_, _) ). %2, constraint( in_dfa(_, _) ). %2, constraint( in_dfa(_, _, _, _) ). %2, constraint( tuples_in(_, _) ). %2, constraint( labeling(_, _) ). %2, constraint( label(_) ). %1, constraint( indomain(_) ). %1, constraint( lex_chain(_) ). %1, constraint( serialized(_, _) ). %2, constraint( global_cardinality(_, _) ). %2, constraint( global_cardinality(_, _, _) ). %3, constraint( circuit(_) ). %1, constraint( element(_, _, _) ). %3, constraint( automaton(_, _, _) ). %3, constraint( automaton(_, _, _, _, _, _, _, _) ). %8, constraint( transpose(_, _) ). %2, constraint( zcompare(_, _, _) ). %3, constraint( chain(_, _) ). %2, constraint( element(_, _) ). %2, constraint( fd_var(_) ). %1, constraint( fd_inf(_, _) ). %2, constraint( fd_sup(_, _) ). %2, constraint( fd_size(_, _) ). %2, constraint( fd_dom(_, _) ). %2 constraint( clause(_, _, _, _) ). %2 process_constraints((B0,B1), (NB0, NB1), Env) :- process_constraints(B0, NB0, Env), process_constraints(B1, NB1, Env). process_constraints(B, B, env(_Space)) :- constraint(B), !. process_constraints(B, B, _Env). % process_constraint(B, NB, Space). ( A #= B) :- get_home(Env), check(A, NA), check(B, NB), post( rel(NA, (#=), NB), Env, _). ( A #\= B) :- get_home(Env), check(A, NA), check(B, NB), post( rel(NA, (#\=), NB), Env, _). ( A #< B) :- get_home(Env), check(A, NA), check(B, NB), post( rel(NA, (#<), NB), Env, _). ( A #> B) :- get_home(Env), check(A, NA), check(B, NB), post( rel(NA, (#>), NB), Env, _). ( A #=< B) :- get_home(Env), check(A, NA), check(B, NB), post( rel(NA, (#=<), NB), Env, _). ( A #>= B) :- get_home(Env), check(A, NA), check(B, NB), post( rel(NA, (#>=), NB), Env, _). ( A #= ) :- get_home(Env), check(A, NA), post( rel(NA, (#=)), Env, _). /** @pred _X_ #= is det all elements of _X_ must take the same value */ ( A #\= ) :- get_home(Env), check(A, NA), post( rel(NA, (#\=)), Env, _). /** @pred _X_ #< is det elements of _X_ must be decreasing or equal */ ( A #< ) :- get_home(Env), check(A, NA), post( rel(NA, (#<)), Env, _). /** @pred _X_ #> is det elements of _X_ must be increasing */ ( A #> ) :- get_home(Env), check(A, NA), post( rel(NA, (#>)), Env, _). /** @pred _X_ #=< is det elements of _X_ must be decreasing */ ( A #=< ) :- get_home(Env), check(A, NA), post( rel(NA, (#=<) ), Env, _). /** @pred _X_ #>= is det elements of _X_ must be increasinga or equal */ ( A #>= ) :- get_home(Env), check(A, NA), post( rel(NA, (#>=)), Env, _). sum( L, Op, V) :- get_home( Env ), check(L, NL), check(V, NV), post( rel(sum(NL), Op, NV), Env, _). ( ( A #<==> VBool )) :- get_home(Space-Map), check(A, NA), check(VBool, NVBool), Bool := boolvar(Space), m( NVBool, Bool, 0, 1, Map), Space += reify(Bool, 'RM_EQV', R), post(NA, Space-Map, R). ( A #==> VBool) :- get_home(Space-Map), check(A, NA), check(VBool, NVBool), Bool := boolvar(Space), m( NVBool, Bool, 0, 1, Map), Space += reify(Bool, 'RM_IMP', R), post(NA, Space-Map, R). ( A #<== VBool) :- get_home(Space-Map), check(A, NA), check(VBool, NVBool), Bool := boolvar(Space), m( NVBool, Bool, 0, 1, Map), Space += reify(Bool, 'RM_PMI', R), post(NA, Space-Map, R). '#\\'(A) :- get_home(Space-Map), check(A, NA), B := boolvar(Space), Space += reify(B, 'RM_EQV', R), Space += rel(B, 'BOT_EQV', 0), post(NA, Space-Map, R). ( A1 #\/ A2 ) :- get_home(Space-Map), check(A1, NA1), check(A2, NA2), B1 := boolvar(Space), B2 := boolvar(Space), Space += reify(B1, 'RM_EQV', R1), Space += reify(B2, 'RM_EQV', R2), post(NA1, Space-Map, R1), post(NA2, Space-Map, R2), Space += rel(B1, B2, 'BOT_OR', 1). ( A1 #/\ A2 ) :- get_home(Space-Map), check(A1, NA1), check(A2, NA2), B1 := boolvar(Space), B2 := boolvar(Space), Space += reify(B1, 'RM_EQV', R1), Space += reify(B2, 'RM_EQV', R2), post(NA1, Space-Map, R1), post(NA2, Space-Map, R2), Space += rel(B1, B2, 'BOT_AND', 1). ( X in A..B) :- get_home(Space-Map), check(A, NA), check(B, NB), m(X, NX, NA, NB, Map), NX := intvar(Space, NA, NB). ( Xs ins A..B) :- get_home(Space-Map), check(A, NA), check(B, NB), maplist(lm(NA, NB, Map), Xs, NXs), length(Xs, N), NXs := intvars(Space, N, NA, NB). boolvar( X ) :- get_home(Space-Map), m(X, NX, 0, 1, Map), NX := boolvar( Space ). boolvars( Xs ) :- get_home(Space-Map), maplist(lm(0, 1, Map), Xs, NXs), length(Xs, N), NXs := boolvars( Space, N ). /** @pred all_different( _Vs_ ) Verifies whether all elements of a list are different. */ all_different( Xs ) :- get_home(Env), check(Xs, NXs), post( all_different( NXs ), Env, _ ). all_distinct( Xs ) :- get_home(Env), check(Xs, NXs), post( all_distinct( NXs ), Env, _ ). all_distinct( Cs, Xs ) :- get_home(Env), check(Xs, NXs), post( all_distinct( Cs, NXs ), Env, _ ). scalar_product( Cs, Vs, Rels, X ) :- get_home(Env), check(Vs, NVs), post( scalar_product( Cs, NVs, Rels, X ), Env, _ ). lex_chain( Cs ) :- get_home(Env), check(Cs, NCs), post( rel( NCs, '#=<' ), Env, _ ). minimum( V, Xs ) :- get_home(Env), check(Xs, NXs), check(V, NV), post( rel( min(NXs), (#=), NV ), Env, _ ). min( Xs, V ) :- get_home(Env), check(Xs, NXs), check(V, NV), post( rel( min(NXs), (#=), NV ), Env, _ ). maximum( V, Xs ) :- get_home(Env), check(Xs, NXs), check(V, NV), post( rel( max(NXs), (#=), NV ), Env, _ ). max( Xs, V ) :- get_home(Env), check(Xs, NXs), check(V, NV), post( rel( max(NXs), (#=), NV ), Env, _ ). element( V, Xs ) :- get_home(Env), check(Xs, NXs), check(V, NV), post( element( NV, NXs ), Env, _ ). in_relation( Xs, Rel ) :- get_home(Env), check(Xs, NXs), post(in_tupleset(NXs, Rel), Env, _ ). in_dfa( Xs, Rel ) :- get_home(Env), check(Xs, NXs), post(in_dfa(NXs, Rel), Env, _ ). in_dfa( Xs, S0, Ts, Fs ) :- get_home(Env), check(Xs, NXs), post(in_dfa(NXs, S0, Ts, Fs), Env, _ ). clause( and, Ps, Ns, V ) :- get_home(Env), check(Ps, NPs), check(Ns, NNs), check(V, NV), post(clause( 'BOT_AND', NPs, NNs, NV), Env, _ ). clause( or, Ps, Ns, V ) :- get_home(Env), check(Ps, NPs), check(Ns, NNs), check(V, NV), post(clause( 'BOT_OR', NPs, NNs, NV), Env, _ ). labeling(Opts, Xs) :- get_home(Space-Map), foldl2( processs_lab_opt, Opts, 'INT_VAR_SIZE_MIN', BranchVar, 'INT_VAL_MIN', BranchVal), term_variables(Xs, Vs), check( Vs, X1s ), ( X1s == [] -> true ; maplist(ll(Map), X1s, NXs), Space += branch(NXs, BranchVar, BranchVal) ). processs_lab_opt(leftmost, _, 'INT_VAR_NONE', BranchVal, BranchVal). processs_lab_opt(min, _, 'INT_VAR_SIZE_MIN', BranchVal, BranchVal). processs_lab_opt(max, _, 'INT_VAR_SIZE_MAX', BranchVal, BranchVal). processs_lab_opt(ff, _, 'INT_VAR_DEGREE_MIN', BranchVal, BranchVal). processs_lab_opt(min_step, BranchVar, BranchVar, _, 