/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: grow.c * * Last rev: Thu Feb 23 1989 vv * * mods: * * comments: Shifting the stacks * * * *************************************************************************/ #include "Yap.h" #include "Yatom.h" #include "Heap.h" #include "yapio.h" #include "alloc.h" #include "sshift.h" #include "compile.h" #if HAVE_STRING_H #include #endif static int heap_overflows = 0; static Int total_heap_overflow_time = 0; int stack_overflows = 0; static Int total_stack_overflow_time = 0; int delay_overflows = 0; static Int total_delay_overflow_time = 0; static int trail_overflows = 0; static Int total_trail_overflow_time = 0; STATIC_PROTO(Int p_growheap, (void)); STATIC_PROTO(Int p_growstack, (void)); STATIC_PROTO(Int p_inform_trail_overflows, (void)); STATIC_PROTO(Int p_inform_heap_overflows, (void)); STATIC_PROTO(Int p_inform_stack_overflows, (void)); /* #define undf7 */ /* #define undf5 */ STATIC_PROTO(void MoveGlobal, (void)); STATIC_PROTO(void MoveLocalAndTrail, (void)); STATIC_PROTO(void SetHeapRegs, (void)); STATIC_PROTO(void SetStackRegs, (void)); STATIC_PROTO(void AdjustTrail, (int)); STATIC_PROTO(void AdjustLocal, (void)); STATIC_PROTO(void AdjustGlobal, (void)); STATIC_PROTO(void AdjustGrowStack, (void)); STATIC_PROTO(int local_growheap, (long,int)); STATIC_PROTO(void cpcellsd, (CELL *, CELL *, CELL)); STATIC_PROTO(CELL AdjustAppl, (CELL)); STATIC_PROTO(CELL AdjustPair, (CELL)); static void cpcellsd(register CELL *Dest, register CELL *Org, CELL NOf) { #if HAVE_MEMMOVE memmove((void *)Dest, (void *)Org, NOf*sizeof(CELL)); #else register Int n_of = NOf; for (; n_of >= 0; n_of--) *--Dest = *--Org; #endif } /* The old stack pointers */ CELL *OldASP, *OldLCL0; tr_fr_ptr OldTR; CELL *OldGlobalBase, *OldH, *OldH0; ADDR OldTrailBase, OldTrailTop; ADDR OldHeapBase, OldHeapTop; Int GDiff, HDiff, LDiff, TrDiff, XDiff, DelayDiff; static void SetHeapRegs(void) { #ifdef undf7 YP_fprintf(YP_stderr,"HeapBase = %x\tHeapTop=%x\nGlobalBase=%x\tGlobalTop=%x\nLocalBase=%x\tLocatTop=%x\n", HeapBase, HeapTop, GlobalBase, H, LCL0, ASP); #endif /* The old stack pointers */ OldLCL0 = LCL0; OldASP = ASP; OldGlobalBase = (CELL *)GlobalBase; OldH = H; OldH0 = H0; OldTrailBase = TrailBase; OldTrailTop = TrailTop; OldTR = TR; OldHeapBase = HeapBase; OldHeapTop = HeapTop; /* Adjust stack addresses */ TrailBase = TrailAddrAdjust(TrailBase); TrailTop = TrailAddrAdjust(TrailTop); GlobalBase = DelayAddrAdjust(GlobalBase); LocalBase = LocalAddrAdjust(LocalBase); AuxSp = PtoDelayAdjust(AuxSp); AuxTop = DelayAddrAdjust(AuxTop); /* The registers pointing to one of the stacks */ ENV = PtoLocAdjust(ENV); ASP = PtoLocAdjust(ASP); H0 = PtoGloAdjust(H0); LCL0 = PtoLocAdjust(LCL0); H = PtoGloAdjust(H); HB = PtoGloAdjust(HB); B = ChoicePtrAdjust(B); if (TopB != NULL) TopB = ChoicePtrAdjust(TopB); if (DelayedB != NULL) DelayedB = ChoicePtrAdjust(DelayedB); #ifdef TABLING B_FZ = ChoicePtrAdjust(B_FZ); BB = ChoicePtrAdjust(BB); H_FZ = PtoGloAdjust(H_FZ); TR_FZ = PtoTRAdjust(TR_FZ); #endif TR = PtoTRAdjust(TR); YENV = PtoLocAdjust(YENV); if (IsOldGlobalPtr(S)) S = PtoGloAdjust(S); if (MyTR) MyTR = PtoTRAdjust(MyTR); #ifdef COROUTINING DelayedVars = AbsAppl(PtoGloAdjust(RepAppl(DelayedVars))); MutableList = AbsAppl(PtoGloAdjust(RepAppl(MutableList))); AttsMutableList = AbsAppl(PtoGloAdjust(RepAppl(AttsMutableList))); WokenGoals = AbsAppl(PtoGloAdjust(RepAppl(WokenGoals))); #endif if (CurrentModulePtr) CurrentModulePtr = PtoGloAdjust(CurrentModulePtr); } static void SetStackRegs(void) { /* The old local stack pointers */ OldLCL0 = LCL0; OldASP = ASP; OldH = H; OldH0 = H0; OldGlobalBase = (CELL *)GlobalBase; OldTrailTop = TrailTop; OldTrailBase = TrailBase; OldTR = TR; OldHeapBase = HeapBase; OldHeapTop = HeapTop; /* The local and aux stack addresses */ TrailBase = TrailAddrAdjust(TrailBase); TrailTop = TrailAddrAdjust(TrailTop); LocalBase = LocalAddrAdjust(LocalBase); TR = PtoTRAdjust(TR); /* The registers pointing to the local stack */ ENV = PtoLocAdjust(ENV); ASP = PtoLocAdjust(ASP); LCL0 = PtoLocAdjust(LCL0); B = ChoicePtrAdjust(B); if (TopB != NULL) TopB = ChoicePtrAdjust(TopB); if (DelayedB != NULL) DelayedB = ChoicePtrAdjust(DelayedB); #ifdef TABLING B_FZ = ChoicePtrAdjust(B_FZ); BB = ChoicePtrAdjust(BB); TR_FZ = PtoTRAdjust(TR_FZ); #endif YENV = PtoLocAdjust(YENV); if (MyTR) MyTR = PtoTRAdjust(MyTR); if (CurrentModulePtr) CurrentModulePtr = PtoGloAdjust(CurrentModulePtr); } static void MoveLocalAndTrail(void) { /* cpcellsd(To,From,NOfCells) - copy the cells downwards */ #if HAVE_MEMMOVE cpcellsd(ASP, OldASP, (CELL *)OldTR - OldASP); #else cpcellsd((CELL *)TR, (CELL *)OldTR, (CELL *)OldTR - OldASP); #endif } static void MoveGlobal(void) { /* * cpcellsd(To,From,NOfCells) - copy the cells downwards - in * absmi.asm */ #if HAVE_MEMMOVE cpcellsd((CELL *)GlobalBase, (CELL *)OldGlobalBase, OldH - (CELL *)OldGlobalBase); #else cpcellsd(H, OldH, OldH - (CELL *)OldGlobalBase); #endif } static void MoveGlobalOnly(void) { /* * cpcellsd(To,From,NOfCells) - copy the cells downwards - in * absmi.asm */ #if HAVE_MEMMOVE cpcellsd(H0, OldH0, OldH - OldH0); #else cpcellsd(H, OldH, OldH - OldH0); #endif } static inline CELL AdjustAppl(register CELL t0) { register CELL *t = RepAppl(t0); if (IsOldGlobalPtr(t)) return (AbsAppl(PtoGloAdjust(t))); else if (IsOldDelayPtr(t)) return (AbsAppl(PtoDelayAdjust(t))); else if (IsOldTrailPtr(t)) return (AbsAppl(CellPtoTRAdjust(t))); else if (IsHeapP(t)) return (AbsAppl(CellPtoHeapAdjust(t))); #ifdef DEBUG else { /* strange cell */ /* YP_fprintf(YP_stderr,"[ garbage appl %lx found in stacks by stack shifter ]\n", t0);*/ } #endif return(t0); } static inline CELL AdjustPair(register CELL t0) { register CELL *t = RepPair(t0); if (IsOldGlobalPtr(t)) return (AbsPair(PtoGloAdjust(t))); if (IsOldDelayPtr(t)) return (AbsPair(PtoDelayAdjust(t))); if (IsOldTrailPtr(t)) return (AbsPair(CellPtoTRAdjust(t))); else if (IsHeapP(t)) return (AbsPair(CellPtoHeapAdjust(t))); #ifdef DEBUG /* YP_fprintf(YP_stderr,"[ garbage pair %lx found in stacks by stack shifter ]\n", t0);*/ #endif return(t0); } static void AdjustTrail(int adjusting_heap) { register tr_fr_ptr ptt; ptt = TR; /* moving the trail