/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright S. Konstantopoulos and Universidade do Porto 2002 * * * ************************************************************************** * * * File: mpi.c * * Last rev: $Date: 2002-11-21 15:57:23 $ * * mods: * * comments: Interface to an MPI library * * * *************************************************************************/ #ifndef lint static char *rcsid = "$Header: /Users/vitor/Yap/yap-cvsbackup/library/mpi/mpi.c,v 1.18 2002-11-21 15:57:23 stasinos Exp $"; #endif #include "Yap.h" #if HAVE_MPI #include "Yatom.h" #include "yapio.h" /* for AtomEof */ #include "Heap.h" #include #include #include STATIC_PROTO (Int p_mpi_open, (void)); STATIC_PROTO (Int p_mpi_close, (void)); STATIC_PROTO (Int p_mpi_send, (void)); STATIC_PROTO (Int p_mpi_receive, (void)); STATIC_PROTO (Int p_mpi_bcast3, (void)); STATIC_PROTO (Int p_mpi_bcast2, (void)); STATIC_PROTO (Int p_mpi_barrier, (void)); /* * Auxiliary Data and Functions */ static Int rank, numprocs, namelen; static char processor_name[MPI_MAX_PROCESSOR_NAME]; /* used by the parser */ static int StartLine; static Int mpi_argc; static char **mpi_argv; /* mini-stream */ #define RECV_BUF_SIZE 1024*32 static size_t bufsize, bufstrlen; static char *buf; static int bufptr; static void expand_buffer( int space ) { #if MPI_AVOID_REALLOC /* realloc() has been SIGSEGV'ing on HP-UX 10.20, but there is no problem in HP-UX 11.0. We can remove this bit here as soon as Yap stops compiling on 10.20 anyway. If removed, also remove the MPI_AVOID_REALLOC bits from configure.in and config.h.in */ char *tmp; #if 0 printf( "expanding by %d (to %d)...", space, (bufsize+space)); #endif tmp = malloc( bufsize + space ); if( tmp == NULL ) { Yap_Error(SYSTEM_ERROR, TermNil, "out of memory" ); Yap_exit( EXIT_FAILURE ); } memcpy( tmp, buf, bufsize ); #if 0 printf("memcpy'd..."); #endif free( buf ); #if 0 printf("free'd..."); #endif buf = tmp; #else /* use realloc */ buf = realloc( buf, bufsize + space ); #if 0 printf("realloc'ed space..."); #endif if( buf == NULL ) { Yap_Error(SYSTEM_ERROR, TermNil, "out of memory"); Yap_exit( EXIT_FAILURE ); } #endif bufsize += space; #if 0 printf("SUCCESS\n"); printf( "New bufsize: %d\n", bufsize ); buf[bufsize-space] = 0; printf("Buffer contents: %s\n", buf); #endif } static int mpi_putc(Int stream, Int ch) { #if 0 printf("%d: PUTC %d a.k.a. %c at %d\n", rank, ch, (char)ch, bufptr); #endif if( ch > 0 ) { if( bufptr >= bufsize ) expand_buffer( RECV_BUF_SIZE ); buf[bufptr++] = ch; } return ch; } static Int mpi_getc(Int stream) { #if 0 printf("%d: GETC %c at %d\n", rank, buf[bufptr], bufptr); #endif return buf[bufptr++]; } static Int mpi_eob(void) { return (bufptrTok != Ord (eot_tok)) { /* we got the end of file from an abort */ if (Yap_ErrorMessage == "Abort") { TR = old_TR; return TermNil; } /* we need to force the next reading to also give end of file.*/ buf[bufptr] = EOF; Yap_ErrorMessage = "[ Error: end of file found before end of term ]"; } else { /* restore TR */ TR = old_TR; return (Yap_unify_constant(t, MkAtomTerm(AtomEof))); } } repeat_cycle: TR_before_parse = TR; if( Yap_ErrorMessage || (t = Yap_Parse())==0 ) { if (Yap_ErrorMessage && (strcmp(Yap_ErrorMessage,"Stack Overflow") == 0)) { /* ignore term we just built */ TR = TR_before_parse; H = old_H; if (Yap_growstack_in_parser(&old_TR, &tokstart, &Yap_VarTable)) { old_H = H; Yap_tokptr = Yap_toktide = tokstart; Yap_ErrorMessage = NULL; goto repeat_cycle; } } TR = old_TR; /* behave as if ParserErrorStyle were QUIET_ON_PARSER_ERROR, (see iopreds.c), except with bombing Yap instead of simply failing the predicate: the parse