'INT_VAL_MIN'). processs_lab_opt(max_step, BranchVar, BranchVar, _, 'INT_VAL_MIN'). processs_lab_opt(bisect, BranchVar, BranchVar, _, 'INT_VAL_MED'). processs_lab_opt(enum, BranchVar, BranchVar, _, 'INT_VALUES_MIN'). maximize(V) :- get_home(Space-Map), l(V, I, Map), Space += maximize(I). minimize(V) :- get_home(Space-Map), l(V, I, Map), Space += minimize(I). extensional_constraint( Tuples, TupleSet) :- TupleSet := tupleset( Tuples ). dfa( S0, Transitions, Finals, DFA) :- DFA := dfa( S0, Transitions, Finals ). check(V, NV) :- ( var(V) -> V = NV ; number(V) -> V = NV ; is_list(V) -> maplist(check, V, NV) ; V = sum(_,_) -> V = NV ; V = '[]'(Indx, Mat) -> NV <== '[]'(Indx, Mat) ; V = '$matrix'(_, _, _, _, C) -> C =.. [_|L], maplist(check, L, NV) ; V = A+B -> check(A,NA), check(B, NB), NV = NB+NA ; V = A-B -> check(A,NA), check(B, NB), NV = NB-NA ; arith(V, _) -> V =.. [C|L], maplist(check, L, NL), NV =.. [C|NL] ; constraint(V) -> V =.. [C|L], maplist(check, L, NL), NV =.. [C|NL] ). post( ( A #= B), Env, Reify) :- post( rel( A, (#=), B), Env, Reify). post( ( A #\= B), Env, Reify) :- post( rel( A, (#\=), B), Env, Reify). post( ( A #> B), Env, Reify) :- post( rel( A, (#>), B), Env, Reify). post( ( A #< B), Env, Reify) :- post( rel( A, (#<), B), Env, Reify). post( ( A #>= B), Env, Reify) :- post( rel( A, (#>=), B), Env, Reify). post( ( A #=< B), Env, Reify) :- post( rel( A, (#=<), B), Env, Reify). % [X,Y,Z] #< post( rel( A, Op), Space-Map, Reify):- ( var( A ) -> l(A, IA, Map) ; checklist( var, A ) -> maplist(ll(Map), A, IA ) ), gecode_arith_op( Op, GOP ), (var(Reify) -> Space += rel(IA, GOP) ; Space += rel(IA, GOP, Reify) ). % X #< Y % X #< 2 post( rel( A, Op, B), Space-Map, Reify):- var(A), ( var(B) -> l(B, IB, Map) ; integer(B) -> IB = B ), !, l(A, IA, Map), gecode_arith_op( Op, GOP ), (var(Reify) -> Space += rel(IA, GOP, IB) ; Space += rel(IA, GOP, IB, Reify) ). % 2 #\= B -> reverse post( rel( A, Op, B), Space-Map, Reify) :- ( var(A) ; integer(A) ), !, reverse_arith_op( Op, ROp ), post( rel( B, ROp, A), Space-Map, Reify). % A is never unbound % [A,B,C,D] #< 3 post( rel( A, Op, B ), Space-Map, Reify):- checklist( var, A ), !, maplist(ll(Map), A, IL ), ( var(B) -> l(B, IB, Map) ; integer(B) -> IB = B ; equality(B, NB, Space-Map), l(NB, IB, Map) ), !, gecode_arith_op( Op, GOP ), (var(Reify) -> Space += rel(IL, GOP) ; Space += rel(IL, GOP, IB) ). % sum([A,B,C]) #= X post( rel( sum(L), Op, Out), Space-Map, Reify):- !, checklist( var, L ), !, maplist(ll(Map), L, IL ), ( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ; equality(Out, NOut, Space-Map), l(NOut, IOut, Map) ), gecode_arith_op( Op, GOP ), (var(Reify) -> Space += linear(IL, GOP, IOut); Space += linear(IL, GOP, IOut, Reify) ). % count([A,B,C], 3) #= X post( rel( count(X, Y), Op, Out), Space-Map, Reify):- !, ( checklist( var, X ) -> maplist(ll(Map), X, IX ) ), ( var(Y) -> l(Y, IY, Map) ; integer(Y) -> IY = Y ; equality(Y, NY, Space-Map), l(NY, IY, Map) ), ( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ; equality(Out, NOut, Space-Map), l(NOut, IOut, Map) ), !, gecode_arith_op( Op, GOP ), (var(Reify) -> Space += count(IX, IY, GOP, IOut); Space += count(IX, IY, GOP, IOut, Reify) ). % sum([I in 0..N-1, M[I]]) #= X