/***************************************************************************/ /* */ /* The SLG System */ /* Authors: Weidong Chen and David Scott Warren */ /* Copyright (C) 1993 Southern Methodist University */ /* 1993 SUNY at Stony Brook */ /* See file COPYRIGHT_SLG for copying policies and disclaimer. */ /* */ /***************************************************************************/ /*========================================================================== File : slg.pl Last Modification : November 14, 2007 by Fabrizio Riguzzi ===========================================================================*/ /* ----------- beginning of system dependent features --------------------- To run the SLG system under a version of Prolog other than Quintus, comment out the following Quintus-specific code, and include the code for the Prolog you are running. */ % Quintus /* Begin Quintus specific code */ % :- use_module(library(basics)). % :- dynamic 'slg$prolog'/1, 'slg$tab'/2. % :- dynamic slg_expanding/0. % :- dynamic wfs_trace/0. /* End Quintus specific code */ % Sicstus /* Begin Sicstus specific code */ /* append([],L,L). append([X|L1],L2,[X|L3]) :- append(L1,L2,L3). member(X,[X|_]). member(X,[_|L]) :- member(X,L). memberchk(X,[X|_]) :- !. memberchk(X,[_|L]) :- memberchk(X,L). */ :- dynamic 'slg$prolog'/1, 'slg$tab'/2. :- dynamic slg_expanding/0. :- dynamic wfs_trace/0. /* End Sicstus specific code */ % XSB /* Begin XSB specific code */ /* To compile this under xsb, you must allocate more than the default stack space when running xsb. E.g. use % xsb -m 2000 */ %:- import member/2, memberchk/2, append/3, ground/1 from basics. %:- import numbervars/3 from num_vars. %:- dynamic slg_expanding/0. %:- dynamic 'slg$prolog'/1, 'slg$tab'/2. %:- dynamic wfs_trace/0. /* End XSB specific code */ /* -------------- end of system dependent features ----------------------- */ /* -------------- beginning of slg_load routines ------------------------- An input file may contain three kinds of directives (in addition to regular Prolog clauses and commands): a) :- default(prolog). :- default(tabled). All predicates defined from now on are prolog (tabled) predicates unless specified otherwise later. b) :- tabled pred_name/arity. pred_name/arity is a tabled predicate. A comma separated list is also acceptable. c) :- prolog pred_name/arity. pred_name/arity is a prolog predicate. A comma separated list is also acceptable. Besides Prolog clauses, we allow general clauses where the body is a universal disjunction of literals. Such clauses are specified in the form Head <-- Body. (Maybe <-- can be viewed as "All".) The head must be an atom of a tabled predicate and the body should be a disjunction of literals (separated by ';') and should not contain cut. The head must be ground whenever it is called. All variables in the body that do not occur in the head are universally quantified. There is NO support for module facilities. In particular, ALL TABLED PREDICATES SHOULD BE DEFINED IN MODULE 'user'. */ :- op(1200,xfx,<--). :- op(1150,fx,[(tabled),(prolog),(default)]). :- op(900,xfx,<-). :- assert('slg$tabled'(0,0)), retractall('slg$tabled'(_,_)). :- assert('slg$default'((prolog))). do_term_expansion(end_of_file,_) :- !, retractall('slg$default'(_)), assert('slg$default'((prolog))), retractall('slg$prolog'(_)), retractall('slg$tab'(_,_)), fail. do_term_expansion((:-Com),Clauses) :- !, expand_command(Com,Clauses). do_term_expansion((H-->B),NewClause) :- !, \+ slg_expanding, assert(slg_expanding), expand_term((H-->B),Clause), retractall(slg_expanding), do_term_expansion(Clause,NewClause). do_term_expansion((Head <-- Body),Clauses) :- !, functor(Head,P,A), Pred = P/A, ( 'slg$tab'(P,A) -> convert_univ_clause(Head,Body,Clauses) ; 'slg$prolog'(Pred) -> write('Error: Prolog predicate '), write(Pred), write(' in clauses with universal disjunction.'),nl, write(' Clause ignored: '), write((Head <-- Body)), nl, Clauses = [] ; 'slg$default'(Default), ( Default == (prolog) -> write('Error: Prolog predicate '), write(Pred), write(' in clauses with universal disjunction.'),nl, write(' Clause ignored: '), write((Head <-- Body)), nl, Clauses = [] ; assert('slg$tab'(P,A)), retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A)), functor(NewHead,P,A), Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), (NewHead :- slg(NewHead))|RestClauses], convert_univ_clause(Head,Body,RestClauses) ) ). do_term_expansion(Clause,Clauses) :- ( Clause = (Head :- Body) -> true; Head = Clause, Body = true ), functor(Head,P,A), Pred = P/A, ( 'slg$tab'(P,A) -> convert_tabled_clause(Head,Body,Clauses) ; 'slg$prolog'(Pred) -> Clauses = Clause ; 'slg$default'(Default), ( Default == (prolog) -> Clauses = Clause ; ( 'slg$tab'(P,A) -> convert_tabled_clause(Head,Body,Clauses) ; assert('slg$tab'(P,A)), retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A)), functor(NewHead,P,A), Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), (NewHead :- slg(NewHead))|RestClauses], convert_tabled_clause(Head,Body,RestClauses) ) ) ). expand_command(tabled(Preds),Clauses) :- expand_command_table(Preds,Clauses,[]). expand_command(prolog(Preds),Clauses) :- expand_command_prolog(Preds,Clauses,[]). expand_command(multifile(Preds),(:-multifile(NewPreds))) :- add_table_preds(Preds,NewPreds,[]). expand_command(dynamic(Preds),(:-dynamic(NewPreds))) :- add_table_preds(Preds,NewPreds,[]). expand_command(default(D),[]) :- ( (D == (prolog); D == (tabled)) -> retractall('slg$default'(_)), assert('slg$default'(D)) ; write('Warning: illegal default '), write(D), write(' ignored.'), nl ). expand_command_table((Pred,Preds),Clauses0,Clauses) :- !, expand_command_table_one(Pred,Clauses0,Clauses1), expand_command_table(Preds,Clauses1,Clauses). expand_command_table(Pred,Clauses0,Clauses) :- expand_command_table_one(Pred,Clauses0,Clauses). expand_command_table_one(Pspec,Clauses0,Clauses) :- ( Pspec = P/A -> true; P = Pspec, A = 0 ), Pred = P/A, functor(H,P,A), ( ( predicate_property(H,built_in); slg_built_in(H) ) -> write('ERROR: Cannot table built_in '), write(Pred), nl, Clauses0 = Clauses ; 'slg$prolog'(Pred) -> write('ERROR: '), write(Pred), write(' assumed to be a Prolog predicate'), nl, tab(7), write('But later declared a tabled predicate.'), nl, Clauses0 = Clauses ; 'slg$tab'(P,A) -> Clauses0 = Clauses ; assert('slg$tab'(P,A)), retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A)), Clauses0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), (H :- slg(H))|Clauses] ). expand_command_prolog((Pred,Preds),Clauses0,Clauses) :- !, expand_command_prolog_one(Pred,Clauses0,Clauses1), expand_command_prolog(Preds,Clauses1,Clauses). expand_command_prolog(Pred,Clauses0,Clauses) :- expand_command_prolog_one(Pred,Clauses0,Clauses). expand_command_prolog_one(Pspec,Clauses0,Clauses) :- ( Pspec = P/A -> true; P = Pspec, A = 0 ), Pred = P/A, ( 'slg$tab'(P,A) -> write('ERROR: '), write(Pred), write(' assumed to be a tabled predicate'), nl, tab(7), write('But later declared a Prolog predicate.'), nl, Clauses0 = Clauses ; retractall('slg$tab'(P,A)), retractall('slg$tabled'(P,A)), ( 'slg$prolog'(Pred) -> true ; assert('slg$prolog'(Pred)) ), Clauses0 = [(:- retractall('slg$tabled'(P,A)))|Clauses] ). add_table_preds(Preds,NewPreds0,NewPreds) :- ( Preds == [] -> NewPreds0 = NewPreds ; Preds = [P|Ps] -> add_table_preds(P,NewPreds0,NewPreds1), add_table_preds(Ps,NewPreds1,NewPreds) ; Preds = (P,Ps) -> add_table_preds(P,NewPreds0,NewPreds1), add_table_preds(Ps,NewPreds1,NewPreds) ; ( Preds = P/A -> true; P = Preds, A = 0 ), ( 'slg$tab'(P,A) -> name(P,Pl), name(NewP,[115,108,103,36|Pl]), % 'slg$' NewA is A+1, NewPreds0 = [P/A,NewP/NewA|NewPreds] ; NewPreds0 = [P/A|NewPreds] ) ). convert_tabled_clause(Head,Body,Clauses0) :- conj_to_list(Body,Blist), extract_guard(Blist,Guard,[],Nbody,Clauses0,Clauses), list_to_conj(Guard,Gconj), new_slg_head(Head,Nbody,NewHead), ( Gconj == true -> Clauses = [NewHead] ; Clauses = [(NewHead :- Gconj)] ). convert_univ_clause(Head,Body,Clauses) :- disj_to_list(Body,Blist), new_slg_head(Head,all(Blist),NewHead), Clauses = [(NewHead :- ( ground0(Head) -> true ; write('Error: Non-ground call '), write(Head), write(' in a clause with universal disjunction.'), nl ))]. ground0(X) :- ground(X). conj_to_list(Term,List) :- conj_to_list(Term,List,[]). conj_to_list(Term,List0,List) :- ( Term = (T1,T2) -> conj_to_list(T1,List0,List1), conj_to_list(T2,List1,List) ; Term == true -> List0 = List ; List0 = [Term|List] ). disj_to_list(Term,List) :- disj_to_list(Term,List,[]). disj_to_list(Term,List0,List) :- ( Term = (T1;T2) -> disj_to_list(T1,List0,List1), disj_to_list(T2,List1,List) ; Term == true -> List0 = List ; List0 = [Term|List] ). extract_guard([],G,G,[],Cls,Cls). extract_guard([Lit|List],G0,G,Rest,Cls0,Cls) :- ( Lit = (\+N) -> Nlit = N ; Nlit = Lit ), ( ( predicate_property(Nlit,built_in); slg_built_in(Nlit) ) -> G0 = [Lit|G1], extract_guard(List,G1,G,Rest,Cls0,Cls) ; functor(Nlit,P,A), Pred = P/A, ( 'slg$tab'(P,A) -> G0 = G, Rest = [Lit|List], Cls0 = Cls ; 'slg$prolog'(Pred) -> G0 = [Lit|G1], extract_guard(List,G1,G,Rest,Cls0,Cls) ; 'slg$default'((prolog)) -> G0 = [Lit|G1], assert('slg$prolog'(Pred)), Cls0 = [(:- 'slg$prolog'(Pred) -> true; assert('slg$prolog'(Pred)))|Cls1], extract_guard(List,G1,G,Rest,Cls1,Cls) ; 'slg$default'((tabled)) -> G0 = G, Rest = [Lit|List], assert('slg$tab'(P,A)), retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A)), functor(Head,P,A), Cls0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))), (Head :- slg(Head))|Cls] ) ). list_to_conj([],true). list_to_conj([Lit|List],G0) :- ( List == [] -> G0 = Lit ; G0 = (Lit,G), list_to_conj(List,G) ). new_slg_head(Head,Body,NewHead) :- functor(Head,P,A), name(P,Pl), name(Npred,[115,108,103,36|Pl]), % 'slg$' Narity is A+1, functor(NewHead,Npred,Narity), arg(Narity,NewHead,Body), put_in_args(0,A,Head,NewHead). put_in_args(A,A,_,_). put_in_args(A0,A,Head,NewHead) :- A0 < A, A1 is A0+1, arg(A1,Head,Arg), arg(A1,NewHead,Arg), put_in_args(A1,A,Head,NewHead). slg_built_in(slg(_)). slg_built_in(_<-_). slg_built_in(slgall(_,_)). slg_built_in(slgall(_,_,_,_)). slg_built_in(emptytable(_)). slg_built_in(st(_,_)). slg_built_in(stnot(_,_)). slg_built_in(stall(_,_,_)). slg_built_in(stall(_,_,_,_,_)). slg_built_in(stselect(_,_,_,_)). slg_built_in(stselect(_,_,_,_,_,_)). slg_built_in(xtrace). slg_built_in(xnotrace). /* ----------------- end of slg_load routines --------------------------- */ /* SLG tracing: xtrace: turns SLG trace on, which prints out tables at various points xnotrace: turns off SLG trace */ xtrace :- ( wfs_trace -> true ; assert(wfs_trace) ). xnotrace :- ( wfs_trace -> retractall(wfs_trace) ; true ). /* isprolog(Call): Call is a Prolog subgoal */ isprolog(Call) :- functor(Call,P,A), \+ 'slg$tabled'(P,A). /* slg(Call): It returns all true answers of Call under the well-founded semantics one by one. */ slg(Call) :- ( isprolog(Call) -> call(Call) ; oldt(Call,Tab), ground(Call,Ggoal), find(Tab,Ggoal,Ent), ent_to_anss(Ent,Anss), member_anss(d(Call,[]),Anss) ). /* Call<-Cons: It returns all true or undefined answers of Call one by one. In case of a true answer, Cons = []. For an undefined answer, Cons is a list of delayed literals. */ Call<-Cons :- ( isprolog(Call) -> call(Call), Cons = [] ; oldt(Call,Tab), ground(Call,Ggoal), find(Tab,Ggoal,Ent), ent_to_anss(Ent,Anss), member_anss(d(Call,Cons),Anss) ). /* emptytable(EmptTab): creates an initial empty stable. */ emptytable(0:[]). /* slgall(Call,Anss): slgall(Call,Anss,N0-Tab0,N-Tab): If Call is a prolog call, findall is used, and Tab = Tab0; If Call is an atom of a tabled predicate, SLG evaluation is carried out. */ slgall(Call,Anss) :- slgall(Call,Anss,0:[],_). slgall(Call,Anss,N0:Tab0,N:Tab) :- ( isprolog(Call) -> findall(Call,Call,Anss), N = N0, Tab = Tab0 ; ground(Call,Ggoal), ( find(Tab0,Ggoal,Ent) -> ent_to_anss(Ent,Answers), Tab = Tab0 ; new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1), add_tab_ent(Ggoal,Ent,Tab0,Tab1), oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP), find(Tab,Ggoal,NewEnt), ent_to_anss(NewEnt,Answers) ), ansstree_to_list(Answers,Anss,[]) ). /* st(Call,PSM): stnot(Call,PSM): It finds a stable model in which Call must be true (false). Call must be ground. */ st(Call,PSM) :- st_true_false(Call,true,PSM). stnot(Call,PSM) :- st_true_false(Call,false,PSM). st_true_false(Call,Val,PSM) :- ( isprolog(Call) -> PSM = [], call(Call) ; ground(Call) -> wfs_newcall(Call,[],Tab1,0,_), find(Tab1,Call,Ent), ent_to_anss(Ent,Anss), ( succeeded(Anss) -> ( Val == true -> PSM = [] ; fail ) ; failed(Anss) -> ( Val == false -> PSM = [] ; fail ) ; assume_one(Call,Val,Tab1,Tab2,[],Abd1,A0,A1), collect_unds(Anss,A1,A), st(A0,A,Tab2,Tab3,Abd1,Abd,[],DAbd,[],_Plits), final_check(Abd,Tab3,_Tab,DAbd,PSM) ) ; write('Error: non-ground call '), write(Call), write(' in st/2.'), nl, fail ). /* stall(Call,Anss,PSM): stall(Call,Anss,PSM,Tab0,Tab): It computes a partial stable model PSM and collects all answers of Call in that model. */ stall(Call,Anss,PSM) :- stall(Call,Anss,PSM,0:[],_). stall(Call,Anss,PSM,N0:Tab0,N:Tab) :- ( isprolog(Call) -> findall(Call,Call,Anss), PSM = [], N = N0, Tab = Tab0 ; ground(Call,Ggoal), ( find(Tab0,Ggoal,Ent) -> Tab1 = Tab0, N = N0 ; wfs_newcall(Call,Tab0,Tab1,N0,N), find(Tab1,Ggoal,Ent) ), ent_to_delay(Ent,Delay), ( Delay == false -> Fent = Ent, PSM = [], Tab = Tab1 ; ent_to_anss(Ent,Anss0), collect_unds(Anss0,A0,A), st(A0,A,Tab1,Tab2,[],Abd,[],DAbd,[],_Plits), final_check(Abd,Tab2,Tab,DAbd,PSM), find(Tab,Ggoal,Fent) ), ent_to_anss(Fent,Anss1), ansstree_to_list(Anss1,Anss,[]) ). /* stselect(Call,PSM0,Anss,PSM): stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab): It computes a partial stable model PSM in which all ground literals in PSM0 are true, and returns all answers of Call in the partial stable model. Call must be an atom of a tabled or stable predicate. */ stselect(Call,PSM0,Anss,PSM) :- stselect(Call,PSM0,Anss,PSM,0:[],_). stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab) :- ( isprolog(Call) -> write('Error: Prolog predicate '), write(Call), write('stselect.'), fail ; wfsoldt(Call,PSM0,Ent,Tab0,Tab1,N0,N), ent_to_delay(Ent,Delay), assume_list(PSM0,true,Tab1,Tab2,[],Abd0,A0,A1), ( Delay == false -> A1 = A2 ; ent_to_anss(Ent,Anss0), collect_unds(Anss0,A1,A2) ), st(A0,A2,Tab2,Tab3,Abd0,Abd,[],DAbd,[],_Plits), final_check(Abd,Tab3,Tab,DAbd,PSM), ground(Call,Ggoal), find(Tab,Ggoal,Fent), ent_to_anss(Fent,Anss1), ansstree_to_list(Anss1,Anss,[]) ). wfsoldt(Call,PSM0,Ent,Tab0,Tab,N0,N) :- ground(Call,Ggoal), ( find(Tab0,Ggoal,Ent) -> Tab1 = Tab0, N1 = N0 ; wfs_newcall(Call,Tab0,Tab1,N0,N1), find(Tab1,Ggoal,Ent) ), wfsoldt_ground(PSM0,Tab1,Tab,N1,N). wfsoldt_ground([],Tab,Tab,N,N). wfsoldt_ground([A|PSM],Tab0,Tab,N0,N) :- ( ground(A) -> true ; write('Error: non-ground assumption in stable model selection: '), write(A), nl, fail ), ( A = (\+G) -> true ; A = G ), ( isprolog(G) -> Tab1 = Tab0, N1 = N0, call(A) ; find(Tab0,G,_) -> Tab1 = Tab0, N1 = N0 ; wfs_newcall(G,Tab0,Tab1,N0,N1) ), wfsoldt_ground(PSM,Tab1,Tab,N1,N). wfs_newcall(Call,Tab0,Tab,N0,N) :- new_init_call(Call,Ggoal,Ent0,[],S1,1,Dfn1), add_tab_ent(Ggoal,Ent0,Tab0,Tab1), oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP). /* collect_unds(Anss,A0,A): collects all delayed literals in answers Anss in a open-ended difference list A0/A. These delayed literals are assumed either false or true in the stable model computation. */ collect_unds([],A,A). collect_unds(l(_GH,Lanss),A1,A) :- collect_unds_lanss(Lanss,A1,A). collect_unds(n2(T1,_,T2),A1,A) :- collect_unds(T1,A1,A2), collect_unds(T2,A2,A). collect_unds(n3(T1,_,T2,_,T3),A1,A) :- collect_unds(T1,A1,A2), collect_unds(T2,A2,A3), collect_unds(T3,A3,A). collect_unds_lanss([],A,A). collect_unds_lanss([d(_,D)|Lanss],A1,A) :- collect_unds_list(D,A1,A2), collect_unds_lanss(Lanss,A2,A). collect_unds_list([],A,A). collect_unds_list([Lit|D],[Lit|A1],A) :- collect_unds_list(D,A1,A). /* st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits): A0/A is an open-ended difference list containing a list of delayed literals. st tries for each delayed literal to assume that it is true or false and checks to see if it leads to a partial stable model. Propagation of assumed truth values is carried out as much as possible. It will fail if the relevant program contains p :- \+p. Abd0/Abd is an accumulator for a table of assumed truth values. They are checked against the table Tab0/Tab for consistency later in check_consistency. DAbd0/DAbd is an accumulator for truth values of undefined literals that are derived from assumed truth values of other literals. Plits0/Plits is an accumulator for avoiding positive infinite loops in processing positive delayed literals. */ st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) :- ( % empty difference list A0 == A -> Tab = Tab0, Abd = Abd0, DAbd = DAbd0, Plits = Plits0 ; A0 = [Lit|A1], ( % non-ground negative literals Lit = (Ggoal - (\+GH)) -> write('Error: cannot handle non-ground negative literals: '), write(\+GH), nl, fail ; % positive undefined literal Lit = Ggoal-GH -> ( % encountered before find(Plits0,Lit,_) -> st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) ; % otherwise, process undefined literals it depends upon addkey(Plits0,Lit,_,Plits1), find(Tab0,Ggoal,Ent), ent_to_anss(Ent,Anss), find(Anss,GH,Lanss), collect_unds_lanss(Lanss,A,NewA), st(A1,NewA,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits1,Plits) ) ; % negative undefined literal Lit = (\+G) -> ( % has been assumed or derived to be true or false ( find(Abd0,G,_Val); find(DAbd0,G,_) ) -> st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) ; find(Tab0,G,Gent), ent_to_anss(Gent,Ganss), ( % found to be false already failed(Ganss) -> addkey(DAbd0,G,false,DAbd1), st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits) ; % found to be true already succeeded(Ganss) -> addkey(DAbd0,G,true,DAbd1), st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits) ; % create a choice point addkey(Abd0,G,Val,Abd1), ( Ganss = l(G,[d(G,Ds)]), memberchk(\+G,Ds) -> Val = false ; ( Val = false; Val = true ) ), propagate_forward(G,Val,Tab0,Tab1,Abd1), A = [G-G|NewA], % make sure delayed literals of G are checked propagate_backward(G,Val,Ganss,Tab1,Tab2,Abd1,Abd2,NewA,NNA), st(A1,NNA,Tab2,Tab,Abd2,Abd,DAbd0,DAbd,Plits0,Plits) ) ) ) ). /* propagate_forward(G,Val,Tab0,Tab,Abd): G has been assumed to be Val, and this information is propagated using simplification or forward chaining links as much as possible. */ propagate_forward(G,Val,Tab0,Tab,Abd) :- updatevs(Tab0,G,Ent0,Ent,Tab1), Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist0), Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist), extract_known_by_abd(Slist0,Val,[],Slist,[],Klist), simplify(Klist,Tab1,Tab,Abd). /* The forward chaining is such that negative literals can fail or succeed by assumption, and positive literals can fail by assumption, but cannot succeed by assumption. This avoids the construction of supported models that are not stable. */ extract_known_by_abd([],_,Slist,Slist,Klist,Klist). extract_known_by_abd([Link|Links],Val,Slist0,Slist,Klist0,Klist) :- ( Link = (_ : (\+ _)) -> ( Val == false -> Slist1 = Slist0, Klist1 = [succ-Link|Klist0] ; Val == true -> Slist1 = Slist0, Klist1 = [fail-Link|Klist0] ; Slist1 = [Link|Slist0], Klist1 = Klist0 ) ; % Link = (_ : _-GH) -> ( Val = false -> Slist1 = Slist0, Klist1 = [fail-Link|Klist0] ; % Val = true -> Slist1 = [Link|Slist0], Klist1 = Klist0 ) ), extract_known_by_abd(Links,Val,Slist1,Slist,Klist1,Klist). /* propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA): It tried to propagate the Val of G backward through answers if possible. If G is assumed to be true, and G has only one answer clause, then all literals in the body of the answer clause must be true. If G is assumed to be false, then all literals in answer clauses of G that have a single literal