is simple */ while (ptt != (tr_fr_ptr)TrailBase) { register CELL reg = TrailTerm(ptt-1); ptt--; if (IsVarTerm(reg)) { if (IsOldLocalInTR(reg)) TrailTerm(ptt) = LocalAdjust(reg); else if (IsOldGlobal(reg)) TrailTerm(ptt) = GlobalAdjust(reg); else if (IsOldDelay(reg)) TrailTerm(ptt) = DelayAdjust(reg); else if (IsOldTrail(reg)) TrailTerm(ptt) = TrailAdjust(reg); else if (IsOldCode(reg)) { CELL *ptr; TrailTerm(ptt) = reg = CodeAdjust(reg); ptr = (CELL *)reg; if (IsApplTerm(*ptr)) { *ptr = AdjustAppl(*ptr); } else if (IsPairTerm(*ptr)) { *ptr = AdjustAppl(*ptr); } #ifdef DEBUG else YP_fprintf(YP_stderr,"[ garbage heap ptr %p to %lx found in trail at %p by stack shifter ]\n", ptr, (unsigned long int)*ptr, ptt); #endif } } else if (IsPairTerm(reg)) { TrailTerm(ptt) = AdjustPair(reg); #ifdef MULTI_ASSIGNMENT_VARIABLES /* does not work with new structures */ /* check it whether we are protecting a multi-assignment */ } else if (IsApplTerm(reg)) { TrailTerm(ptt) = AdjustAppl(reg); #endif } } } static void AdjustLocal(void) { register CELL reg, *pt; /* Adjusting the local */ pt = LCL0; while (pt > ASP) { reg = *--pt; if (IsVarTerm(reg)) { if (IsOldLocal(reg)) *pt = LocalAdjust(reg); else if (IsOldGlobal(reg)) *pt = GlobalAdjust(reg); else if (IsOldDelay(reg)) *pt = DelayAdjust(reg); else if (IsOldTrail(reg)) *pt = TrailAdjust(reg); else if (IsOldCode(reg)) *pt = CodeAdjust(reg); } else if (IsApplTerm(reg)) { *pt = AdjustAppl(reg); } else if (IsPairTerm(reg)) { *pt = AdjustPair(reg); } } } static void AdjustGlobal(void) { register CELL *pt; /* * to clean the global now that functors are just variables pointing to * the code */ pt = CellPtr(GlobalBase); while (pt < H) { register CELL reg; reg = *pt; if (IsVarTerm(reg)) { if (IsOldGlobal(reg)) *pt = GlobalAdjust(reg); if (IsOldDelay(reg)) *pt = DelayAdjust(reg); else if (IsOldLocal(reg)) *pt = LocalAdjust(reg); else if (IsOldCode(reg)) { Functor f; f = (Functor)(*pt = CodeAdjust(reg)); if (f <= FunctorDouble && f >= FunctorLongInt) { /* skip bitmaps */ switch((CELL)f) { case (CELL)FunctorDouble: #if SIZEOF_DOUBLE == 2*SIZEOF_LONG_INT pt += 3; #else pt += 2; #endif break; #if USE_GMP case (CELL)FunctorBigInt: { Int sz = 1+ sizeof(MP_INT)+ (((MP_INT *)(pt+1))->_mp_alloc*sizeof(mp_limb_t)); pt += sz; } break; #endif case (CELL)FunctorLongInt: default: pt += 2; break; } } } #ifdef MULTI_ASSIGNMENT_VARIABLES else if (IsOldTrail(reg)) *pt = TrailAdjust(reg); #endif } else if (IsApplTerm(reg)) *pt = AdjustAppl(reg); else if (IsPairTerm(reg)) *pt = AdjustPair(reg); else if (IsAtomTerm(reg)) *pt = AtomTermAdjust(reg); pt++; } } /* * When growing the stack we need to adjust: the local stack cells pointing * to the local; the local stack cells and the X terms pointing to the global * (just once) the trail cells pointing both to the global and to the local */ void AdjustStacksAndTrail(void) { AdjustTrail(TRUE); AdjustLocal(); AdjustGlobal(); } /* * When growing the stack we need to adjust: the local cells pointing to the * local; the trail cells pointing to the local */ static void AdjustGrowStack(void) { AdjustTrail(FALSE); AdjustLocal(); } void