/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: adtdefs.c * * Last rev: * * mods: * * comments: abstract machine definitions * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif #define ADTDEFS_C #ifdef __SUNPRO_CC #define inline #endif #include "Yap.h" Prop STD_PROTO(PredPropByFunc,(Functor, SMALLUNSGN)); Prop STD_PROTO(PredPropByAtom,(Atom, SMALLUNSGN)); #include "Yatom.h" #include "Heap.h" #include "yapio.h" #include #if HAVE_STRING_H #include #endif /* this routine must be run at least having a read lock on ae */ static Prop GetFunctorProp(AtomEntry *ae, unsigned int arity) { /* look property list of atom a for kind */ FunctorEntry *pp; pp = RepFunctorProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && (!IsFunctorProperty(pp->KindOfPE) || pp->ArityOfFE != arity)) pp = RepFunctorProp(pp->NextOfPE); return (AbsFunctorProp(pp)); } /* vsc: We must guarantee that IsVarTerm(functor) returns true! */ static inline Functor InlinedUnlockedMkFunctor(AtomEntry *ae, unsigned int arity) { FunctorEntry *p; Prop p0; p0 = GetFunctorProp(ae, arity); if (p0 != NIL) { return ((Functor) RepProp(p0)); } p = (FunctorEntry *) Yap_AllocAtomSpace(sizeof(*p)); p->KindOfPE = FunctorProperty; p->NameOfFE = AbsAtom(ae); p->ArityOfFE = arity; p->PropsOfFE = NIL; p->NextOfPE = ae->PropsOfAE; INIT_RWLOCK(p->FRWLock); ae->PropsOfAE = AbsProp((PropEntry *) p); return ((Functor) p); } Functor Yap_UnlockedMkFunctor(AtomEntry *ae, unsigned int arity) { return(InlinedUnlockedMkFunctor(ae, arity)); } /* vsc: We must guarantee that IsVarTerm(functor) returns true! */ Functor Yap_MkFunctor(Atom ap, unsigned int arity) { AtomEntry *ae = RepAtom(ap); Functor f; WRITE_LOCK(ae->ARWLock); f = InlinedUnlockedMkFunctor(ae, arity); WRITE_UNLOCK(ae->ARWLock); return (f); } /* vsc: We must guarantee that IsVarTerm(functor) returns true! */ void Yap_MkFunctorWithAddress(Atom ap, unsigned int arity, FunctorEntry *p) { AtomEntry *ae = RepAtom(ap); WRITE_LOCK(ae->ARWLock); p->KindOfPE = FunctorProperty; p->NameOfFE = ap; p->ArityOfFE = arity; p->NextOfPE = RepAtom(ap)->PropsOfAE; ae->PropsOfAE = AbsProp((PropEntry *) p); WRITE_UNLOCK(ae->ARWLock); } inline static Atom SearchInInvisible(char *atom) { AtomEntry *chain; READ_LOCK(INVISIBLECHAIN.AERWLock); chain = RepAtom(INVISIBLECHAIN.Entry); while (!EndOfPAEntr(chain) && strcmp(chain->StrOfAE, atom) != 0) { chain = RepAtom(chain->NextOfAE); } READ_UNLOCK(INVISIBLECHAIN.AERWLock); if (EndOfPAEntr(chain)) return (NIL); else return(AbsAtom(chain)); } static inline Atom SearchAtom(unsigned char *p, Atom a) { AtomEntry *ae; /* search atom in chain */ while (a != NIL) { ae = RepAtom(a); if (strcmp(ae->StrOfAE, (const char *)p) == 0) { return(a); } a = ae->NextOfAE; } return(NIL); } static Atom LookupAtom(char *atom) { /* lookup atom in atom table */ register CELL hash; register unsigned char *p; Atom a; AtomEntry *ae; /* compute hash */ p = (unsigned char *)atom; HashFunction(p, hash); WRITE_LOCK(HashChain[hash].AERWLock); a = HashChain[hash].Entry; /* search atom in chain */ a = SearchAtom((unsigned char *)atom, a); if (a != NIL) { WRITE_UNLOCK(HashChain[hash].AERWLock); return(a); } /* add new atom to start of chain */ ae = (AtomEntry *) Yap_AllocAtomSpace((sizeof *ae) + strlen(atom)); a = AbsAtom(ae); ae->NextOfAE = HashChain[hash].Entry; HashChain[hash].Entry = a; ae->PropsOfAE = NIL; if (ae->StrOfAE != atom) strcpy(ae->StrOfAE, atom); INIT_RWLOCK(ae->ARWLock); WRITE_UNLOCK(HashChain[hash].AERWLock); return (a); } Atom Yap_LookupAtom(char *atom) { /* lookup atom in atom table */ return(LookupAtom(atom)); } Atom Yap_FullLookupAtom(char *atom) { /* lookup atom in atom table */ Atom t; if ((t = SearchInInvisible(atom)) != NIL) { return (t); } return(LookupAtom(atom)); } void Yap_LookupAtomWithAddress(char *atom, AtomEntry *ae) { /* lookup atom in atom table */ register CELL hash; register unsigned char *p; Atom a; /* compute hash */ p = (unsigned char *)atom; HashFunction(p, hash); /* ask for a WRITE lock because it is highly unlikely we shall find anything */ WRITE_LOCK(HashChain[hash].AERWLock); a = HashChain[hash].Entry; /* search atom in chain */ if (SearchAtom(p, a) != NIL) { Yap_Error(FATAL_ERROR,TermNil,"repeated initialisation for atom %s", ae); WRITE_UNLOCK(HashChain[hash].AERWLock); return; } /* add new atom to start of chain */ ae->NextOfAE = a; HashChain[hash].Entry = AbsAtom(ae); ae->PropsOfAE = NIL; strcpy(ae->StrOfAE, atom); INIT_RWLOCK(ae->ARWLock); WRITE_UNLOCK(HashChain[hash].AERWLock); } void Yap_ReleaseAtom(Atom atom) { /* Releases an atom from the hash chain */ register Int hash; register unsigned char *p; AtomEntry *inChain; AtomEntry *ap = RepAtom(atom); char *name = ap->StrOfAE; /* compute hash */ p = (unsigned char *)name; HashFunction(p, hash); WRITE_LOCK(HashChain[hash].AERWLock); if (HashChain[hash].Entry == atom) { HashChain[hash].Entry = ap->NextOfAE; WRITE_UNLOCK(HashChain[hash].AERWLock); return; } /* else */ inChain = RepAtom(HashChain[hash].Entry); while (inChain->NextOfAE != atom) inChain = RepAtom(inChain->NextOfAE); WRITE_LOCK(inChain->ARWLock); inChain->NextOfAE = ap->NextOfAE; WRITE_UNLOCK(inChain->ARWLock); WRITE_UNLOCK(HashChain[hash].AERWLock); } static Prop GetAPropHavingLock(AtomEntry *ae, PropFlags kind) { /* look property list of atom a for kind */ PropEntry *pp; pp = RepProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != kind) pp = RepProp(pp->NextOfPE); return (AbsProp(pp)); } Prop Yap_GetAPropHavingLock(AtomEntry *ae, PropFlags kind) { /* look property list of atom a for kind */ return (GetAPropHavingLock(ae,kind)); } static Prop GetAProp(Atom a, PropFlags kind) { /* look property list of atom a for kind */ AtomEntry *ae = RepAtom(a); Prop out; READ_LOCK(ae->ARWLock); out = GetAPropHavingLock(ae, kind); READ_UNLOCK(ae->ARWLock); return (out); } Prop Yap_GetAProp(Atom a, PropFlags kind) { /* look property list of atom a for kind */ return GetAProp(a,kind); } inline static Prop GetPredPropByAtomHavingLock(AtomEntry* ae, SMALLUNSGN