are assumed to be false too. Otherwise, it is no-op. */ propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA) :- ( Ganss = l(G,Lanss) -> ( Val == true, Lanss = [d(G,Ds)] -> assume_list(Ds,true,Tab0,Tab,Abd0,Abd,A,NewA) ; Val == false, findall(Lit,member(d(G,[Lit]),Lanss),Ds) -> assume_list(Ds,false,Tab0,Tab,Abd0,Abd,A,NewA) ; Tab = Tab0, Abd = Abd0, A = NewA ) ; Tab = Tab0, Abd = Abd0, A = NewA ). assume_list([],_Val,Tab,Tab,Abd,Abd,A,A). assume_list([Lit|Lits],Val,Tab0,Tab,Abd0,Abd,A0,A) :- assume_one(Lit,Val,Tab0,Tab1,Abd0,Abd1,A0,A1), assume_list(Lits,Val,Tab1,Tab,Abd1,Abd,A1,A). /* assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A): Due to back propagation, Lit is assumed to be Val. However, this assumption is carried out only if Lit is a delayed literal of a ground call or most general call. */ assume_one(Ggoal-GH,_Val,Tab0,Tab,Abd0,Abd,A0,A) :- Ggoal \== GH, !, Tab = Tab0, Abd = Abd0, A = A0. assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A) :- ( Lit = G-G -> GVal = Val ; Lit = (\+G) -> ( Val == true -> GVal = false; GVal = true ) ; Lit = G -> GVal = Val ), ( find(Abd0,G,V) -> % already assumed ( V == GVal -> Tab = Tab0, Abd = Abd0, A = A0 ; fail ) ; find(Tab0,G,Gent), ent_to_anss(Gent,Ganss), ( failed(Ganss) -> % already known ( GVal == true -> fail ; Tab = Tab0, Abd = Abd0, A = A0 ) ; succeeded(Ganss) -> % already known ( GVal == false -> fail ; Tab = Tab0, Abd = Abd0, A = A0 ) ; addkey(Abd0,G,GVal,Abd1), % otherwise, propagate propagate_forward(G,GVal,Tab0,Tab1,Abd1), A0 = [G-G|A1], propagate_backward(G,Ganss,GVal,Tab1,Tab,Abd1,Abd,A1,A) ) ). final_check(Abd,Tab0,Tab,DAbd,Alist) :- check_consistency(Abd,Tab0,Tab,Alist0,Alist1), add_dabd(DAbd,Alist1,[]), sort(Alist0,Sorted), listval_to_listlit(Sorted,Alist). listval_to_listlit([],[]). listval_to_listlit([Val|Vlist],[Lit|Llist]) :- val_to_lit(Val,Lit), listval_to_listlit(Vlist,Llist). val_to_lit(G-true,G). val_to_lit(G-false,\+G). /* check_consistency(Abd,Tab0,Tab,Alist0,Alist): A proposition may be assumed to be true, but no true answer is derived at the end, which is inconsistency. A proposition may be assumed to be false, but has a true answer. The latter case is checked when the true answer is derived. Here Abd indicates the assumed truth values, and answers in Tab0 indicate the derived values by a fixpoint computation of forward chaining. Also at the end of a fixpoint computation, a subgoal may have only delayed answers with positive literals. These have to be deleted in order for Tab0/Tab to be used correctly later. */ check_consistency([],Tab,Tab,Alist,Alist). check_consistency(l(G,Val),Tab0,Tab,Alist0,Alist) :- updatevs(Tab0,G,Ent0,Ent,Tab), Ent0 = e(Nodes,ANegs,Anss0,_Delay,Comp,Dfn,Slist), Ent = e(Nodes,ANegs,Anss,false,Comp,Dfn,Slist), ( Val == true -> succeeded(Anss0), Anss = l(G,[d(G,[])]), % delete answers with positive delays Alist0 = [G-Val|Alist] ; % Val == false -> Anss = [], Alist0 = [G-Val|Alist] ). check_consistency(n2(T1,_,T2),Tab0,Tab,Alist0,Alist) :- check_consistency(T1,Tab0,Tab1,Alist0,Alist1), check_consistency(T2,Tab1,Tab,Alist1,Alist). check_consistency(n3(T1,_,T2,_,T3),Tab0,Tab,Alist0,Alist) :- check_consistency(T1,Tab0,Tab1,Alist0,Alist1), check_consistency(T2,Tab1,Tab2,Alist1,Alist2), check_consistency(T3,Tab2,Tab,Alist2,Alist). add_dabd([],Alist,Alist). add_dabd(l(G,Val),[G-Val|Alist],Alist). add_dabd(n2(T1,_,T2),Alist0,Alist) :- add_dabd(T1,Alist0,Alist1), add_dabd(T2,Alist1,Alist). add_dabd(n3(T1,_,T2,_,T3),Alist0,Alist) :- add_dabd(T1,Alist0,Alist1), add_dabd(T2,Alist1,Alist2), add_dabd(T3,Alist2,Alist). /* oldt(QueryAtom,Table): top level call for SLG resolution. It returns a table consisting of answers for each relevant subgoal. For stable predicates, it basically extract the relevant set of ground clauses by solving Prolog predicates and other well-founded predicates. */ oldt(Call,Tab) :- new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1), add_tab_ent(Ggoal,Ent,[],Tab1), oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,0:[],_TP), ( wfs_trace -> nl, write('Final '), display_table(Tab), nl ; true ). /* oldt(Call,Ggoal,Tab0,Tab,Stack0,Stack,DFN0,DFN,Dep0,Dep,TP0,TP) explores the initial set of edges, i.e., all the program clauses for Call. Ggoal is of the form Gcall-Gdfn, where Gcall is numbervar of Call and Gdfn is the depth-first number of Gcall. Tab0/Tab,Stack0/Stack, DFN0/DFN, and Dep0/Dep are accumulators for the table, the stack of subgoals, the DFN counter, and the dependencies. TP0/TP is the accumulator for newly created clauses during the processing of general clauss with universal disjunctions in the body. These clauses are created in order to guarantee polynomial data complexity in processing clauses with universal disjuntions in the body of a clause. The newly created propositions are represented by numbers. */ oldt(Call,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- ( number(Call) -> TP0 = (_ : Tcl), find(Tcl,Call,Clause), edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1) ; findall(rule(d(Call,[]),Body), (new_slg_head(Call,Body,NewHead),call(NewHead)), Frames), map_oldt(Frames,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1) ), comp_tab_ent(Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). map_oldt([],_Ggoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). map_oldt([Clause|Frames],Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), map_oldt(Frames,Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). /* edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) Clause may be one of the following forms: rule(d(H,Dlist),Blist) rule(d(H,all(Dlist)),all(Blist)) where the second form is for general clauses with a universal disjunction of literals in the body. Dlist is a list of delayed literals, and Blist is the list of literals to be solved. Clause represents a directed edge from Ggoal to the left most subgoal in Blist. */ edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- Clause = rule(Ans,B), ( B == [] -> ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ; B = [Lit|_] -> ( Lit = (\+N) -> neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ; pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ) ; B = all(Bl) -> ( Bl == [] -> ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ; Bl = [Lit|_], ( Lit = (\+N) -> aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ; apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ) ) ). ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- ( add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab1) -> ( Mode = new_head -> returned_ans(Ans,Ggoal,RAns), map_nodes(Nodes,RAns,Tab1,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ; Mode = no_new_head -> Tab = Tab1, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 ) ; Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 ). neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- Clause = rule(_,[\+N|_]), ( ground(N) -> true ; write('Flounder: '), write(\+N), nl, fail ), Node = (Ggoal:Clause), Ngoal = N, % N is already ground ( isprolog(N) -> % if N is a Prolog predicate ( call(N) -> % then just call Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 ; apply_subst(Node,d(\+ N,[]),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ) ; ( find(Tab0,Ngoal,Nent) -> Tab2 = Tab0, S2 = S0, Dfn2 = Dfn0, Dep1 = Dep0, TP1 = TP0 ; new_init_call(N,Ngoal,Ent,S0,S1,Dfn0,Dfn1), add_tab_ent(Ngoal,Ent,Tab0,Tab1), oldt(N,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,maxint-maxint,Ndep,TP0,TP1), compute_mins(Dep0,Ndep,pos,Dep1), find(Tab2,Ngoal,Nent) ), ent_to_comp(Nent,Ncomp), ent_to_anss(Nent,Nanss), ( succeeded(Nanss) -> Tab = Tab2, S = S2, Dfn = Dfn2, Dep = Dep1, TP = TP1 ; failed(Nanss), Ncomp == true -> apply_subst(Node,d(\+N,[]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP) ; apply_subst(Node,d(\+N,[\+N]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP) ) ). pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- Clause = rule(_H,[N|_B]), Node = (Ggoal:Clause), ground(N,Ngoal), ( isprolog(N) -> findall(d(N,[]),call(N),Nanss), map_anss_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ; ( find(Tab0,Ngoal,Nent) -> ent_to_comp(Nent,Ncomp), ent_to_anss(Nent,Nanss), ( Ncomp \== true -> update_lookup_mins(Ggoal,Node,Ngoal,pos,Tab0,Tab1,Dep0,Dep1), map_anss(Nanss,Node,Ngoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep1,Dep,TP0,TP) ; % N is completed. map_anss(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ) ; % otherwise N is new new_pos_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1), add_tab_ent(Ngoal,Ent,Tab0,Tab1), oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP), update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep) ) ). aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- Clause = rule(_H,all([\+N|_B])), Node = (Ggoal:Clause), ground(N,Ngoal), ( isprolog(N) -> findall(d(N,[]),call(N),Nanss), return_to_disj_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ; ( find(Tab0,Ngoal,Nent) -> ent_to_comp(Nent,Ncomp), ent_to_anss(Nent,Nanss), ( Ncomp \== true -> update_lookup_mins(Ggoal,Node,Ngoal,aneg,Tab0,Tab,Dep0,Dep), S = S0, Dfn = Dfn0, TP = TP0 ; % N is completed. return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ) ; % otherwise N is new new_aneg_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1), add_tab_ent(Ngoal,Ent,Tab0,Tab1), oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP), update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep) ) ). apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- Clause = rule(d(H,D),all([N|B])), ( ground(N) -> true ; write('Flounder in a universal disjunction: '), write(N), nl, fail ), pos_edge(rule(d(H,[]),[N]),Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), edge_oldt(rule(d(H,D),all(B)),Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). apply_subst(Ggoal:Cl,d(An,Vr),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- copy_term(Cl,rule(d(Ac,Vc),Body)), ( Body = [Call|NBody] -> Call = An, append(Vr,Vc,Vn) ; Body = all([Call|Calls]), % Call = An, % An is the numbervar-ed version of Call. ( Vc == [] -> Vn = all(Vr) ; Vc = all(Vc0), append(Vr,Vc0,Vn0), Vn = all(Vn0) ), NBody = all(Calls) ), edge_oldt(rule(d(Ac,Vn),NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP). /* map_nodes(Nodes,Ans,....): return Ans to each of the waiting nodes in Nodes, where a node is of the form Ggoal:Clause. */ map_nodes([],_Ans,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). map_nodes([Node|Nodes],Ans,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), map_nodes(Nodes,Ans,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). map_anss([],_Node,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). map_anss(l(_GH,Lanss),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- ( Lanss == [] -> Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0 ; Lanss = [Ans|_], returned_ans(Ans,Ngoal,RAns), apply_subst(Node,RAns,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) ). map_anss(n2(T1,_,T2),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), map_anss(T2,Node,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). map_anss(n3(T1,_,T2,_,T3),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), map_anss(T2,Node,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,Dep1,Dep2,TP1,TP2), map_anss(T3,Node,Ngoal,Tab2,Tab,S2,S,Dfn2,Dfn,Dep2,Dep,TP2,TP). map_anss_list([],_Node,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). map_anss_list([Ans|Lanss],Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), map_anss_list(Lanss,Node,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). /* return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) Nanss: an answer table for Ngoal Node: is of the form (Ggoal:Clause), where Clause is of the form rule(d(H,D),all([\+N|B])) It carries out resolution of each answer with Clause, and constructs a new clause rule(Head,NBody), where the body is basically a conjunction of all the resolvents. If a resolvent is a disjunction or a non-ground literal, a new proposition is created (which is actually represented by a number), which has a clause whose body is the resolvent. */ return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- Node = (Ggoal : Clause), Clause = rule(Head,all(Body)), TP0 = (N0 : Tcl0), negative_return_all(Nanss,Body,Ngoal,NBody,[],N0,N,Tcl0,Tcl), TP1 = (N : Tcl), edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP). negative_return_all([],_Body,_Ngoal,NBody,NBody,N,N,Tcl,Tcl). negative_return_all(l(_GH,Lanss),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- ( Lanss == [] -> NBody0 = NBody, N = N0, Tcl = Tcl0 ; Lanss = [Ans|_], negative_return_one(Ans,Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) ). negative_return_all(n2(T1,_,T2),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1), negative_return_all(T2,Body,Ngoal,NBody1,NBody,N1,N,Tcl1,Tcl). negative_return_all(n3(T1,_,T2,_,T3),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1), negative_return_all(T2,Body,Ngoal,NBody1,NBody2,N1,N2,Tcl1,Tcl2), negative_return_all(T3,Body,Ngoal,NBody2,NBody,N2,N,Tcl2,Tcl). negative_return_one(d(H,Tv),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :- copy_term(Body,[\+Call|Bs]), H = Call, ( Tv == [] -> % no delay ( (Bs = [Lit], ground(Lit)) -> % resovlent