cannot fail unless there is a problem with MPI or the pretty printer. */ Yap_Error(SYSTEM_ERROR, TermNil, "Failed to parse MPI_Recv()'ed term" ); Yap_exit( EXIT_FAILURE ); } else { /* parsing succeeded */ break; } } TR = old_TR; return t; } /* * C Predicates */ static Int p_mpi_open(void) /* mpi_open(?rank, ?num_procs, ?proc_name) */ { Term t_rank = Deref(ARG1), t_numprocs = Deref(ARG2), t_procname = Deref(ARG3); Int retv; /* With MPICH MPI_Init() must be called during initialisation, but with LAM it can be called from Prolog (mpi_open/3) The symptoms match a known RedHat bug, see http://email.osc.edu/pipermail/mpiexec/2002-July/000067.html for a suggested workaround: Redhat have somehow broken their sem.h and ipc.h. If you use your own kernel, copy from ../src/kernel/include/asm & ../src/kernel/include/linux the file ipc.h and sem.h to /usr/include/sys, recompile your mpich and everything might start working. (it did for us) */ /* Note that if MPI_Init() fails, Yap/MPICH and Yap/LAM bahave differently: in Yap/MPICH we are still at the Yap initialisation phase, so we let Yap exit(FAILURE), whereas in Yap/LAM mpi_open/3 simply fails. */ #if ! HAVE_LIBMPICH retv = MPI_Init( &mpi_argc, &mpi_argv ); if( retv ) { Term t; t = MkIntegerTerm(retv); Yap_Error( SYSTEM_ERROR, t, "MPI_Init() returned non-zero" ); return FALSE; } #endif MPI_Comm_size( MPI_COMM_WORLD, &numprocs ); MPI_Comm_rank( MPI_COMM_WORLD, &rank ); MPI_Get_processor_name( processor_name, &namelen ); retv = Yap_unify(t_rank, MkIntTerm(rank)); retv = retv && Yap_unify(t_numprocs, MkIntTerm(numprocs)); retv = retv && Yap_unify(t_procname, MkAtomTerm(Yap_LookupAtom(processor_name))); return retv; } static Int /* mpi_close */ p_mpi_close() { MPI_Finalize(); return TRUE; } static Int p_mpi_send() /* mpi_send(+data, +destination, +tag) */ { Term t_data = Deref(ARG1), t_dest = Deref(ARG2), t_tag = Deref(ARG3); int tag, dest, retv; /* The first argument (data) must be bound */ if (IsVarTerm(t_data)) { Yap_Error(INSTANTIATION_ERROR, t_data, "mpi_send"); return (FALSE); } /* The second and third args must be bount to integers */ if (IsVarTerm(t_dest)) { Yap_Error(INSTANTIATION_ERROR, t_dest, "mpi_send"); return (FALSE); } else if( !IsIntegerTerm(t_dest) ) { Yap_Error(TYPE_ERROR_INTEGER, t_dest, "mpi_send"); return (FALSE); } else { dest = IntOfTerm( t_dest ); } if (IsVarTerm(t_tag)) { Yap_Error(INSTANTIATION_ERROR, t_tag, "mpi_send"); return (FALSE); } else if( !IsIntegerTerm(t_tag) ) { Yap_Error(TYPE_ERROR_INTEGER, t_tag, "mpi_send"); return (FALSE); } else { tag = IntOfTerm( t_tag ); } bufptr = 0; /* Turn the term into its ASCII representation */ Yap_plwrite( t_data, mpi_putc, Quote_illegal_f|Handle_vars_f ); bufstrlen = (size_t)bufptr; /* The buf is not NULL-terminated and does not have the trailing ". " required by the parser */ mpi_putc( 0, '.' ); mpi_putc( 0, ' ' ); buf[bufptr] = 0; bufstrlen = bufptr + 1; bufptr = 0; #if 0 { FILE *debug_out; debug_out = fopen("debug.out", "a"); fprintf(debug_out, "%d: About to send %d chars to %d\n", rank, bufstrlen, dest); fclose(debug_out); } #endif /* send the data */ retv = MPI_Send( &buf[bufptr], bufstrlen, MPI_CHAR, dest, tag, MPI_COMM_WORLD ); if( retv != MPI_SUCCESS ) return FALSE; #if 0 { FILE *debug_out; debug_out = fopen("debug.out", "a"); fprintf(debug_out, "%d: Sent %s to %d\n", rank, &buf[bufptr], dest); fclose(debug_out); } #endif return TRUE; } static Int p_mpi_receive() /* mpi_receive(-data, ?orig, ?tag) */ { Term t_data = Deref(ARG1), t_orig = Deref(ARG2), t_tag = Deref(ARG3); int tag, orig, retv; MPI_Status status; /* The first argument (data) must be unbound */ if(!IsVarTerm(t_data)) { Yap_Error(INSTANTIATION_ERROR, t_data, "mpi_receive"); return FALSE; } /* The second argument (source) must be bound to an integer (the rank of the source) or left unbound (i.e. any source is OK) */ if (IsVarTerm(t_orig)) { orig = MPI_ANY_SOURCE; } else if( !IsIntegerTerm(t_orig) ) { Yap_Error(TYPE_ERROR_INTEGER, t_orig, "mpi_receive"); return (FALSE); } else { orig = IntOfTerm( t_orig ); } /* The third argument must be bound to an integer (the tag) or left unbound (i.e. any tag is OK) */ if (IsVarTerm(t_tag)) { tag = MPI_ANY_TAG; } else if( !IsIntegerTerm(t_tag) ) { Yap_Error(TYPE_ERROR_INTEGER, t_tag, "mpi_receive"); return (FALSE); } else tag = IntOfTerm( t_tag ); /* probe for the size of the term */ retv = MPI_Probe( orig, tag, MPI_COMM_WORLD, &status ); if( retv != MPI_SUCCESS ) { return FALSE; } MPI_Get_count( &status, MPI_CHAR, &bufstrlen ); #if 0 { FILE *debug_out; debug_out = fopen("debug.out", "a"); fprintf(debug_out, "%d: About to receive %d chars from %d\n", rank, bufstrlen, orig); fclose(debug_out); } #endif /* adjust the buffer */ if( bufsize < bufstrlen ) expand_buffer(bufstrlen-bufsize); /* Already know the source from MPI_Probe() */ if( orig == MPI_ANY_SOURCE ) { orig = status.MPI_SOURCE; retv = Yap_unify(t_orig, MkIntTerm(orig)); if( retv == FALSE ) { printf("PROBLEM: file %s, line %d\n", __FILE__, __LINE__); } } /* Already know the tag from MPI_Probe() */ if( tag == MPI_ANY_TAG ) { tag = status.MPI_TAG; retv = Yap_unify(t_tag, MkIntTerm(status.MPI_TAG)); if( retv == FALSE ) { printf("PROBLEM: file %s, line %d\n", __FILE__, __LINE__); } } /* Receive the message as a C string */ retv = MPI_Recv( buf, bufstrlen, MPI_CHAR, orig, tag, MPI_COMM_WORLD, &status ); if( retv != MPI_SUCCESS ) { /* Getting in here would be weird; it means the first package (size) was sent properly, but there was a glitch with the actual content! */ return FALSE; } #if 0 { int aa; FILE *debug_out; MPI_Get_count( &status, MPI_CHAR, &aa ); debug_out = fopen("debug.out", "a"); fprintf(debug_out, "%d: Received %d chars from %d\n\ %d: The message was: %s\n", rank, aa, orig, rank, &buf[bufptr]); fclose(debug_out); } #endif /* parse received string into a Prolog term */ bufptr = 0; retv = Yap_unify(ARG1, mpi_parse()); #if 0 /* check up on mpi_parse(): convert the newly-parsed term back to text and print */ bufptr = 0; Yap_plwrite( t_data, mpi_putc, Quote_illegal_f|Handle_vars_f ); mpi_putc( 0, '.' ); mpi_putc( 0, ' ' ); buf[bufptr] = 0; bufptr = 0; { FILE *debug_out; debug_out = fopen("debug.out", "a"); fprintf(debug_out, "%d: mpi_receive: t_data == %d, retv == %d term == %s\n", rank, t_data, retv, buf); fclose(debug_out); } #endif return retv; } static Int p_mpi_bcast3() /* mpi_bcast( ?data, +root, +max_size ) */ { Term t_data = Deref(ARG1), t_root = Deref(ARG2), t_max_size = Deref(ARG3); int root, retv, max_size; /* The second argument must be bound to an integer (the rank of root processor */ if (IsVarTerm(t_root)) { Yap_Error(INSTANTIATION_ERROR, t_root, "mpi_bcast"); return FALSE; } root = IntOfTerm( t_root ); /* If this is the root processor, then the first argument must be bound to the term to be sent. */ if( root == rank ) { if( IsVarTerm(t_data) ) { Yap_Error(INSTANTIATION_ERROR, t_data, "mpi_bcast"); return FALSE; } bufptr = 0; /* Turn the term into its ASCII representation */ Yap_plwrite( t_data, mpi_putc, Quote_illegal_f|Handle_vars_f ); /* NULL-terminate the string and add the ". " termination required by the parser. */ buf[bufptr] = 0; strcat( buf, ". " ); bufstrlen = bufptr + 2; } /* The third argument must be bound to an integer (the maximum length of the