/* Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@uva.nl WWW: http://www.swi-prolog.org Copyright (C): 2010, University of Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(rdf_ntriples, [ load_rdf_ntriples/2, % +File, -Triples rdf_ntriple_part/4 % +Field, -Value, ]). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - This module parses n-triple files as defined by the W3C RDF working in http://www.w3.org/TR/rdf-testcases/#ntriples. This format is a simplified version of the RDF N3 notation used in the *.nt files that are used to describe the normative outcome of the RDF test-cases. The returned list terms are of the form rdf(Subject, Predicate, Object) where # Subject is an atom or node(Id) for anonymous nodes # Predicate is an atom # Object is an atom, node(Id), literal(Atom) or xml(Atom) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ % load_rdf_ntriples(+Source, -Triples) % % Load a file or stream to a list of rdf(S,P,O) triples. load_rdf_ntriples(File, Triples) :- open_nt_file(File, In, Close), call_cleanup(stream_to_triples(In, Triples), Close). % open_nt_file(+Input, -Stream, -Close) % % Open Input, returning Stream and a goal to cleanup Stream if it % was opened. open_nt_file(stream(Stream), Stream, true) :- !. open_nt_file(Stream, Stream, true) :- is_stream(Stream), !. open_nt_file(Spec, Stream, close(Stream)) :- absolute_file_name(Spec, [ access(read), extensions([nt,'']) ], Path), open(Path, read, Stream). % rdf_ntriple_part(+Type, -Value, ) % % Parse one of the fields of an ntriple. This is used for the % SWI-Prolog Sesame (www.openrdf.org) implementation to realise % /servlets/removeStatements. I do not think public use of this % predicate should be stimulated. rdf_ntriple_part(subject, Subject) --> subject(Subject). rdf_ntriple_part(predicate, Predicate) --> predicate(Predicate). rdf_ntriple_part(object, Object) --> predicate(Object). % stream_to_triples(+Stream, -ListOfTriples) % % Read Stream, returning all its triples stream_to_triples(In, Triples) :- read_line_to_codes(In, Line), ( Line == end_of_file -> Triples = [] ; phrase(line(Triples, Tail), Line), stream_to_triples(In, Tail) ). line(Triples, Tail) --> wss, ( comment -> {Triples = Tail} ; triple(Triple) -> {Triples = [Triple|Tail]} ). comment --> "#", !, skip_rest. comment --> end_of_input. triple(rdf(Subject, Predicate, Object)) --> subject(Subject), ws, wss, predicate(Predicate), ws, wss, object(Object), wss, ".", wss. subject(Subject) --> uniref(Subject), !. subject(Subject) --> node_id(Subject). predicate(Predicate) --> uniref(Predicate). object(Object) --> uniref(Object), !. object(Object) --> node_id(Object). object(Object) --> literal(Object). uniref(URI) --> "<", escaped_uri_codes(Codes), ">", !, { atom_codes(URI, Codes) }. node_id(node(Id)) --> % anonymous nodes "_:", name_start(C0), name_codes(Codes), { atom_codes(Id, [C0|Codes]) }. literal(Literal) --> lang_string(Literal), !. literal(Literal) --> xml_string(Literal). % name_start(-Code) % name_codes(-ListfCodes) % % Parse identifier names name_start(C) --> [C], { code_type(C, alpha) }. name_codes([C|T]) --> [C], { code_type(C, alnum) }, !, name_codes(T). name_codes([]) --> []. % escaped_uri_codes(-CodeList) % % Decode string holding %xx escaped characters. escaped_uri_codes([]) --> []. escaped_uri_codes([C|T]) --> "%", [D0,D1], !, { code_type(D0, xdigit(V0)), code_type(D1, xdigit(V1)), C is V0<<4 + V1 }, escaped_uri_codes(T). escaped_uri_codes([C|T]) --> "\\u", [D0,D1,D2,D3], !, { code_type(D0, xdigit(V0)), code_type(D1, xdigit(V1)), code_type(D2, xdigit(V2)), code_type(D3, xdigit(V3)), C is V0<<12 + V1<<8 + V2<<4 + V3 }, escaped_uri_codes(T). escaped_uri_codes([C|T]) --> "\\U", [D0,D1,D2,D3,D4,D5,D6,D7], !, { code_type(D0, xdigit(V0)), code_type(D1, xdigit(V1)), code_type(D2, xdigit(V2)), code_type(D3, xdigit(V3)), code_type(D4, xdigit(V4)), code_type(D5, xdigit(V5)), code_type(D6, xdigit(V6)), code_type(D7, xdigit(V7)), C is V0<<28 + V1<<24 + V2<<20 + V3<<16 + V4<<12 + V5<<8 + V6<<4 + V7 }, escaped_uri_codes(T). escaped_uri_codes([C|T]) --> [C], escaped_uri_codes(T). % lang_string() % % Process a language string lang_string(String) --> "\"", string(Codes), "\"", !, { atom_codes(Atom, Codes) }, ( langsep -> language(Lang), { String = literal(lang(Lang, Atom)) } ; "^^" -> uniref(Type), { String = literal(type(Type, Atom)) } ; { String = literal(Atom) } ). langsep --> "-". langsep --> "@". % xml_string(String) % % Handle xml"..." xml_string(xml(String)) --> "xml\"", % really no whitespace? string(Codes), "\"", { atom_codes(String, Codes) }. string([]) --> []. string([C0|T]) --> string_char(C0), string(T). string_char(0'\\) --> "\\\\". string_char(0'") --> "\\\"". string_char(10) --> "\\n". string_char(13) --> "\\r". string_char(9) --> "\\t". string_char(C) --> "\\u", '4xdigits'(C). string_char(C) --> "\\U", '4xdigits'(C0), '4xdigits'(C1), { C is C0<<16 + C1 }. string_char(C) --> [C]. '4xdigits'(C) --> [C0,C1,C2,C3], { code_type(C0, xdigit(V0)), code_type(C1, xdigit(V1)), code_type(C2, xdigit(V2)), code_type(C3, xdigit(V3)), C is V0<<12 + V1<<8 + V2<<4 + V3 }. % language(-Lang) % % Return xml:lang language identifier. language(Lang) --> lang_code(C0), lang_codes(Codes), { atom_codes(Lang, [C0|Codes]) }. lang_code(C) --> [C], { C \== 0'., \+ code_type(C, white) }. lang_codes([C|T]) --> lang_code(C), !, lang_codes(T). lang_codes([]) --> []. /******************************* * BASICS * *******************************/ skip_rest(_,[]). ws --> [C], { code_type(C, white) }. end_of_input([], []). wss --> ws, !, wss. wss --> [].