cur_mod) /* get predicate entry for ap/arity; create it if neccessary. */ { Prop p0; p0 = ae->PropsOfAE; while (p0) { PredEntry *pe = RepPredProp(p0); if ( pe->KindOfPE == PEProp && (pe->ModuleOfPred == cur_mod || !pe->ModuleOfPred)) { return(p0); } p0 = pe->NextOfPE; } return(NIL); } Prop Yap_GetPredPropByAtom(Atom at, SMALLUNSGN cur_mod) /* get predicate entry for ap/arity; create it if neccessary. */ { Prop p0; AtomEntry *ae = RepAtom(at); READ_LOCK(ae->ARWLock); p0 = GetPredPropByAtomHavingLock(ae, cur_mod); READ_UNLOCK(ae->ARWLock); return(p0); } static inline Prop GetPredPropByFuncHavingLock(Functor f, SMALLUNSGN cur_mod) /* get predicate entry for ap/arity; create it if neccessary. */ { Prop p0; FunctorEntry *fe = (FunctorEntry *)f; p0 = fe->PropsOfFE; while (p0) { PredEntry *p = RepPredProp(p0); if (/* p->KindOfPE != 0 || only props */ (p->ModuleOfPred == cur_mod || !(p->ModuleOfPred))) { return (p0); } p0 = p->NextOfPE; } return(NIL); } Prop Yap_GetPredPropByFunc(Functor f, SMALLUNSGN cur_mod) /* get predicate entry for ap/arity; */ { Prop p0; READ_LOCK(f->FRWLock); p0 = GetPredPropByFuncHavingLock(f, cur_mod); READ_UNLOCK(f->FRWLock); return (p0); } Prop Yap_GetPredPropHavingLock(Atom ap, unsigned int arity, SMALLUNSGN mod) /* get predicate entry for ap/arity; */ { Prop p0; AtomEntry *ae = RepAtom(ap); Functor f; if (arity == 0) { GetPredPropByAtomHavingLock(ae, mod); } f = InlinedUnlockedMkFunctor(ae, arity); READ_LOCK(f->FRWLock); p0 = GetPredPropByFuncHavingLock(f, mod); READ_UNLOCK(f->FRWLock); return (p0); } /* get expression entry for at/arity; */ Prop Yap_GetExpProp(Atom at, unsigned int arity) { Prop p0; AtomEntry *ae = RepAtom(at); ExpEntry *p; READ_LOCK(ae->ARWLock); p = RepExpProp(p0 = ae->PropsOfAE); while (p0 && (p->KindOfPE != ExpProperty || p->ArityOfEE != arity)) p = RepExpProp(p0 = p->NextOfPE); READ_UNLOCK(ae->ARWLock); return (p0); } /* get expression entry for at/arity, at is already locked; */ Prop Yap_GetExpPropHavingLock(AtomEntry *ae, unsigned int arity) { Prop p0; ExpEntry *p; p = RepExpProp(p0 = ae->PropsOfAE); while (p0 && (p->KindOfPE != ExpProperty || p->ArityOfEE != arity)) p = RepExpProp(p0 = p->NextOfPE); return (p0); } Prop Yap_NewPredPropByFunctor(FunctorEntry *fe, SMALLUNSGN cur_mod) { Prop p0; PredEntry *p = (PredEntry *) Yap_AllocAtomSpace(sizeof(*p)); /* printf("entering %s:%s/%d\n", RepAtom(AtomOfTerm(ModuleName[cur_mod]))->StrOfAE, RepAtom(fe->NameOfFE)->StrOfAE, fe->ArityOfFE); */ INIT_RWLOCK(p->PRWLock); p->KindOfPE = PEProp; p->ArityOfPE = fe->ArityOfFE; p->cs.p_code.FirstClause = p->cs.p_code.LastClause = NULL; p->cs.p_code.NOfClauses = 0; p->PredFlags = 0L; p->OwnerFile = AtomNil; p->OpcodeOfPred = UNDEF_OPCODE; p->CodeOfPred = p->cs.p_code.TrueCodeOfPred = (yamop *)(&(p->OpcodeOfPred)); p->ModuleOfPred = cur_mod; p->NextPredOfModule = ModulePred[cur_mod]; ModulePred[cur_mod] = p; INIT_LOCK(p->StatisticsForPred.lock); p->StatisticsForPred.NOfEntries = 0; p->StatisticsForPred.NOfHeadSuccesses = 