is a ground literal NBody0 = [Lit|NBody], N = N0, Tcl = Tcl0 ; Lit = N0, % otherwise, replace it with a number N is N0+1, NBody0 = [Lit|NBody], Clause = rule(d(Lit,[]),all(Bs)), add_tab_ent(Lit,Clause,Tcl0,Tcl) ) ; ( ground(H) -> % if there is delay, always replace with number NewTv = [\+H] ; ground(H,GH), NewTv = [Ngoal - (\+GH)] ), Lit = N0, N is N0+1, NBody0 = [Lit|NBody], Clause = rule(d(Lit,all(NewTv)),all(Bs)), add_tab_ent(Lit,Clause,Tcl0,Tcl) ). return_to_disj_list(Lanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- Node = (Ggoal : Clause), Clause = rule(Head,all(Body)), TP0 = (N0 : Tcl0), negative_return_list(Lanss,Body,NBody,[],N0,N,Tcl0,Tcl), TP1 = (N : Tcl), edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP). negative_return_list([],_Body,NBody,NBody,N,N,Tcl,Tcl). negative_return_list([d(H,[])|Lanss],Body,NBody0,NBody,N0,N,Tcl0,Tcl) :- copy_term(Body,[\+Call|Bs]), H = Call, ( Bs = [Lit], ground(Lit) -> NBody0 = [Lit|NBody1], N1 = N0, Tcl1 = Tcl0 ; Lit = N0, N1 is N0+1, NBody0 = [Lit|NBody1], Clause = rule(d(Lit,[]),all(Bs)), add_tab_ent(Lit,Clause,Tcl0,Tcl1) ), negative_return_list(Lanss,Body,NBody1,NBody,N1,N,Tcl1,Tcl). /* comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) check if Ggoal and subgoals on top of it on the stack are completely evaluated. */ comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- ( Dep0 == maxint-maxint -> process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) ; update_mins(Ggoal,Dep0,pos,Tab0,Tab1,Gdfn,Gdep), Gdep = Gpmin-Gnmin, ( Gdfn @=< Gpmin, Gnmin == maxint -> process_pos_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) ; Gdfn @=< Gpmin, Gdfn @=< Gnmin -> process_neg_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) ; Tab = Tab1, S0 = S, Dfn = Dfn0, Dep = Gdep, TP = TP0 ) ). process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :- ( wfs_trace -> write('Stack: '), nl, display_stack(S0,Tab0), write('Completed call found: '), write(Ggoal), nl, display_table(Tab0), write('Completing calls ......'), nl, nl ; true ), pop_subgoals(Ggoal,S0,S1,[],Scc), complete_comp(Scc,Tab0,Tab1,Alist,[]), return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn0,Dfn,maxint-maxint,Dep,TP0,TP). /* pop_subgoals(Ggoal,S0,S,Scc0,Scc) pop off the stack subgoals up to and including Ggoal */ pop_subgoals(Ggoal,S0,S,Scc0,Scc) :- S0 = [Sent|S1], ( Ggoal == Sent -> S = S1, Scc = [Sent|Scc0] ; pop_subgoals(Ggoal,S1,S,[Sent|Scc0],Scc) ). /* complete_comp(Scc,Tab0,Tab,Alist0,Alist): process the list Scc of subgoals that are completely evaluated. */ complete_comp([],Tab,Tab,Alist,Alist). complete_comp([Ggoal|Scc],Tab0,Tab,Alist0,Alist) :- complete_one(Ggoal,Tab0,Tab1,Alist0,Alist1), complete_comp(Scc,Tab1,Tab,Alist1,Alist). /* complete_one(Ggoal,Tab0,Tab,Alist0,Alist) process one subgoal that has been completely evaluated: 1. set its Nodes and Negs to [] and Comp to true; 2. simplify its answers and set up links for further simplification later; 3. use the truth value of Ggoal to simplify answers of other complete subgoals (possibly including itself). 4. set Alist0/Alist: a list of negation nodes with universal disjunctions with associated answers for the selected negative literal. */ complete_one(Ggoal,Tab0,Tab,Alist0,Alist) :- updatevs(Tab0,Ggoal,Ent0,Ent,Tab1), Ent0 = e(_Nodes,ANegs,Anss0,Delay,_Comp,Gdfn,Slist0), Ent = e([],[],Anss,Delay,true,Gdfn,Slist), ( Delay == true -> reduce_ans(Anss0,Anss,Tab0), setup_simp_links(Anss,Ggoal,Slist0,Slist1,Tab1,Tab2) ; % Delay == false Anss = Anss0, Tab2 = Tab1, Slist1 = Slist0 ), extract_known(Ggoal,Anss,Slist1,Slist,Klist), simplify(Klist,Tab2,Tab,[]), ( ANegs == [] -> Alist0 = Alist ; Alist0 = [(Anss,Ggoal)-ANegs|Alist] ). setup_simp_links([],_,Slist,Slist,Tab,Tab). setup_simp_links(l(GH,Lanss),Ggoal,Slist0,Slist,Tab0,Tab) :- setup_simp_links_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab). setup_simp_links(n2(T1,_,T2),Ggoal,Slist0,Slist,Tab0,Tab) :- setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1), setup_simp_links(T2,Ggoal,Slist1,Slist,Tab1,Tab). setup_simp_links(n3(T1,_,T2,_,T3),Ggoal,Slist0,Slist,Tab0,Tab) :- setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1), setup_simp_links(T2,Ggoal,Slist1,Slist2,Tab1,Tab2), setup_simp_links(T3,Ggoal,Slist2,Slist,Tab2,Tab). /* setup_simp_link_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab) Ggoal-GH is to tell what portion of answers of Ggoal can be simplified. */ setup_simp_links_list([],_,_,Slist,Slist,Tab,Tab). setup_simp_links_list([d(_,D)|Anss],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :- ( D = all(Ds) -> true ; Ds = D ), links_from_one_delay(Ds,GHead,Ggoal,Slist0,Slist1,Tab0,Tab1), setup_simp_links_list(Anss,GHead,Ggoal,Slist1,Slist,Tab1,Tab). /* A link ((Ggoal-GH):Lit) in an entry for Ngoal means that the literal Lit in an answer with head GH in Ggoal can be potentially simplified if we know answers for Ngoal. */ links_from_one_delay([],_,_,Slist,Slist,Tab,Tab). links_from_one_delay([D|Ds],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :- ( D = (\+ Ngoal) -> ( Ggoal == Ngoal -> Tab1 = Tab0, Slist1 = [GHead:D|Slist0] ; add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1), Slist1 = Slist0 ) ; D = (Ngoal-_) -> ( Ggoal == Ngoal -> Slist1 = [GHead:D|Slist0], Tab1 = Tab0 ; Slist1 = Slist0, add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1) ) ), links_from_one_delay(Ds,GHead,Ggoal,Slist1,Slist,Tab1,Tab). /* extract_known(Ggoal,Anss,Links,Slist,Klist): Given Ggoal and its answers Anss, and its simplification Links, it partitioned Links into Slist and Klist of links, where Klist is a list of links that are known to be either true or false. Klist is either of the form Val-Links, or a list of the form Val-Link. In case of non-ground calls, the corresponding portion of Anss has to be searched. */ extract_known(Ggoal,Anss,Links,Slist,Klist) :- ( failed(Anss) -> Klist = fail-Links, Slist = [] ; Anss = l(GH,Lanss) -> ( Ggoal == GH -> % Ground or most general call ( memberchk(d(_,[]),Lanss) -> Klist = succ-Links, Slist = [] ; Klist = [], Slist = Links ) ; % non-ground call extract_known_anss(Links,Anss,[],Slist,[],Klist) ) ; % non-ground call extract_known_anss(Links,Anss,[],Slist,[],Klist) ). extract_known_anss([],_,Slist,Slist,Klist,Klist). extract_known_anss([Link|Links],Anss,Slist0,Slist,Klist0,Klist) :- Link = (_:Lit), extract_lit_val(Lit,Anss,true,Val), ( Val == undefined -> Slist1 = [Link|Slist0], Klist1 = Klist0 ; Slist1 = Slist0, Klist1 = [Val-Link|Klist0] ), extract_known_anss(Links,Anss,Slist1,Slist,Klist1,Klist). /* extract_lit_val(Lit,Anss,Comp,Val): extract the truth value of Lit according to Anss and Comp. In