AdjustRegs(int n) { int i; CELL reg; for (i = 1; i < n; ++i) { reg = (CELL) XREGS[i]; if (IsVarTerm(reg)) { if (IsOldLocal(reg)) reg = LocalAdjust(reg); else if (IsOldGlobal(reg)) reg = GlobalAdjust(reg); else if (IsOldDelay(reg)) reg = DelayAdjust(reg); else if (IsOldTrail(reg)) reg = TrailAdjust(reg); else if (IsOldCode(reg)) reg = CodeAdjust(reg); } else if (IsApplTerm(reg)) reg = AdjustAppl(reg); else if (IsPairTerm(reg)) reg = AdjustPair(reg); XREGS[i] = (Term) reg; } } /* Used by do_goal() when we're short of heap space */ static int local_growheap(long size, int fix_code) { Int start_growth_time, growth_time; int gc_verbose; /* adjust to a multiple of 256) */ size = AdjustPageSize(size); if (!ExtendWorkSpace(size)) { return(FALSE); } start_growth_time = cputime(); gc_verbose = is_gc_verbose(); heap_overflows++; if (gc_verbose) { YP_fprintf(YP_stderr, "[HO] Heap overflow %d\n", heap_overflows); YP_fprintf(YP_stderr, "[HO] growing the heap %ld bytes\n", size); } ASP -= 256; TrDiff = LDiff = GDiff = DelayDiff = size; XDiff = HDiff = 0; YAPEnterCriticalSection(); SetHeapRegs(); MoveLocalAndTrail(); if (fix_code) { CELL *SaveOldH = OldH; OldH = (CELL *)freep; MoveGlobal(); OldH = SaveOldH; } else { MoveGlobal(); } AdjustStacksAndTrail(); AdjustRegs(MaxTemps); YAPLeaveCriticalSection(); ASP += 256; growth_time = cputime()-start_growth_time; total_heap_overflow_time += growth_time; if (gc_verbose) { YP_fprintf(YP_stderr, "[HO] took %g sec\n", (double)growth_time/1000); YP_fprintf(YP_stderr, "[HO] Total of %g sec expanding heap \n", (double)total_heap_overflow_time/1000); } return(TRUE); } /* Used by do_goal() when we're short of heap space */ static int local_growglobal(long size) { Int start_growth_time, growth_time; int gc_verbose; /* adjust to a multiple of 256) */ size = AdjustPageSize(size); if (!ExtendWorkSpace(size)) { return(FALSE); } start_growth_time = cputime(); gc_verbose = is_gc_verbose(); delay_overflows++; if (gc_verbose) { YP_fprintf(YP_stderr, "[DO] Delay overflow %d\n", delay_overflows); YP_fprintf(YP_stderr, "[DO] growing the stacks %ld bytes\n", size); } ASP -= 256; TrDiff = LDiff = GDiff = size; XDiff = HDiff = DelayDiff = 0; YAPEnterCriticalSection(); SetHeapRegs(); MoveLocalAndTrail(); MoveGlobalOnly(); AdjustStacksAndTrail(); AdjustRegs(MaxTemps); YAPLeaveCriticalSection(); ASP += 256; growth_time = cputime()-start_growth_time; total_delay_overflow_time += growth_time; if (gc_verbose) { YP_fprintf(YP_stderr, "[DO] took %g sec\n", (double)growth_time/1000); YP_fprintf(YP_stderr, "[DO] Total of %g sec expanding stacks \n", (double)total_delay_overflow_time/1000); } return(TRUE); } static void fix_compiler_instructions(PInstr *cpc) { while (cpc != NULL) { PInstr *ncpc = cpc->nextInst; switch(cpc->op) { /* check c_var for functions that point at variables */ case get_var_op: case get_val_op: case unify_var_op: case unify_last_var_op: case unify_val_op: case unify_last_val_op: case put_var_op: case put_val_op: case write_var_op: case write_val_op: case f_var_op: case f_val_op: case fetch_args_for_bccall: case bccall_op: case save_pair_op: case save_appl_op: case save_b_op: case comit_b_op: cpc->rnd1 = GlobalAdjust(cpc->rnd1); break; default: /* hopefully nothing to do */ break; } if (ncpc != NULL) { ncpc = (PInstr *)GlobalAddrAdjust((ADDR)(cpc->nextInst)); cpc->nextInst = ncpc; } cpc = ncpc; } } #ifdef TABLING static void fix_tabling_info(void) { /* we must fix the dependency frames and the subgoal frames, as they are pointing back to the global stack. */ struct dependency_frame *df; struct subgoal_frame *sg; df = LOCAL_top_dep_fr; while (df != NULL) { if (DepFr_backchain_cp(df)) DepFr_backchain_cp(df) = ChoicePtrAdjust(DepFr_backchain_cp(df)); DepFr_leader_cp(df) = ChoicePtrAdjust(DepFr_leader_cp(df)); DepFr_cons_cp(df) = ConsumerChoicePtrAdjust(DepFr_cons_cp(df)); df = DepFr_next(df); } sg = LOCAL_top_sg_fr; while (sg != NULL) { SgFr_gen_cp(sg) = GeneratorChoicePtrAdjust(SgFr_gen_cp(sg)); sg = SgFr_next(sg); } } #endif /* TABLING */ int growheap(int fix_code) { unsigned long size = sizeof(CELL) * 16 * 1024L; int shift_factor = (heap_overflows > 8 ? 8 : heap_overflows); unsigned long sz = size << shift_factor; #ifdef FIXED_STACKS abort_optyap("noheapleft in function absmi"); #endif if (SizeOfOverflow > sz) sz = AdjustPageSize(SizeOfOverflow); while(sz >= sizeof(CELL) * 16 * 1024L && !local_growheap(sz, fix_code)) { size = size/2; sz = size << shift_factor; } /* we must fix an instruction chain */ if (fix_code) { PInstr *cpc = CodeStart; if (cpc != NULL) { CodeStart = cpc = (PInstr *)GlobalAddrAdjust((ADDR)cpc); } fix_compiler_instructions(cpc); cpc = BlobsStart; if (cpc != NULL) { BlobsStart = cpc = (PInstr *)GlobalAddrAdjust((ADDR)cpc); } fix_compiler_instructions(cpc); } #ifdef TABLING fix_tabling_info(); #endif return(sz >= sizeof(CELL) * 16 * 1024L); } int growglobal(void) { unsigned long sz = sizeof(CELL) * 16 * 1024L; #ifdef FIXED_STACKS abort_optyap("noheapleft in function absmi"); #endif if (!local_growglobal(sz)) return(FALSE); #ifdef TABLING fix_tabling_info(); #endif return(TRUE); } /* Used by do_goal() when we're short of stack space */ int growstack(long size) { Int start_growth_time, growth_time; int gc_verbose; #ifdef FIXED_STACKS abort_optyap("nostackleft in function absmi"); #endif /* adjust to a multiple of 256) */ size = AdjustPageSize(size); if (!ExtendWorkSpace(size)) { return(FALSE); } start_growth_time = cputime(); gc_verbose = is_gc_verbose(); stack_overflows++; if (gc_verbose) { YP_fprintf(YP_stderr, "[SO] Stack overflow %d\n", stack_overflows); YP_fprintf(YP_stderr, "[SO] Heap: %8ld cells (%p-%p)\n", (unsigned long int)(H-(CELL *)GlobalBase),GlobalBase,H); YP_fprintf(YP_stderr, "[SO] Local:%8ld cells (%p-%p)\n", (unsigned long int)(LCL0-ASP),LCL0,ASP); YP_fprintf(YP_stderr, "[SO] Trail:%8ld cells (%p-%p)\n", (unsigned long int)(TR-(tr_fr_ptr)TrailBase),TrailBase,TR); YP_fprintf(YP_stderr, "[SO] growing the stacks %ld bytes\n", size); } TrDiff = LDiff = size; XDiff = HDiff = GDiff = DelayDiff = 0; ASP -= 256; YAPEnterCriticalSection(); SetStackRegs(); MoveLocalAndTrail(); AdjustGrowStack(); AdjustRegs(MaxTemps); #ifdef