broadcast term's ASCII representation */ if (IsVarTerm(t_max_size)) { Yap_Error(INSTANTIATION_ERROR, t_max_size, "mpi_bcast"); return FALSE; } /* allow for the ". " bit and the NULL at the end */ max_size = IntOfTerm( t_max_size ) + 3; #if 0 if( (rank == root) && (max_size < bufstrlen) ) /* issue a warning? explode? bcast s'thing unparsable? */ printf( "MAYDAY: max_size == %d, bufstrlen == %d\n", max_size, bufstrlen ); return FALSE; } #endif printf( "%d: About to Bcast(): max_size == %d, bufstrlen == %d\n", rank, max_size, bufstrlen ); /* adjust the buffer size, if necessary */ if( max_size > bufsize ) { expand_buffer( max_size - bufsize ); } retv = MPI_Bcast( buf, max_size, MPI_CHAR, root, MPI_COMM_WORLD ); if( retv != MPI_SUCCESS ) { printf( "OOOPS! MPI_Bcast() returned %d.\n", retv ); return FALSE; } printf( "%d: I'm just after Bcast()ing. strlen(buf) == %d\n", rank, strlen(buf) ); if( root == rank ) return TRUE; else { /* ARG1 must be unbound so that it can receive data */ if( !IsVarTerm(t_data) ) { Yap_Error(INSTANTIATION_ERROR, t_data, "mpi_bcast"); return FALSE; } bufstrlen = strlen(buf); bufptr = 0; /* parse received string into a Prolog term */ return Yap_unify(mpi_parse(), ARG1); } } /* This is the same as above, but for dynamic data size. It is implemented as two broadcasts, the first being the size and the second the actual data. */ static Int p_mpi_bcast2() /* mpi_bcast( ?data, +root ) */ { Term t_data = Deref(ARG1), t_root = Deref(ARG2); int root, retv; /* The second argument must be bound to an integer (the rank of root processor */ if (IsVarTerm(t_root)) { Yap_Error(INSTANTIATION_ERROR, t_root, "mpi_bcast"); return FALSE; } root = IntOfTerm( t_root ); /* If this is the root processor, then the first argument must be bound to the term to be sent. */ if( root == rank ) { if( IsVarTerm(t_data) ) { Yap_Error(INSTANTIATION_ERROR, t_data, "mpi_bcast"); return FALSE; } bufptr = 0; /* Turn the term into its ASCII representation */ Yap_plwrite( t_data, mpi_putc, Quote_illegal_f|Handle_vars_f ); /* NULL-terminate the string and add the ". " termination required by the parser. */ buf[bufptr] = 0; strcat( buf, ". " ); bufstrlen = bufptr + 2; } /* Otherwise, it must a variable */ else { if( !IsVarTerm(t_data) ) { Yap_Error(INSTANTIATION_ERROR, t_data, "mpi_bcast"); return FALSE; } } /* Broadcast the data size */ retv = MPI_Bcast( &bufstrlen, sizeof bufstrlen, MPI_INT, root, MPI_COMM_WORLD ); if( retv != MPI_SUCCESS ) { printf("PROBLEM: file %s, line %d\n", __FILE__, __LINE__); return FALSE; } /* adjust the buffer size, if necessary */ if( bufstrlen > bufsize ) { #if 1 printf("expanding by %d\n", (bufstrlen-bufsize) ); #endif expand_buffer( bufstrlen - bufsize ); } #if 1 else { printf("bufstrlen: %d, bufsize %d: not expanding\n",bufstrlen,bufsize); } #endif /* Broadcast the data */ retv = MPI_Bcast( buf, bufstrlen, MPI_CHAR, root, MPI_COMM_WORLD ); if( retv != MPI_SUCCESS ) { printf("PROBLEM: file %s, line %d\n", __FILE__, __LINE__); return FALSE; } if( root == rank ) return TRUE; else { /* ARG1 must be unbound so that it can receive data */ if( !IsVarTerm(t_data) ) { Yap_Error(INSTANTIATION_ERROR, t_data, "mpi_bcast"); return FALSE; } bufstrlen = strlen(buf); bufptr = 0; /* parse received string into a Prolog term */ return Yap_unify(ARG1, mpi_parse()); } } static Int p_mpi_barrier() /* mpi_barrier/0 */ { int retv; retv = MPI_Barrier( MPI_COMM_WORLD ); return (retv == 0); } /* * Init */ void Yap_InitMPI(void) { int i,j; mpi_argv = malloc( Yap_argc * sizeof(char *) ); mpi_argv[0] = strdup( Yap_argv[0] ); bufsize = RECV_BUF_SIZE; buf = malloc(bufsize * sizeof(char)); for( i=1; i