% % each variable is represented by a node in a binary tree. % each node contains: % key, % current_value % Markov Blanket % :- module(clpbn_gibbs, [gibbs/3, check_if_gibbs_done/1, init_gibbs_solver/4, run_gibbs_solver/3 ]). :- use_module(library(rbtrees), [rb_new/1, rb_insert/4, rb_lookup/3 ]). :- use_module(library(lists), [member/2, append/3, delete/3, max_list/2, sum_list/2 ]). :- use_module(library(maplist)). :- use_module(library(ordsets), [ord_subtract/3]). :- use_module(library('clpbn/matrix_cpt_utils'), [project_from_CPT/3, reorder_CPT/5, multiply_possibly_deterministic_factors/3, column_from_possibly_deterministic_CPT/3, normalise_possibly_deterministic_CPT/2, list_from_CPT/2 ]). :- use_module(library('clpbn/utils'), [check_for_hidden_vars/3]). :- use_module(library('clpbn/dists'), [get_possibly_deterministic_dist_matrix/5, get_dist_domain_size/2 ]). :- use_module(library('clpbn/topsort'), [topsort/2]). :- use_module(library('clpbn/display'), [clpbn_bind_vals/3]). :- use_module(library('clpbn/connected'), [influences/3]). :- dynamic gibbs_params/3. :- dynamic explicit/1. % arguments: % % list of output variables % list of attributed variables % gibbs(LVs,Vs0,AllDiffs) :- init_gibbs_solver(LVs, Vs0, AllDiffs, Vs), run_gibbs_solver(LVs, LPs, Vs), clpbn_bind_vals(LVs,LPs,AllDiffs), clean_up. init_gibbs_solver(GoalVs, Vs0, _, Vs) :- clean_up, term_variables(GoalVs, LVs), check_for_hidden_vars(Vs0, Vs0, Vs1), influences(Vs1, LVs, Vs2), sort(Vs2,Vs). run_gibbs_solver(LVs, LPs, Vs) :- initialise(Vs, Graph, LVs, OutputVars, VarOrder), process(VarOrder, Graph, OutputVars, Estimates), sum_up_all(Estimates, LPs), clean_up. initialise(LVs, Graph, GVs, OutputVars, VarOrder) :- init_keys(Keys0), foldl2(gen_key, LVs, 0, VLen, Keys0, Keys), functor(Graph,graph,VLen), graph_representation(LVs, Graph, 0, Keys, TGraph), compile_graph(Graph), topsort(TGraph, VarOrder), %writeln(TGraph:VarOrder), % show_sorted(VarOrder, Graph), add_all_output_vars(GVs, Keys, OutputVars). init_keys(Keys0) :- rb_new(Keys0). gen_key(V, I0, I0, Keys0, Keys0) :- clpbn:get_atts(V,[evidence(_)]), !. gen_key(V, I0, I, Keys0, Keys) :- I is I0+1, rb_insert(Keys0,V,I,Keys). graph_representation([],_,_,_,[]). graph_representation([V|Vs], Graph, I0, Keys, TGraph) :- clpbn:get_atts(V,[evidence(_)]), !, clpbn:get_atts(V, [dist(Id,Parents)]), get_possibly_deterministic_dist_matrix(Id, Parents, _, Vals, Table), maplist(get_size, Parents, Szs), length(Vals,Sz), project_evidence_out([V|Parents],[V|Parents],Table,[Sz|Szs],Variables,NewTable), % all variables are parents propagate2parents(Variables, NewTable, Variables, Graph, Keys), graph_representation(Vs, Graph, I0, Keys, TGraph). graph_representation([V|Vs], Graph, I0, Keys, [I-IParents|TGraph]) :- I is I0+1, clpbn:get_atts(V, [dist(Id,Parents)]), get_possibly_deterministic_dist_matrix(Id, Parents, _, Vals, Table), maplist( get_size, Parents, Szs), length(Vals,Sz), project_evidence_out([V|Parents],[V|Parents],Table,[Sz|Szs],Variables,NewTable), Variables = [V|NewParents], sort_according_to_indices(NewParents,Keys,SortedNVs,SortedIndices), reorder_CPT(Variables,NewTable,[V|SortedNVs],NewTable2,_), add2graph(V, Vals, NewTable2, SortedIndices, Graph, Keys), propagate2parents(NewParents, NewTable, Variables, Graph,Keys), maplist(parent_index(Keys), NewParents, IVariables0), sort(IVariables0, IParents), arg(I, Graph, var(_,_,_,_,_,_,_,NewTable2,SortedIndices)), graph_representation(Vs, Graph, I, Keys, TGraph). write_pars([]). write_pars([V|Parents]) :- clpbn:get_atts(V, [key(K),dist(I,_)]),write(K:I),nl, write_pars(Parents). get_size(V, Sz) :- clpbn:get_atts(V, [dist(Id,_)]), get_dist_domain_size(Id, Sz). parent_index(Keys, V, I) :- rb_lookup(V, I, Keys). % % first, remove nodes that have evidence from tables. % project_evidence_out([],Deps,Table,_,Deps,Table). project_evidence_out([V|Parents],Deps,Table,Szs,NewDeps,NewTable) :- clpbn:get_atts(V,[evidence(_)]), !, project_from_CPT(V,tab(Table,Deps,Szs),tab(ITable,IDeps,ISzs)), project_evidence_out(Parents,IDeps,ITable,ISzs,NewDeps,NewTable). project_evidence_out([_Par|Parents],Deps,Table,Szs,NewDeps,NewTable) :- project_evidence_out(Parents,Deps,Table,Szs,NewDeps,NewTable). propagate2parents([], _, _, _, _). propagate2parents([V|NewParents], Table, Variables, Graph, Keys) :- delete(Variables,V,NVs), sort_according_to_indices(NVs,Keys,SortedNVs,SortedIndices), reorder_CPT(Variables,Table,[V|SortedNVs],NewTable,_), add2graph(V, _, NewTable, SortedIndices, Graph, Keys), propagate2parents(NewParents,Table, Variables, Graph, Keys). add2graph(V, Vals, Table, IParents, Graph, Keys) :- rb_lookup(V, Index, Keys), (var(Vals) -> true ; length(Vals,Sz)), arg(Index, Graph, var(V,Index,_,Vals,Sz,VarSlot,_,_,_)), member(tabular(Table,Index,IParents), VarSlot), !. sort_according_to_indices(NVs,Keys,SortedNVs,SortedIndices) :- maplist(var2index(Keys), NVs, ToSort), keysort(ToSort, Sorted), maplist(split_parent, Sorted, SortedNVs,SortedIndices). split_parent(I-V, V, I). var2index(Keys, V, I-V) :- rb_lookup(V, I, Keys). % % This is the really cool bit. % compile_graph(Graph) :- Graph =.. [_|VarsInfo], maplist( compile_var(Graph), VarsInfo). compile_var(Graph, var(_,I,_,Vals,Sz,VarSlot,Parents,_,_)) :- foldl2( fetch_parent(Graph), VarSlot, [], Parents, [], Sizes), foldl( mult, Sizes, 1, TotSize), compile_var(TotSize,I,Vals,Sz,VarSlot,Parents,Sizes,Graph). fetch_parent(Graph, tabular(_,_,Ps), Parents0, ParentsF, Sizes0, SizesF) :- foldl2( merge_these_parents(Graph), Ps, Parents0, ParentsF, Sizes0, SizesF). merge_these_parents(_Graph, I,Parents0,Parents0,Sizes0,Sizes0) :- member(I,Parents0), !. merge_these_parents(Graph, I, Parents0,ParentsF,Sizes0,SizesF) :- arg(I,Graph,var(_,I,_,Vals,_,_,_,_,_)), length(Vals, Sz), add_parent(Parents0,I,ParentsF,Sizes0,Sz,SizesF). add_parent([],I,[I],[],Sz,[Sz]). add_parent([P|Parents0],I,[I,P|Parents0],Sizes0,Sz,[Sz|Sizes0]) :- P > I, !. add_parent([P|Parents0],I,[P|ParentsI],[S|Sizes0],Sz,[S|SizesI]) :- add_parent(Parents0,I,ParentsI,Sizes0,Sz,SizesI). mult(Sz, Mult0, Mult) :- Mult is Sz*Mult0. % compile node as set of facts, faster execution compile_var(TotSize,I,_Vals,Sz,CPTs,Parents,_Sizes,Graph) :- TotSize < 1024*64, TotSize > 0, !, multiply_all(I,Parents,CPTs,Sz,Graph). % do it dynamically compile_var(_,_,_,_,_,_,_,_). multiply_all(I,Parents,CPTs,Sz,Graph) :- maplist( markov_blanket_instance(Graph), Parents, Values), ( multiply_all(CPTs,Graph,Probs) -> store_mblanket(I,Values,Probs) ; throw(error(domain_error(bayesian_domain),gibbs_cpt(I,Parents,Values,Sz))) ), fail. multiply_all(I,_,_,_,_) :- assert(explicit(I)). % note: what matters is how this predicate instantiates the temp % slot in the graph! markov_blanket_instance(Graph, I, Pos) :- arg(I, Graph, var(_,I,Pos,Vals,_,_,_,_,_)), fetch_val(Vals, 0, Pos). % backtrack through every value in domain % fetch_val([_|_],Pos,Pos). fetch_val([_|Vals],I0,Pos) :- I is I0+1, fetch_val(Vals,I,Pos). multiply_all([tabular(Table,_,Parents)|CPTs], Graph, LProbs) :- maplist( fetch_parent(Graph), Parents, Vals), column_from_possibly_deterministic_CPT(Table, Vals, Probs0), foldl( multiply_more(Graph), CPTs, Probs0, Probs1), normalise_possibly_deterministic_CPT(Probs1, Probs), list_from_CPT(Probs, LProbs0), foldl( accumulate_up, LProbs0, LProbs, 0.0, _). fetch_parent(Graph, P, Val) :- arg(P,Graph,var(_,_,Val,_,_,_,_,_,_)). multiply_more(Graph, tabular(Table,_,Parents), Probs0, Probs) :- maplist( fetch_parent(Graph), Parents, Vals), column_from_possibly_deterministic_CPT(Table, Vals, P0), multiply_possibly_deterministic_factors(Probs0, P0, Probs). accumulate_up(P, P1, P0, P1) :- P1 is P0+P. store_mblanket(I,Values,Probs) :- recordz(mblanket,m(I,Values,Probs),_). add_all_output_vars([], _, []). add_all_output_vars([Vs|LVs], Keys, [Is|OutputVars]) :- add_output_vars(Vs, Keys, Is), add_all_output_vars(LVs, Keys, OutputVars). add_output_vars([], _, []). add_output_vars([V|LVs], Keys, [I|OutputVars]) :- rb_lookup(V, I, Keys), add_output_vars(LVs, Keys, OutputVars). process(VarOrder, Graph, OutputVars, Estimates) :- gibbs_params(NChains,BurnIn,NSamples), functor(Graph,_,Len), init_chains(NChains,VarOrder,Len,Graph,Chains0), init_estimates(NChains,OutputVars,Graph,Est0), process_chains(BurnIn,VarOrder,BurnedIn,Chains0,Graph,Len,Est0,_), process_chains(NSamples,VarOrder,_,BurnedIn,Graph,Len,Est0,Estimates). % % I use an uniform distribution to generate the initial sample. % init_chains(0,_,_,_,[]) :- !. init_chains(I,VarOrder,Len,Graph,[Chain|Chains]) :- init_chain(VarOrder,Len,Graph,Chain), I1 is I-1, init_chains(I1,VarOrder,Len,Graph,Chains). init_chain(VarOrder,Len,Graph,Chain) :- functor(Chain,sample,Len), gen_sample(VarOrder,Graph,Chain). gen_sample([],_,_) :- !. gen_sample([I|Vs],Graph,Chain) :- arg(I,Graph,var(_,I,_,_,Sz,_,_,_,_)), Pos is integer(random*Sz), arg(I,Chain,Pos), gen_sample(Vs,Graph,Chain). init_estimates(0,_,_,[]) :- !. init_estimates(NChains,OutputVars,Graph,[Est|Est0]) :- NChainsI is NChains-1, init_estimate_all_outvs(OutputVars,Graph,Est), init_estimates(NChainsI,OutputVars,Graph,Est0). init_estimate_all_outvs([],_,[]). init_estimate_all_outvs([Vs|OutputVars],Graph,[E|Est]) :- init_estimate(Vs, Graph, E), init_estimate_all_outvs(OutputVars,Graph,Est). init_estimate([],_,[]). init_estimate([V],Graph,[I|E0L]) :- !, arg(V,Graph,var(_,I,_,_,Sz,_,_,_,_)), gen_e0(Sz,E0L). init_estimate(Vs,Graph,me(Is,Mults,Es)) :- generate_est_mults(Vs, Is, Graph, Mults, Sz), gen_e0(Sz,Es). generate_est_mults([], [], _, [], 1). generate_est_mults([V|Vs], [I|Is], Graph, [M0|Mults], M) :- arg(V,Graph,var(_,I,_,_,Sz,_,_,_,_)), generate_est_mults(Vs, Is, Graph, Mults, M0), M is M0*Sz. gen_e0(0,[]) :- !. gen_e0(Sz,[0|E0L]) :- Sz1 is Sz-1, gen_e0(Sz1,E0L). process_chains(0,_,F,F,_,_,Est,Est) :- !. process_chains(ToDo,VarOrder,End,Start,Graph,Len,Est0,Estf) :- %format('ToDo = ~d~n',[ToDo]), maplist( process_chain(VarOrder, Graph, Len), Start, Int, Est0, Esti), % (ToDo mod 100 =:= 1 -> statistics,maplist(cvt2prob, Esti, Probs), Int =[S|_], format('did ~d: ~w~n ~w~n',[ToDo,Probs,S]) ; true), ToDo1 is ToDo-1, process_chains(ToDo1,VarOrder,End,Int,Graph,Len,Esti,Estf). process_chain(VarOrder, Graph, SampLen, Sample0, Sample, E0, Ef) :- functor(Sample,sample,SampLen), maplist(do_var(Graph, Sample0, Sample), VarOrder), % format('Sample = ~w~n',[Sample]), maplist(update_estimate(Sample), E0, Ef). do_var(Graph, Sample0, Sample, I) :- arg(I,Graph,var(_,_,_,_,_,CPTs,Parents,_,_)), maplist( fetch_parent(Sample0, Sample), Parents, Bindings), ( explicit(I) -> recorded(mblanket,m(I,Bindings,Vals),_) ; multiply_all_in_context(Parents,Bindings,CPTs,Graph,Vals) ), X is random, pick_new_value(Vals,X,0,Val), arg(I,Sample,Val). multiply_all_in_context(Parents,Args,CPTs,Graph,Vals) :- maplist( set_pos(Graph), Parents, Args), multiply_all(CPTs,Graph,Vals), assert(mall(Vals)), fail. multiply_all_in_context(_,_,_,_,Vals) :- retract(mall(Vals)). set_pos(Graph, I, Pos) :- arg(I,Graph,var(_,I,Pos,_,_,_,_,_,_)). fetch_parent(_Sample0, Sample, P, VP) :- arg(P, Sample,VP), nonvar(VP), !. fetch_parent(Sample0, _Sample, P, VP) :- arg(P, Sample0, VP). pick_new_value([V|Vals],X,I0,Val) :- ( X < V -> Val = I0 ; I is I0+1, pick_new_value(Vals,X,I,Val) ). update_estimate(Sample, [I|E],[I|NE]) :- arg(I,Sample,V), update_estimate_for_var(V,E,NE). update_estimate(Sample,me(Is,Mult,E),me(Is,Mult,NE)) :- get_estimate_pos(Is, Sample, Mult, 0, V), update_estimate_for_var(V,E,NE). get_estimate_pos([], _, [], V, V). get_estimate_pos([I|Is], Sample, [M|Mult], V0, V) :- arg(I,Sample,VV), VI is VV*M+V0, get_estimate_pos(Is, Sample, Mult, VI, V). update_estimate_for_var(V0,[X|T],[X1|NT]) :- (V0 == 0 -> X1 is X+1, NT = T ; V1 is V0-1, X1 = X, update_estimate_for_var(V1,T,NT) ). check_if_gibbs_done(Var) :- get_atts(Var, [dist(_)]), !. clean_up :- eraseall(mblanket), fail. clean_up :- retractall(explicit(_)), fail. clean_up. gibbs_params(5,100,1000). cvt2prob([[_|E]], Ps) :- foldl(sum_all, E, 0, Sum), maplist( do_prob(Sum), E, Ps). sum_all(E, S0, Sum) :- Sum is S0+E. do_prob(Sum, E, P) :- P is E/Sum. show_sorted([], _) :- nl. show_sorted([I|VarOrder], Graph) :- arg(I,Graph,var(V,I,_,_,_,_,_,_,_)), clpbn:get_atts(V,[key(K)]), format('~w ',[K]), show_sorted(VarOrder, Graph). sum_up_all([[]|_], []). sum_up_all([[C|MoreC]|Chains], [Dist|Dists]) :- maplist( extract_sum, Chains, CurrentChains, LeftChains), sum_up([C|CurrentChains], Dist), sum_up_all([MoreC|LeftChains], Dists). extract_sum([C|Chains], C, Chains). sum_up([[_|Counts]|Chains], Dist) :- add_up(Counts,Chains, Add), normalise(Add, Dist). sum_up([me(_,_,Counts)|Chains], Dist) :- add_up_mes(Counts,Chains, Add), normalise(Add, Dist). add_up(Counts,[],Counts). add_up(Counts,[[_|Cs]|Chains], Add) :- maplist(sum, Counts, Cs, NCounts), add_up(NCounts, Chains, Add). add_up_mes(Counts,[],Counts). add_up_mes(Counts,[me(_,_,Cs)|Chains], Add) :- maplist( sum_list, Counts, Cs, NCounts), add_up_mes(NCounts, Chains, Add). sum(Count, C, NC) :- NC is Count+C. normalise(Add, Dist) :- sum_list(Add, Sum), maplist(divide(Sum), Add, Dist). divide(Sum, C, P) :- P is C/Sum.