post( rel( sum(Foreach, Cond), Op, Out), Space-Map, Reify):- !, ( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ; equality(Out, NOut, Space-Map), l(NOut, IOut, Map) ), cond2list( Foreach, Cond, Cs, L), maplist(ll(Map), [Out|L], [IOut|IL] ), gecode_arith_op( Op, GOP ), (L = [] -> true ; var(Reify) -> Space += linear(Cs, IL, GOP, IOut); Space += linear(Cs, IL, GOP, IOut, Reify) ). post( rel(A1+A2, Op, B), Space-Map, Reify):- ( nonvar(B) ; B = _ + _ ; B = _-_), !, linearize(A1+A2, 1, As, Bs, CAs, CBs, 0, A0, Space-Map), linearize(B, -1, Bs, [], CBs, [], A0, B0, Space-Map), gecode_arith_op( Op, GOP ), (var(Reify) -> ( checklist(is_one, CAs) -> Space += linear(As, GOP, B0); Space += linear(CAs, As, GOP, B0) ) ; ( checklist(is_one, CAs) -> Space += linear(As, GOP, B0, Reify); Space += linear(CAs, As, GOP, B0, Reify) ) ). post( rel(A1-A2, Op, B), Space-Map, Reify):- ( nonvar(B) ; B = _ + _ ; B = _-_), !, linearize(A1-A2, 1, As, Bs, CAs, CBs, 0, A0, Space-Map), linearize(B, -1, Bs, [], CBs, [], A0, B0, Space-Map), gecode_arith_op( Op, GOP ), (var(Reify) -> ( checklist(is_one, CAs) -> Space += linear(As, GOP, B0); Space += linear(CAs, As, GOP, B0) ) ; ( checklist(is_one, CAs) -> Space += linear(As, GOP, B0, Reify); Space += linear(CAs, As, GOP, B0, Reify) ) ). post( rel(A, Op, B), Space-Map, Reify):- arith(A, Name), A =.. [_Op,A1], is_list(A1), !, ( _Op = min -> true ; _Op = max ), maplist(equality_l( Space-Map), A1, NA1), maplist(in_c_l( Space-Map), NA1, VA1), equality(B, B1, Space-Map), out_c(Name, VA1, B1, Op, Space-Map, Reify). post( rel(A, Op, B), Space-Map, Reify):- arith(A, Name), A =.. [_Op,A1], !, equality(A1, NA1, Space-Map), in_c(NA1, VA1, Space-Map), !, equality(B, B1, Space-Map), out_c(Name, VA1, B1, Op, Space-Map, Reify). post( rel(A, Op, B), Space-Map, Reify):- arith(A, Name), A =.. [_Op,A1,A2], !, equality(A1, NA1, Space-Map), in_c(NA1, VA1, Space-Map), equality(A2, NA2, Space-Map), in_c(NA2, VA2, Space-Map), equality(B, B1, Space-Map), out_c(Name, VA1, VA2, B1, Op, Space-Map, Reify). post( scalar_product(Cs, L, Op, Out), Space-Map, Reify):- var(Out), !, maplist(ll(Map), [Out|L], [IOut|IL] ), gecode_arith_op( Op, GOP ), (var(Reify) -> Space += linear(Cs, IL, GOP, IOut); Space += linear(Cs, IL, GOP, IOut, Reify) ). post( scalar_product(Cs, L, Op, Out), Space-Map, Reify):- integer(Out), !, maplist(ll(Map), L, IL ), gecode_arith_op( Op, GOP ), (var(Reify) -> Space += linear(Cs, IL, GOP, Out); Space += linear(Cs, IL, GOP, Out, Reify) ). post( all_different( Xs ), Space-Map, Reify) :- maplist(ll(Map), Xs, NXs), (var(Reify) -> Space += distinct(NXs) ; throw(error(domain(not_reifiable),all_different( Xs ))) ). post( all_distinct( Xs ), Space-Map, Reify) :- maplist(ll(Map), Xs, NXs), (var(Reify) -> Space += distinct(NXs) ; throw(error(domain(not_reifiable),all_distinct( Xs ))) ). post( all_distinct( Cs , Xs ), Space-Map, Reify) :- maplist(ll(Map), Xs, NXs), (var(Reify) -> Space += distinct(Cs,NXs) ; throw(error(domain(not_reifiable),all_distinct( Cs , Xs ))) ). post(in_tupleset(Xs, Tuples), Space-Map, Reify) :- is_list( Tuples ), !, TS := tupleset( Tuples ), maplist(ll(Map), Xs, IXs), (var(Reify) -> Space += extensional(IXs, TS) ; throw(error(domain(not_reifiable),in_relation(Xs, Tuples))) ). post(in_tupleset(Xs, TS), Space-Map, Reify) :- maplist(ll(Map), Xs, IXs), (var(Reify) -> Space += extensional(IXs, TS) ; throw(error(domain(not_reifiable),in_relation(Xs, TS))) ). post(in_dfa(Xs, S0, Trs, Fs), Space-Map, Reify) :- TS := dfa( S0, Trs, Fs ), maplist(ll(Map), Xs, IXs), (var(Reify) -> Space += extensional(IXs, TS) ; throw(error(domain(not_reifiable),in_dfa(Xs, S0, Trs, Fs))) ). post(in_dfa(Xs, TS), Space-Map, Reify) :- maplist(ll(Map), Xs, IXs), (var(Reify) -> Space += extensional(IXs, TS) ; throw(error(domain(not_reifiable),in_dfa(Xs, TS))) ). post(element(V, Xs), Space-Map, Reify) :- l(V, IV, Map), maplist(ll(Map), Xs, IXs), (var(Reify) -> Space += element(IV, IXs) ; Space += element(IV, IXs, Reify) ). post(clause( Type, Ps, Ns, V), Space-Map, Reify) :- (integer(V) -> V = IV ; l(V, IV, Map) ), maplist(ll(Map), Ps, IPs), maplist(ll(Map), Ns, INs), (var(Reify) -> Space += clause(Type, IPs, INs, IV) ; Space += clause(Type, IPs, INs, IV, Reify) ). gecode_arith_op( (#=) , 'IRT_EQ' ). gecode_arith_op( (#\=) , 'IRT_NQ' ). gecode_arith_op( (#>) , 'IRT_GR' ). gecode_arith_op( (#>=) , 'IRT_GQ' ). gecode_arith_op( (#<) , 'IRT_LE' ). gecode_arith_op( (#=<) , 'IRT_LQ' ). reverse_arith_op( (#=) , (#=) ). reverse_arith_op( (#\=) , (#\=) ). reverse_arith_op( (#>) , (#<) ). reverse_arith_op( (#>=) , (#=<) ). reverse_arith_op( (#<) , (#>) ). reverse_arith_op( (#=<) , (#>=) ). linearize(V, C, [A|As], As, [C|CAs], CAs, I, I, _-Map) :- var(V), !, l(V, A, Map). linearize(A+B, C, As, Bs, CAs, CBs, I, IF, Env) :- linearize(A, C, As, A1s, CAs, CA1s, I, I1, Env), linearize(B, C, A1s, Bs, CA1s, CBs, I1, IF, Env). linearize(A-B, C, As, Bs, CAs, CBs, I, IF, Env) :- NC is -C, linearize(A, C, As, A1s, CAs, CA1s, I, I1, Env), linearize(B, NC, A1s, Bs, CA1s, CBs, I1, IF, Env). linearize(A, C, As, As, CAs, CAs, I, IF, _) :- integer(A), !, IF is I-C*A. linearize(A, C, As, As, CAs, CAs, I, IF, _) :- ground(A), catch( (B is eval(A)), _, fail ), !, IF is I-C*B. linearize(C1*B, C, As, Bs, CAs, CBs, I, IF, Env) :- integer(C1), !, NC is C*C1, linearize(B, NC, As, Bs, CAs, CBs, I, IF, Env). linearize(B*C1, C, As, Bs, CAs, CBs, I, IF, Env) :- integer(C1), !, NC is C*C1, linearize(B, NC, As, Bs, CAs, CBs, I, IF, Env). linearize(AC, C, [A|Bs], Bs, [C|CBs], CBs, I, I, Env) :- arith(AC, _), equality(AC, V, Env), Env = _-Map, l(V, A, Map). arith('/\\'(_,_), (/\)). arith('\\/'(_,_), (\/)). arith('=>'(_,_), (=>)). arith('<=>'(_,_), (<=>)). arith(xor(_,_), xor). arith(abs(_), abs). arith(min(_), min). arith(max(_), max). arith(min(_,_), min). arith(max(_,_), max). arith((_ * _), times). arith((_ / _), div). arith(sum(_), sum). arith(sum(_,_), sum). arith(count(_,_), count). % replace abs(min(A,B)-max(A,B)) by % min(A,B,A1), max(A,B,A2), linear([1,-1],[A1,B1],=,A3), abs(A3,AN) equality(V, V, _Env) :- var( V ), !. equality(V, V, _Env) :- integer( V ), !. equality(abs(V), NV, Env) :- equality(V, VA, Env), new_arith(abs, VA, NV, Env). equality(min(V), NV, Env) :- maplist( equality_l(Env), V, VA ), new_arith(min, VA, NV, Env). equality(max(V), NV, Env) :- maplist( equality_l(Env), V, VA ), new_arith(max, VA, NV, Env). equality(V1+V2, NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( plus, V1A, V2A, NV, Env). equality(V1-V2, NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( minus, V1A, V2A, NV, Env). equality(V1*V2, NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( times, V1A, V2A, NV, Env). equality(V1/V2, NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( div, V1A, V2A, NV, Env). equality(V1 