0; p->StatisticsForPred.NOfRetries = 0; #ifdef TABLING p->TableOfPred = NULL; #endif /* TABLING */ /* careful that they don't cross MkFunctor */ p->NextOfPE = fe->PropsOfFE; fe->PropsOfFE = p0 = AbsPredProp(p); p->FunctorOfPred = (Functor)fe; WRITE_UNLOCK(fe->FRWLock); return (p0); } Prop Yap_NewPredPropByAtom(AtomEntry *ae, SMALLUNSGN cur_mod) { Prop p0; PredEntry *p = (PredEntry *) Yap_AllocAtomSpace(sizeof(*p)); /* Printf("entering %s:%s/0\n", RepAtom(AtomOfTerm(ModuleName[cur_mod]))->StrOfAE, ae->StrOfAE); */ INIT_RWLOCK(p->PRWLock); p->KindOfPE = PEProp; p->ArityOfPE = 0; p->cs.p_code.FirstClause = p->cs.p_code.LastClause = NULL; p->cs.p_code.NOfClauses = 0; p->PredFlags = 0L; p->OwnerFile = AtomNil; p->OpcodeOfPred = UNDEF_OPCODE; p->CodeOfPred = p->cs.p_code.TrueCodeOfPred = (yamop *)(&(p->OpcodeOfPred)); p->ModuleOfPred = cur_mod; p->NextPredOfModule = ModulePred[cur_mod]; ModulePred[cur_mod] = p; INIT_LOCK(p->StatisticsForPred.lock); p->StatisticsForPred.NOfEntries = 0; p->StatisticsForPred.NOfHeadSuccesses = 0; p->StatisticsForPred.NOfRetries = 0; #ifdef TABLING p->TableOfPred = NULL; #endif /* TABLING */ /* careful that they don't cross MkFunctor */ p->NextOfPE = ae->PropsOfAE; ae->PropsOfAE = p0 = AbsPredProp(p); p->FunctorOfPred = (Functor)AbsAtom(ae); WRITE_UNLOCK(ae->ARWLock); return (p0); } Term Yap_GetValue(Atom a) { Prop p0 = GetAProp(a, ValProperty); Term out; if (p0 == NIL) return (TermNil); READ_LOCK(RepValProp(p0)->VRWLock); out = RepValProp(p0)->ValueOfVE; if (IsApplTerm(out)) { Functor f = FunctorOfTerm(out); if (f == FunctorDouble) { out = MkFloatTerm(FloatOfTerm(out)); } else if (f == FunctorLongInt) { out = MkLongIntTerm(LongIntOfTerm(out)); } #ifdef USE_GMP else { out = Yap_MkBigIntTerm(Yap_BigIntOfTerm(out)); } #endif } READ_UNLOCK(RepValProp(p0)->VRWLock); return (out); } void Yap_PutValue(Atom a, Term v) { AtomEntry *ae = RepAtom(a); Prop p0; ValEntry *p; Term t0; WRITE_LOCK(ae->ARWLock); p0 = GetAPropHavingLock(ae, ValProperty); if (p0 != NIL) { p = RepValProp(p0); WRITE_LOCK(p->VRWLock); WRITE_UNLOCK(ae->ARWLock); } else { p = (ValEntry *) Yap_AllocAtomSpace(sizeof(ValEntry)); p->NextOfPE = RepAtom(a)->PropsOfAE; RepAtom(a)->PropsOfAE = AbsValProp(p); p->KindOfPE = ValProperty; p->ValueOfVE = TermNil; /* take care that the lock for the property will be inited even if someone else searches for the property */ INIT_RWLOCK(p->VRWLock); WRITE_LOCK(p->VRWLock); WRITE_UNLOCK(ae->ARWLock); } t0 = p->ValueOfVE; if (IsFloatTerm(v)) { /* store a float in code space, so that we can access the property */ union { Float f; CELL ar[sizeof(Float) / sizeof(CELL)]; } un; CELL *pt, *iptr; unsigned int i; un.f = FloatOfTerm(v); if (IsFloatTerm(t0)) { pt = RepAppl(t0); } else { if (IsApplTerm(t0)) { Yap_FreeCodeSpace((char *) (RepAppl(t0))); } pt = (CELL *) Yap_AllocAtomSpace(sizeof(CELL)*(1 + 2*sizeof(Float)/sizeof(CELL))); p->ValueOfVE = AbsAppl(pt); pt[0] = (CELL)FunctorDouble; } iptr = pt+1; for (i = 0; i < sizeof(Float) / sizeof(CELL); i++) { *iptr++ = (CELL)un.ar[i]; } } else if (IsLongIntTerm(v)) { CELL *pt; Int val = LongIntOfTerm(v); if (IsLongIntTerm(t0)) { pt = RepAppl(t0); } else { if (IsApplTerm(t0)) { Yap_FreeCodeSpace((char *) (RepAppl(t0))); } pt = (CELL *) Yap_AllocAtomSpace(2*sizeof(CELL)); p->ValueOfVE = AbsAppl(pt); pt[0] = (CELL)FunctorLongInt; } pt[1] = (CELL)val; #ifdef USE_GMP } else if (IsBigIntTerm(v)) { CELL *ap = RepAppl(v); Int sz = sizeof(MP_INT)+sizeof(CELL)+ (((MP_INT *)(ap+1))->_mp_alloc*sizeof(mp_limb_t)); CELL *pt = (CELL *) Yap_AllocAtomSpace(sz); if (IsApplTerm(t0)) { Yap_FreeCodeSpace((char *) RepAppl(t0)); } memcpy((void *)pt, (void *)ap, sz); p->ValueOfVE = AbsAppl(pt); #endif } else { if (IsApplTerm(t0)) { /* recover space */ Yap_FreeCodeSpace((char *) (RepAppl(p->ValueOfVE))); } p->ValueOfVE = v; } WRITE_UNLOCK(p->VRWLock); } Term Yap_StringToList(char *s) { register Term t; register unsigned char *cp = (unsigned char *)s + strlen(s); t = MkAtomTerm(AtomNil); while (cp > (unsigned char *)s) { t = MkPairTerm(MkIntTerm(*--cp), t); } return (t); } Term Yap_StringToListOfAtoms(char *s) { register Term t; char so[2]; register unsigned char *cp = (unsigned char *)s + strlen(s); so[1] = '\0'; t = MkAtomTerm(AtomNil); while (cp > (unsigned char *)s) { so[0] = *--cp; t = MkPairTerm(MkAtomTerm(LookupAtom(so)), t); } return (t); } Term Yap_ArrayToList(register Term *tp, int nof) { register Term *pt = tp + nof; register Term t; t = MkAtomTerm(AtomNil); while (pt > tp) { Term tm = *--pt; #if SBA if (tm == 0) t = MkPairTerm((CELL)pt, t); else #endif t = MkPairTerm(tm, t); } return (t); } int Yap_GetName(char *s, UInt max, Term t) { register Term Head; register Int i; if (IsVarTerm(t) || !IsPairTerm(t)) return (FALSE); while (IsPairTerm(t)) { Head = HeadOfTerm(t); if (!IsNumTerm(Head)) return (FALSE); i = IntOfTerm(Head); if (i < 0 || i > 255) return (FALSE); *s++ = i; t = TailOfTerm(t); if (--max == 0) { Yap_Error(FATAL_ERROR,t,"not enough space for GetName"); } } *s = '\0'; return (TRUE); } #ifdef SFUNC Term MkSFTerm(Functor f, int n, Term *a, empty_value) { Term t, p = AbsAppl(H); int i; *H++ = f; RESET_VARIABLE(H); ++H; for (i = 1; i <= n; ++i) { t = Derefa(a++); if (t != empty_value) { *H++ = i; *H++ = t; } } *H++ = 0; return (p); } CELL * ArgsOfSFTerm(Term t) { CELL *p = RepAppl(t) + 1; while (*p != (CELL) p) p = CellPtr(*p) + 1; return (p + 1); } #endif long Yap_NewSlots(int n) { Int old_slots = IntOfTerm(ASP[0]), oldn = n; while (n > 0) { RESET_VARIABLE(ASP); ASP--; n--; } ASP[0] = MkIntTerm(old_slots+oldn); return((ASP+1)-LCL0); } long Yap_InitSlot(Term t) { Int old_slots = IntOfTerm(ASP[0]); *ASP = t; ASP--; ASP[0] = MkIntTerm(old_slots+1); return((ASP+1)-LCL0); } void Yap_RecoverSlots(int n) { Int old_slots = IntOfTerm(ASP[0]); ASP += n; ASP[0] = MkIntTerm(old_slots-n); } Term Yap_GetFromSlot(long slot) { return(Deref(LCL0[slot])); } Term * Yap_AddressFromSlot(long slot) { return(LCL0+slot); } void Yap_PutInSlot(long slot, Term t) { LCL0[slot] = t; }