TABLING fix_tabling_info(); #endif YAPLeaveCriticalSection(); CreepFlag = CalculateStackGap(); ASP += 256; growth_time = cputime()-start_growth_time; total_stack_overflow_time += growth_time; if (gc_verbose) { YP_fprintf(YP_stderr, "[SO] took %g sec\n", (double)growth_time/1000); YP_fprintf(YP_stderr, "[SO] Total of %g sec expanding stacks \n", (double)total_stack_overflow_time/1000); } return(TRUE); } static void AdjustVarTable(VarEntry *ves) { ves->VarAdr = TermNil; if (ves->VarRight != NULL) { ves->VarRight = (VarEntry *)TrailAddrAdjust((ADDR)(ves->VarRight)); AdjustVarTable(ves->VarRight); } if (ves->VarLeft != NULL) { ves->VarLeft = (VarEntry *)TrailAddrAdjust((ADDR)(ves->VarLeft)); AdjustVarTable(ves->VarLeft); } } /* If we have to shift while we are scanning we need to adjust all pointers created by the scanner (Tokens and Variables) */ static void AdjustScannerStacks(TokEntry **tksp, VarEntry **vep) { TokEntry *tks = *tksp; VarEntry *ves = *vep; if (tks != NULL) { tks = *tksp = (TokEntry *)TrailAddrAdjust((ADDR)tks); } while (tks != NULL) { TokEntry *tktmp; switch (tks->Tok) { case Var_tok: case String_tok: tks->TokInfo = TrailAdjust(tks->TokInfo); break; case Name_tok: tks->TokInfo = (Term)AtomAdjust((Atom)(tks->TokInfo)); break; default: break; } tktmp = tks->TokNext; if (tktmp != NULL) { tktmp = (TokEntry *)TrailAddrAdjust((ADDR)tktmp); tks->TokNext = tktmp; } tks = tktmp; } if (ves != NULL) { ves = *vep = (VarEntry *)TrailAddrAdjust((ADDR)ves); AdjustVarTable(ves); } ves = AnonVarTable; if (ves != NULL) { ves = AnonVarTable = (VarEntry *)TrailAddrAdjust((ADDR)ves); } while (ves != NULL) { VarEntry *vetmp = ves->VarLeft; if (vetmp != NULL) { vetmp = (VarEntry *)TrailAddrAdjust((ADDR)vetmp); ves->VarLeft = vetmp; } ves->VarAdr = TermNil; ves = vetmp; } } /* Used by parser when we're short of stack space */ int growstack_in_parser(tr_fr_ptr *old_trp, TokEntry **tksp, VarEntry **vep) { Int start_growth_time, growth_time; int gc_verbose; long size = sizeof(CELL)*(LCL0-(CELL *)GlobalBase); #ifdef FIXED_STACKS abort_optyap("nostackleft in parser"); #endif /* adjust to a multiple of 256) */ size = AdjustPageSize(size); if (!ExtendWorkSpace(size)) { return(FALSE); } start_growth_time = cputime(); gc_verbose = is_gc_verbose(); stack_overflows++; if (gc_verbose) { YP_fprintf(YP_stderr, "[SO] Stack overflow %d\n", stack_overflows); YP_fprintf(YP_stderr, "[SO] Heap: %8ld cells (%p-%p)\n", (unsigned long int)(H-(CELL *)GlobalBase),(CELL *)GlobalBase,H); YP_fprintf(YP_stderr, "[SO] Local:%8ld cells (%p-%p)\n", (unsigned long int)(LCL0-ASP),LCL0,ASP); YP_fprintf(YP_stderr, "[SO] Trail:%8ld cells (%p-%p)\n", (unsigned long int)(TR-(tr_fr_ptr)TrailBase),TrailBase,TR); YP_fprintf(YP_stderr, "[SO] growing the stacks %ld bytes\n", size); } TrDiff = LDiff = size; XDiff = HDiff = GDiff = DelayDiff = 0; ASP -= 256; YAPEnterCriticalSection(); SetStackRegs(); MoveLocalAndTrail(); AdjustScannerStacks(tksp, vep); { tr_fr_ptr nTR = TR; *old_trp = TR = PtoTRAdjust(*old_trp); AdjustGrowStack(); TR = nTR; } AdjustRegs(MaxTemps); YAPLeaveCriticalSection(); CreepFlag = CalculateStackGap(); ASP += 256; growth_time = cputime()-start_growth_time; total_stack_overflow_time += growth_time; if (gc_verbose) { YP_fprintf(YP_stderr, "[SO] took %g sec\n", (double)growth_time/1000); YP_fprintf(YP_stderr, "[SO] Total of %g sec expanding stacks \n", (double)total_stack_overflow_time/1000); } return(TRUE); } /* Used by do_goal() when we're short of stack space */ int growtrail(long size) { Int start_growth_time = cputime(), growth_time; int gc_verbose = is_gc_verbose(); #ifdef FIXED_STACKS abort_optyap("notrailleft in function absmi"); #endif /* adjust to a multiple of 256) */ size = AdjustPageSize(size); trail_overflows++; if (gc_verbose) { YP_fprintf(YP_stderr, "[TO] Trail overflow %d\n", trail_overflows); YP_fprintf(YP_stderr, "[TO] growing the trail %ld bytes\n", size); } if (!ExtendWorkSpace(size)) { return(FALSE); } YAPEnterCriticalSection(); TrailTop += size; YAPLeaveCriticalSection(); growth_time = cputime()-start_growth_time; total_trail_overflow_time += growth_time; if (gc_verbose) { YP_fprintf(YP_stderr, "[TO] took %g sec\n", (double)growth_time/1000); YP_fprintf(YP_stderr, "[TO] Total of %g sec expanding stacks \n", (double)total_stack_overflow_time/1000); } return(TRUE); } static Int p_inform_trail_overflows(void) { Term tn = MkIntTerm(trail_overflows); Term tt = MkIntegerTerm(total_trail_overflow_time); return(unify(tn, ARG1) && unify(tt, ARG2)); } /* :- grow_heap(Size) */ static Int p_growheap(void) { Int diff; Term t1 = Deref(ARG1); if (IsVarTerm(t1)) { Error(INSTANTIATION_ERROR, t1, "grow_heap/1"); return(FALSE); } else if (!IsIntTerm(t1)) { Error(TYPE_ERROR_INTEGER, t1, "grow_heap/1"); return(FALSE); } diff = IntOfTerm(t1); if (diff < 0) { Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t1, "grow_heap/1"); } return(local_growheap(diff, FALSE)); } static Int p_inform_heap_overflows(void) { Term tn = MkIntTerm(heap_overflows); Term tt = MkIntegerTerm(total_heap_overflow_time); return(unify(tn, ARG1) && unify(tt, ARG2)); } /* :- grow_stack(Size) */ static Int p_growstack(void) { Int diff; Term t1 = Deref(ARG1); if (IsVarTerm(t1)) { Error(INSTANTIATION_ERROR, t1, "grow_stack/1"); return(FALSE); } else if (!IsIntTerm(t1)) { Error(TYPE_ERROR_INTEGER, t1, "grow_stack/1"); return(FALSE); } diff = IntOfTerm(t1); if (diff < 0) { Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t1, "grow_stack/1"); } return(growstack(diff)); } static Int p_inform_stack_overflows(void) { Term tn = MkIntTerm(stack_overflows); Term tt = MkIntegerTerm(total_stack_overflow_time); return(unify(tn, ARG1) && unify(tt, ARG2)); } Int total_stack_shift_time(void) { return(total_heap_overflow_time+ total_stack_overflow_time+ total_trail_overflow_time); } void InitGrowPreds(void) { InitCPred("$grow_heap", 1, p_growheap, SafePredFlag); InitCPred("$grow_stack", 1, p_growstack, SafePredFlag); InitCPred("$inform_trail_overflows", 2, p_inform_trail_overflows, SafePredFlag); InitCPred("$inform_heap_overflows", 2, p_inform_heap_overflows, SafePredFlag); InitCPred("$inform_stack_overflows", 2, p_inform_stack_overflows, SafePredFlag); init_gc(); }