mod V2, NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (mod), V1A, V2A, NV, Env). equality(max( V1 , V2), NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (max), V1A, V2A, NV, Env). equality(min( V1 , V2), NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (min), V1A, V2A, NV, Env). equality(sum( V ), NV, Env) :- maplist( equality_l(Env), V, VA ), new_arith(sum, VA, NV, Env). equality(sum( C, G ), NV, Env) :- new_arith(sum, C, G, NV, Env). equality('/\\'( V1 , V2), NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (/\), V1A, V2A, NV, Env). equality('\\/'( V1 , V2), NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (\/), V1A, V2A, NV, Env). equality('<=>'( V1 , V2), NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (<=>), V1A, V2A, NV, Env). equality('=>'( V1 , V2), NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (=>), V1A, V2A, NV, Env). equality('xor'( V1 , V2), NV, Env) :- equality(V1, V1A, Env), equality(V2, V2A, Env), new_arith( (xor), V1A, V2A, NV, Env). equality_l(Env, V0, V) :- equality(V0, V, Env). % abs(X) #= 3 out_c(Name, A1, B, Op, Space-Map, Reify) :- integer(B), !, new_arith( Name, A1, NB, Space-Map), gecode_arith_op( Op, BOP ), l(NB, IB, Map), ( var(Reify) -> Space += rel(IB, BOP, B) ; Space += rel(IB, BOP, B, Reify) ). % abs(X) #= Cin[..] out_c(Name, A1, B, (#=), Space-Map, Reify) :- var(Reify), l(B, IB, Map), !, l(A1, IA1, Map), G =.. [Name, IA1, IB], Space += G. % abs(X) #= NEW out_c(Name, A1, B, (#=), Space-Map, Reify) :- var(Reify), !, new_arith( Name, A1, B, Space-Map). % abs(X) #> NEW out_c(Name, A1, B, Op, Space-Map, Reify) :- l(B, IB0, Map), !, new_arith( Name, A1, NB, Space-Map), l(NB, IB, Map), gecode_arith_op( Op, BOP ), ( nonvar(Reify) -> Space += rel(IB, BOP, IB0) ; Space += rel(IB, BOP, IB0, Reify) ). % X*Y #= 3 out_c(Name, A1, A2, B, Op, Space-Map, Reify) :- integer(B), !, new_arith( Name, A1, A2, NB, Space-Map), l(NB, IB, Map), gecode_arith_op( Op, BOP ), ( var(Reify) -> Space += rel(IB, BOP, B) ; Space += rel(IB, BOP, B, Reify) ). % X*Y #= Cin[..] out_c(Name, A1, A2, B, (#=), Space-Map, Reify) :- var(Reify), l(B, IB, Map), !, l(A1, IA1, Map), l(A2, IA2, Map), G =.. [Name, IA1, IA2, IB], Space += G. % abs(X) #= NEW, cannot be reified out_c(Name, A1, A2, B, (#=), Space-Map, Reify) :- var(Reify), !, new_arith( Name, A1, A2, B, Space-Map). % min(X,Y) #= Cin[..] <=> out_c(Name, A1, A2, B, Op, Space-Map, Reify) :- l(B, IB0, Map), !, new_arith( Name, A1, A2, NB, Space-Map), l(NB, IB, Map), gecode_arith_op( Op, BOP ), ( var(Reify) -> Space += rel(IB, BOP, IB0) ; Space += rel(IB, BOP, IB0, Reify) ). new_arith( abs, V, NV, Space-Map) :- l(V, X, Min0, Max0, Map), ( Min0 < 0 -> ( Max0 < 0 -> Min is -Max0, Max is -Min0 ; Min = 0 , Max is max( -Min0, Max0 ) ) ; Min = Min0, Max = Max0 ), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += abs(X, NX). new_arith( min, V, NV, Space-Map) :- V = [V1|RV], l(V1, _X1, Min0, Max0, Map), foldl2( min_l(Map), RV, Max0, Max, Min0, Min), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), maplist(ll(Map), V, X), Space += min(X, NX). new_arith( max, V, NV, Space-Map) :- V = [V1|RV], l(V1, _X1, Min0, Max0, Map), foldl2( max_l(Map), RV, Max0, Max, Min0, Min), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), maplist(ll(Map), V, X), Space += min(X, NX). new_arith( sum, V, NV, Space-Map) :- foldl2( sum_l(Map), V, 0, Max, 0, Min), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), maplist(ll(Map), V, X), Space += linear(X, 'IRT_EQ', NX). new_arith( minus, V1, V2, NV, Space-Map) :- l(V1, X1, Min1, Max1, Map), l(V2, X2, Min2, Max2, Map), Min is Min1-Max2, Max is Max1-Min2, NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += linear([1,-1], [X1,X2], 'IRT_EQ', NX). new_arith( plus, V1, V2, NV, Space-Map) :- l(V1, X1, Min1, Max1, Map), l(V2, X2, Min2, Max2, Map), Min is Min1+Min2, Max is Max1+Max2, NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += linear([1,1], [X1,X2], 'IRT_EQ', NX). new_arith( min, V1, V2, NV, Space-Map) :- l(V1, X1, Min1, Max1, Map), l(V2, X2, Min2, Max2, Map), Min is min(Min1,Min2), Max is min(Max1,Max2), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += min(X1, X2, NX). new_arith( max, V1, V2, NV, Space-Map) :- l(V1, X1, Min1, Max1, Map), l(V2, X2, Min2, Max2, Map), Min is max(Min1,Min2), Max is max(Max1,Max2), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += max(X1, X2, NX). new_arith( times, V1, V2, NV, Space-Map) :- l(V1, X1, Min1, Max1, Map), l(V2, X2, Min2, Max2, Map), min_times(Min1,Min2,Max1,Max2,Min), max_times(Min1,Min2,Max1,Max2,Max), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += times(X1, X2, NX). new_arith( (div), V1, V2, NV, Space-Map) :- l(V1, X1, Min1, Max1, Map), l(V2, X2, Min2, Max2, Map), min_div(Min1,Min2,Max1,Max2,Min), max_div(Min1,Min2,Max1,Max2,Max), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += div(X1, X2, NX). new_arith( (mod), V1, V2, NV, Space-Map) :- l(V1, X1, _Min1, Max1, Map), l(V2, X2, _Min2, Max2, Map), Min is 0, Max is min(abs(Max1), Max2-1), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), Space += mod(X1, X2, NX). new_arith( sum, Foreach, Cond, NV, Space-Map) :- cond2list( Foreach, Cond, Cs, V), foldl2( sum_l(Map), V, 0, Max, 0, Min), NX := intvar(Space, Min, Max), m(NV, NX, Min, Max, Map), maplist(ll(Map), V, X), Space += linear(Cs, X, 'IRT_EQ', NX). new_arith( (/\), V1, V2, NV, Space-Map) :- l(V1, X1, Map), l(V2, X2, Map), NX := boolvar(Space), m(NV, NX, 0, 1, Map), Space += rel(X1, 'BOT_AND', X2, NX). new_arith( (\/), V1, V2, NV, Space-Map) :- l(V1, X1, Map), l(V2, X2, Map), NX := boolvar(Space), m(NV, NX, 0, 1, Map), Space += rel(X1, 'BOT_OR', X2, NX). new_arith( (=>), V1, V2, NV, Space-Map) :- l(V1, X1, Map), l(V2, X2, Map), NX := boolvar(Space), m(NV, NX, 0, 1, Map), Space += rel(X1, 'BOT_IMP', X2, NX). new_arith( (<=>), V1, V2, NV, Space-Map) :- l(V1, X1, Map), l(V2, X2, Map), NX := boolvar(Space), m(NV, NX, 0, 1, Map), Space += rel(X1, 'BOT_EQV', X2, NX). new_arith( xor, V1, V2, NV, Space-Map) :- l(V1, X1, Map), l(V2, X2, Map), NX := boolvar(Space), m(NV, NX, 0, 1, Map), Space += rel(X1, 'BOT_XOR', X2, NX). min_times(Min1,Min2,Max1,Max2,Min) :- Min is min(Min1*Min2, min(Min1*Max2, min(Max1*Min2, Max1*Max2))). max_times(Min1,Min2,Max1,Max2,Max) :- Max is max(Min1*Min2, max(Min1*Max2, max(Max1*Min2, Max1*Max2))). min_div(Min1,Min20,Max1,Max20,Min) :- ( Min20 == 0 -> Min2 = 1 ; Min2 = Min20), ( Max20 == 0 -> Max2 = -1; Max2 = Max20), Min is min(Min1 div Min2, min(Min1 div Max2, min(Max1 div Min2, Max1 div Max2))). max_div(Min1,Min20,Max1,Max20,Max) :- ( Min20 == 0 -> Min2 = 1 ; Min2 = Min20), ( Max20 == 0 -> Max2 = -1; Max2 = Max20), Max is max(Min1 div Min2, max(Min1 div Max2, max(Max1 div Min2, Max1 div Max2))). min_l(Map, V, Min0, Min, Max0, Max) :- l(V, _, Min1, Max1, Map), Min is min(Min0, Min1), Max is min(Max0, Max1). max_l(Map, V, Min0, Min, Max0, Max) :- l(V, _, Min1, Max1, Map), Min is max(Min0, Min1), Max is max(Max0, Max1). sum_l(Map, V, Min0, Min, Max0, Max) :- l(V, _, Min1, Max1, Map), Min is Min0 + Min1, Max is Max0 + Max1. in_c(A, A, _y) :- var(A), !. in_c(C, A, Space-Map) :- integer(C), Min is C-1, NX := intvar(Space, Min, C), m(A, NX, Min, C, Map), Space += rel(NX, 'IRT_EQ', C). in_c_l(Env, V, IV) :- in_c(V, IV, Env). user:term_expansion( ( H :- B), (H :- (gecode_clpfd:init_gecode(Space, Me), NB, gecode_clpfd:close_gecode(Space, Vs, Me)) ) ) :- process_constraints(B, NB, Env), term_variables(H, Vs), nonvar( Env ), !, Env = env( Space ). init_gecode(Space, old) :- nb_current(gecode_space, Space), nonvar(Space), !. init_gecode(Space-Map, new) :- Space := space, b_setval(gecode_done, false), b_setval(gecode_space, Space-Map). close_gecode(_Space, _Vs, old) :- !. close_gecode(Space-Map, Vs0, new) :- term_variables(Vs0, Vs), selectlist(intvar(Map), Vs, CVs), maplist(ll(Map), CVs, IVs), SolSpace := search(Space), b_setval(gecode_done, true), CVs := val(SolSpace,IVs). intvar(Map, V) :- l(V, _IV, Map). get_home(Home) :- b_getval(gecode_space, Home). cond2list((List where Goal), El, Cs, Vs) :- !, foreach( List, add_el(Goal, El), ([])-([]), Cs-Vs ). cond2list(List, El, Cs, Vs) :- !, foreach( List, add_el(true, El), ([])-([]), Cs-Vs ). add_el(G0, El, Cs-Vs, [C|Cs]-[V|Vs]) :- call(G0), !, E <== El, ( var(E) -> C = 1, E = V ; E = C*V, integer(C), var(V) -> true ; E = V*C, integer(C), var(V) ). add_el(_G0, _El, Cs-Vs, Cs-Vs). % An attributed variable with attribute value Domain has been % assigned the value Y attr_unify_hook(_, _) :- b_getval(gecode_done, true), !. attr_unify_hook(v(IV1,_,_), Y) :- ( get_attr(Y, gecode_clpfd, v(IV2,_,_)) -> nb_getval(gecode_space, Space-_), ( IV1 == IV2 -> true ; Space += rel(IV1, 'IRT_EQ', IV2) ) ; var(Y) -> true ; integer(Y) -> nb_getval(gecode_space, Space-_), Space += rel(IV1, 'IRT_EQ', Y) ). % Translate attributes from this module to residual goals attribute_goals(X) --> { get_attr(X, gecode_clpfd, v(_,A,B)) }, [X in A..B]. m(X, Y, A, B, _Map) :- put_attr(X, gecode_clpfd, v(Y, A, B)). /* m(NV, OV, NA, NB, Vs) :- var(Vs), !, Vs = [v(NV,OV,NA,NB)|_]. m(NV, OV, NA, NB, [_|Vs]) :- m(NV, OV, NA, NB, Vs). */ lm(A, B, Map, X, Y) :- m(X, Y, A, B, Map). l(V, IV, _) :- get_attr(V, gecode_clpfd, v(IV, _, _)). /* l(_NV, _OV, Vs) :- var(Vs), !, fail. l(NV, OV, [v(V, OV, _A, _B)|_Vs]) :- V == NV, !. l(NV, OV, [_|Vs]) :- l(NV, OV, Vs). */ ll(Map, X, Y) :- l(X, Y, Map). l(V, IV, A, B, _) :- get_attr(V, gecode_clpfd, v(IV, A, B)). /* l(_NV, _OV, _, _, Vs) :- var(Vs), !, fail. l(NV, OV, A, B, [v(V, OV, A, B)|_Vs]) :- V == NV, !. l(NV, OV, A, B, [_|Vs]) :- l(NV, OV, A, B, Vs). */ is_one(1). /** @} */