:- style_check(all). :- use_module(library(matrix)). :- use_module(library(maplist)). t1 :- X <== matrix([1,2,3,4,5,6],[dim=[3,2]]), writeln(X). t2 :- length(L, 10), X <== matrix(L, [dim=[2,5]]), writeln(X). t3 :- numbers(1, 100, L), X <== matrix(L, [dim=[10,10]]), Y <== X[1..2+3,_], writeln(Y). t4 :- numbers(1, 100, L), X <== matrix(L, [dim=[10,10]]), X1 <== matrix(X[1..2+3,_], [dim=[2,10]]), Y <== [size=size(X1),max=max(X1),min=min(X1)], writeln(Y). numbers(I0, I1, Vals) :- ( I0 =< I1 -> Vals = [I0|MVals], I01 is I0+1, numbers(I01, I1, MVals) ; Vals = [] ). t5 :- numbers(1, 100, L), X <== matrix(L, [dim=[10,10]]), writeln('diagonal:'), for([I in 0..9, J in I..I], Y^(Y <== X[I,J], writeln(Y) ) ). t6 :- Len = 10, LenSq is Len*Len, Len1 is Len-1, numbers(1, LenSq, L), X <== matrix(L, [dim=[Len,Len]]), Y <== matrix(L, [dim=[Len,Len]]), Z <== matrix(L, [dim=[Len,Len]]), writeln('product:'), for([I in 0..Len1, J in 0..Len1], step(X,Y,Z,I,J) ), O <== list(Z), writeln(O). % core step of matrix multiplication: row I per column J step(X,Y,Z,I,J) :- Xs <== X[I,_], % row I Ys <== Y[_,J], % col J foldl(addprod, Xs, Ys, 0, P), % scalar product, fold accumulates the result in two last arguments Z[I,J] <== P. addprod(X, Y, S0, S) :- S is S0+X*Y. t7 :- t7(10). t7(Len) :- LenSq is Len*Len, Len1 is Len-1, numbers(1, LenSq, L), X <== matrix(L, [dim=[Len,Len]]), Y <== matrix(L, [dim=[Len,Len]]), Z <== matrix(L, [dim=[Len,Len]]), writeln('product:'), for([I in 0..Len1, J in 0..Len1], step(X,Y,Z,I,J) , 0, O), writeln(O). % core step of matrix multiplication: row I per column J step(X,Y,Z,I,J,S0,SF) :- Xs <== X[I,_], % row I Ys <== Y[_,J], % col J foldl(addprod, Xs, Ys, 0, P), % scalar product, fold accumulates the result SF is S0+P, % total sum (checksum) Z[I,J] <== P. t8 :- Len is 2*3*4*5, L <== 1..Len, X <== matrix(L, [dim=[5,4,3,2]]), writeln('list:'), OL <== list( X ), LL <== lists( X ), writeln(OL), writeln(LL). t9 :- N1 = 1, X = array[0..N1,0..N1] of [1,2,3,4], Z = array[0..N1,0..N1] of _, for([I in 0..N1, J in I..N1], Z[I,J] <== X[I,J] - X[J,I]), O <== list(Z), writeln(O). t10 :- N1 = 1, X = array[0..N1,0..N1] of 1:4, O <== list(X-2), writeln(O), O1 <== list(X)+2, writeln(O1), O2 <== list(X-X), writeln(O2). t11 :- N = 3, X = array[1..N,1..N] of 1:9, O <== X[1,1], writeln(O), O1 <== X[2,_], writeln(O1), O2 <== X[_,2], writeln(O2). t12 :- N = 8, N2 is N*N, X = array[N,N] of 1:N2, N1 is N-1, for([I in 0..N1, J in 0..N1], plus(X[I,J]), 0, AccF), writeln(sum=AccF). t13 :- N = 2, N2 is N*N, X = array[1..N,1..N] of 1:N2, Y = array[1..N,1..N] of _, Y[1,_] <== X[_,1], L <== list(Y), writeln(out=L).