case of a non-ground calls, the corresponding portion of Anss has to be searched. */ extract_lit_val(Lit,Anss,Comp,Val) :- ( Lit = (\+ _) -> ( succeeded(Anss) -> Val = fail ; failed(Anss), Comp == true -> Val = succ ; Val = undefined ) ; Lit = (_ - (\+GH)) -> ( find(Anss,GH,Lanss) -> ( (\+ \+ memberchk(d(GH,[]),Lanss)) -> Val = fail ; Lanss == [], Comp == true -> Val = succ ; Val = undefined ) ; ( Comp == true -> Val = succ ; Val = undefined ) ) ; Lit = (_-GH) -> ( find(Anss,GH,Lanss) -> ( (\+ \+ memberchk(d(GH,[]),Lanss)) -> Val = succ ; Lanss == [], Comp == true -> Val = fail ; Val = undefined ) ; ( Comp == true -> Val = fail ; Val = undefined ) ) ). /* simplify(KnownLinks,Tab0,Tab,Abd): Given a list of KnownLinks, Tab0 and Abd, it tries to simplify answers according to KnownLinks. When a subgoal is found to be true or false according to answers, consistency with assumed truth values in Abd is checked. */ simplify([],Tab,Tab,_Abd). simplify([Val-Link|Klist],Tab0,Tab,Abd) :- simplify_one(Val,Link,Tab0,Tab1,Abd), simplify(Klist,Tab1,Tab,Abd). simplify(Val-Links,Tab0,Tab,Abd) :- simplify_list(Links,Val,Tab0,Tab,Abd). simplify_list([],_,Tab,Tab,_Abd). simplify_list([Link|Links],Val,Tab0,Tab,Abd) :- Link = (_ : Lit), ( ( Lit = (\+_); Lit = (_ - (\+_)) ) -> ( Val = fail -> LVal = succ; LVal = fail ) ; LVal = Val ), simplify_one(LVal,Link,Tab0,Tab1,Abd), simplify_list(Links,Val,Tab1,Tab,Abd). simplify_one(Val,Link,Tab0,Tab,Abd) :- Link = ((Ngoal - GH) : Lit), updatevs(Tab0,Ngoal,Ent0,Ent,Tab1), Ent0 = e(Nodes,ANegs,Anss0,Delay,Comp,Dfn,Slist0), Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) -> simplify_anss(Lanss0,Val,Lit,[],Lanss,C), ( C == true -> ( find(Abd,GH,Aval) -> ( Aval == true, Lanss == [] -> % deduced result inconsistent with assumption fail ; Aval == false, memberchk( d(_ , []), Lanss) -> fail ; true ) ; true ), extract_known(Ngoal,Anss,Slist0,Slist,Klist), simplify(Klist,Tab1,Tab,Abd) ; Tab = Tab0 ) ; Tab = Tab0 ). /* simplify_anss(List,Val,Lit,Lanss0,Lanss,C): Given a List of answers, Val of Lit, it simplifies the List and construct a new list Lanss0/Lanss of answers. C is unified with true if some simplification is carried out. As soon as a true answer is detected, all other answers with the same head are deleted. */ simplify_anss([],_,_,Anss,Anss,_). simplify_anss([Ans|Rest],Val,Lit,Anss0,Anss,C) :- ( simplified_ans(Ans,Val,Lit,NewAns,C) -> ( NewAns = d(_,[]) -> Anss = [NewAns] ; Anss1 = [NewAns|Anss0], simplify_anss(Rest,Val,Lit,Anss1,Anss,C) ) ; C = true, simplify_anss(Rest,Val,Lit,Anss0,Anss,C) ). simplified_ans(Ans,Val,Lit,NewAns,C) :- Ans = d(H,Ds), ( Ds == [] -> NewAns = Ans ; Ds = all(Dlist) -> ( Val == fail -> delete_lit(Dlist,Lit,NewDlist,[],C), ( NewDlist == [] -> fail ; NewAns = d(H,all(NewDlist)) ) ; % Val == succ -> ( memberchk(Lit,Dlist) -> NewAns = d(H,[]), C = true ; NewAns = Ans ) ) ; % Ds is a conjunction ( Val == fail -> ( memberchk(Lit,Ds) -> fail ; NewAns = Ans ) ; % Val == succ -> delete_lit(Ds,Lit,NewDs,[],C), NewAns = d(H,NewDs) ) ). /* delete_lit(Delays,Lit,Ds0,Ds,C): deletes Lit from Delays. Delays is a list of delayed literals and it is guaranteed to have no duplicates. */ delete_lit([],_,Ds,Ds,_). delete_lit([D|Rest],Lit,Ds0,Ds,C) :- ( D == Lit -> Ds0 = Rest, C = true ; Ds0 = [D|Ds1], delete_lit(Rest,Lit,Ds1,Ds,C) ). % return answers to negative nodes within universal disjunctions return_aneg_nodes([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). return_aneg_nodes([(Anss,Ngoal)-ANegs|Alist],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- map_anegs(ANegs,Anss,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). map_anegs([],_Anss,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). map_anegs([Node|ANegs],Anss,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- return_to_disj(Anss,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), map_anegs(ANegs,Anss,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). /* process a component of subgoals that may be involved in negative loops. */ process_neg_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :- ( wfs_trace -> write('Stack: '), nl, display_stack(S0,Tab0), write('Possible negative loop: '), write(Ggoal), nl, display_table(Tab0) ; true ), extract_subgoals(Ggoal,S0,Scc,[]), reset_nmin(Scc,Tab0,Tab1,Ds,[]), ( wfs_trace -> write('Delaying: '), display_dlist(Ds) ; true ), delay_and_cont(Ds,Tab1,Tab2,S0,S1,Dfn0,Dfn1,maxint-maxint,Dep1,TP0,TP1), recomp_scc(Scc,Tab2,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). /* extract_subgoals(Ggoal,S0,Scc0,Scc) extract subgoals that may be involved in negative loops, but leave the stack of subgoals intact. */ extract_subgoals(Ggoal,[Sent|S],[Sent|Scc0],Scc) :- ( Ggoal == Sent -> Scc0 = Scc ; extract_subgoals(Ggoal,S,Scc0,Scc) ). /* reset_nmin(Scc,Tab0,Tab,Dnodes0,Dnodes) reset NegLink and collect all waiting nodes that need to be delayed. Dnodes0/Dnodes is a difference list. */ reset_nmin([],Tab,Tab,Ds,Ds). reset_nmin([Ggoal|Scc],Tab0,Tab,Ds0,Ds) :- get_and_reset_negs(Tab0,Ggoal,ANegs,Tab1), ( ANegs == [] -> Ds0 = Ds1 ; Ds0 = [Ggoal-ANegs|Ds1] ), reset_nmin(Scc,Tab1,Tab,Ds1,Ds). delay_and_cont([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). delay_and_cont([Ggoal-Negs|Dnodes],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- map_nodes(Negs,d(\+Ggoal,[\+Ggoal]),Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), delay_and_cont(Dnodes,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). recomp_scc([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP). recomp_scc([Ggoal|Scc],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :- comp_tab_ent(Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1), recomp_scc(Scc,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP). /* routines for incremental update of dependency information */ /* update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep) update the PosLink and NegLink of Ggoal according to Dep and Sign */ update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep) :- Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep0,Slist), Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep,Slist), updatevs(Tab0,Ggoal,Ent0,Ent,Tab), compute_mins(Gdep0,Dep,Sign,Gdep). /* update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep) There is a lookup edge (Node) from Ggoal to Ngoal with Sign. It adds Node to the corresponding waiting list in Ngoal and then update the dependencies of Ggoal. */ update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep) :- updatevs(Tab0,Ngoal,Ent0,Ent,Tab1), ( Sign == pos -> pos_to_newent(Ent0,Ent,Node) ; Sign == aneg -> aneg_to_newent(Ent0,Ent,Node) ), Ent0 = e(_,_,_,_,_,_Ndfn:Ndep,_), compute_mins(Dep0,Ndep,Sign,Dep), update_mins(Ggoal,Ndep,Sign,Tab1,Tab,_,_). /* update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep) There is an edge with Sign from Ggoal to Ngoal, where Ngoal is a new subgoal. Ndep is the final dependency information of Ngoal. Dep0/Dep is for the most recent enclosing new call. This predicate is called after Ngoal is solved. */ update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep) :- find(Tab0,Ngoal,Nent), ent_to_comp(Nent,Ncomp), ( Ncomp == true -> ( Ndep == maxint-maxint -> Tab = Tab0, Dep = Dep0 ; update_mins(Ggoal,Ndep,pos,Tab0,Tab,_,_), compute_mins(Dep0,Ndep,pos,Dep) ) ; update_mins(Ggoal,Ndep,Sign,Tab0,Tab,_,_), compute_mins(Dep0,Ndep,Sign,Dep) ). compute_mins(Gpmin-Gnmin,Npmin-Nnmin,Sign,Newpmin-Newnmin) :- ( Sign == pos -> min(Gpmin,Npmin,Newpmin), min(Gnmin,Nnmin,Newnmin) ; % (Sign == neg; Sign == aneg) -> Newpmin=Gpmin, min(Gnmin,Npmin,Imin), min(Imin,Nnmin,Newnmin) ). min(X,Y,M) :- ( X @< Y -> M=X; M=Y ). %%%%%%%%%%%%%%% Local table manipulation predicates %%%%%%%%%% /* Table Entry Structure: For each Call, its table entry is identified with its number-vared version -- Ggoal. Its value is a term of the form e(Nodes,ANegs,Anss,Delay,Comp,Dfn:Dep,Slist) where Nodes: positive suspension list ANegs: negative suspension list (for universal disjunction clauss) Anss: another table. Delay: whether Anss contains any answer with delay Comp: whether Call is completely evaluated or not Dfn: depth-first number of Gcall Dep: (PosLink-NegLink) --- dependency information Slist: a list of nodes whose answers may be simplified if the truth value of Ggoal is known. Each element of Slist is of the form (Ngoal-GH):Literal. Stack Entry Structure: Ggoal */ /* routines for accessing individual fields of an entry */ ent_to_nodes(e(Nodes,_,_,_,_,_,_),Nodes). ent_to_anegs(e(_,ANegs,_,_,_,_,_),ANegs). ent_to_anss(e(_,_,Anss,_,_,_,_),Anss). ent_to_delay(e(_,_,_,Delay,_,_,_),Delay). ent_to_comp(e(_,_,_,_,Comp,_,_),Comp). ent_to_dfn(e(_,_,_,_,_,Dfn,_),Dfn). ent_to_slist(e(_,_,_,_,_,_,Slist),Slist). get_and_reset_negs(Tab0,Ggoal,ANegs,Tab) :- Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn: (Gpmin - _),Slist), Ent = e(Nodes,[],Anss,Delay,Comp,Gdfn:Gpmin-maxint,Slist), updatevs(Tab0,Ggoal,Ent0,Ent,Tab). /* adding a new table entry */ add_tab_ent(Ggoal,Ent,Tab0,Tab) :- addkey(Tab0,Ggoal,Ent,Tab). /* The following three routines are for creating new calls */ /* a new call with empty suspensions */ new_init_call(Call,Ggoal,Ent,S0,S,Dfn0,Dfn) :- ground(Call,Ggoal), S = [Ggoal|S0], Dfn is Dfn0+1, Ent = e([],[],[],false,false,Dfn0:Dfn0-maxint,[]). /* a new call with an initial negative suspension from inside a universal disjunction */ new_aneg_call(Ngoal,Neg,Ent,S0,S,Dfn0,Dfn) :- S = [Ngoal|S0], Dfn is Dfn0+1, Ent = e([],[Neg],[],false,false,Dfn0:Dfn0-maxint,[]). /* a new call with an initial positive suspension */ new_pos_call(Ngoal,Node,Ent,S0,S,Dfn0,Dfn) :- S = [Ngoal|S0], Dfn is Dfn0+1, Ent = e([Node],[],[],false,false,Dfn0:Dfn0-maxint,[]). /* routines for adding more information to a table entry. */ aneg_to_newent(Ent0,Ent,ANeg) :- Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), Ent = e(Nodes,[ANeg|ANegs],Anss,Delay,Comp,Dfn,Slist). pos_to_newent(Ent0,Ent,Node) :- Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), Ent = e([Node|Nodes],ANegs,Anss,Delay,Comp,Dfn,Slist). add_link_to_ent(Tab0,Ggoal,Link,Tab) :- updatevs(Tab0,Ggoal,Ent0,Ent,Tab), link_to_newent(Ent0,Ent,Link). link_to_newent(Ent0,Ent,Link) :- Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,[Link|Slist]). /* routines for manipulating answers */ ansstree_to_list([],L,L). ansstree_to_list(l(_GH,Lanss),L0,L) :- attach(Lanss,L0,L). ansstree_to_list(n2(T1,_M,T2),L0,L) :- ansstree_to_list(T1,L0,L1), ansstree_to_list(T2,L1,L). ansstree_to_list(n3(T1,_M2,T2,_M3,T3),L0,L) :- ansstree_to_list(T1,L0,L1), ansstree_to_list(T2,L1,L2), ansstree_to_list(T3,L2,L). attach([],L,L). attach([d(H,B)|R],[X|L0],L) :- ( B == [] -> X = H ; X = (H <- B) ), attach(R,L0,L). member_anss(Ans,Anss) :- member_anss_1(Anss,Ans). member_anss_1(l(_,Lanss),Ans) :- member(Ans,Lanss). member_anss_1(n2(T1,_,T2),Ans) :- ( member_anss_1(T1,Ans) ; member_anss_1(T2,Ans) ). member_anss_1(n3(T1,_,T2,_,T3),Ans) :- ( member_anss_1(T1,Ans) ; member_anss_1(T2,Ans) ; member_anss_1(T3,Ans) ). /* failed(Anss): Anss is empty */ failed([]). failed(l(_,[])). /* succeeded(Anss): Anss contains a single definite answer */ succeeded(l(_,Lanss)) :- memberchk(d(_,[]),Lanss). /* add_ans(Tab0,Goal,Ans,Nodes,Mode,Tab): If Ans is not subsumed by any existing answer then Ans is added to Anss(Goal); If some existing answer also has head H then Mode = no_new_head else Mode = new_head else fail. */ add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab) :- updatevs(Tab0,Ggoal,Ent0,Ent,Tab), Ans = d(H,Ds), ( Ds == [] -> new_ans_ent(Ent0,Ent,Ans,Nodes,Mode) ; setof(X,member(X,Ds),NewDs), new_ans_ent(Ent0,Ent,d(H,NewDs),Nodes,Mode) ). new_ans_ent(Ent0,Ent,Ans,Nodes,Mode) :- Ent0 = e(Nodes,ANegs,Anss0,Delay0,Comp,Dfn,Slist), Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist), Ans = d(H,D), ground(H,GH), ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) -> ( D == [] -> \+(memberchk(d(_,[]),Lanss0)), Lanss = [Ans] ; not_subsumed_ans(Ans,Lanss0), Lanss = [Ans|Lanss0] ), Mode = no_new_head ; addkey(Anss0,GH,[Ans],Anss), Mode = new_head ), ( D == [] -> Delay = Delay0 ; Delay = true ). /* returned_ans(Ans,Ggoal,RAns): determines whether SLG resolution or SLG factoring should be applied. */ returned_ans(d(H,Tv),Ggoal,d(H,NewTv)) :- ( Tv = [] -> NewTv = [] ; ground(H,GH), NewTv = [Ggoal-GH] ). % reduce a list of answers, by reducing delay list, and by subsumption reduce_ans(Anss0,Anss,Tab) :- reduce_completed_ans(Anss0,Anss,Tab). % simplify all the delay lists in a list of answers. reduce_completed_ans([],[],_Tab). reduce_completed_ans(l(GH,Lanss0),l(GH,Lanss),Tab) :- reduce_completed_anslist(Lanss0,[],Lanss,Tab). reduce_completed_ans(n2(T1,M,T2),n2(NT1,M,NT2),Tab) :- reduce_completed_ans(T1,NT1,Tab), reduce_completed_ans(T2,NT2,Tab). reduce_completed_ans(n3(T1,M2,T2,M3,T3),n3(NT1,M2,NT2,M3,NT3),Tab) :- reduce_completed_ans(T1,NT1,Tab), reduce_completed_ans(T2,NT2,Tab), reduce_completed_ans(T3,NT3,Tab). reduce_completed_anslist([],Lanss,Lanss,_Tab). reduce_completed_anslist([d(G,D0)|List],Lanss0,Lanss,Tab) :- ( D0 = all(Dlist1) -> ( filter_delays(Dlist1,[],Dlist,disj,V,Tab) -> ( V == true -> % true answer Lanss = [d(G,[])] ; Dlist == [] -> % false answer, ignore reduce_completed_anslist(List,Lanss0,Lanss,Tab) ; reduce_completed_anslist(List,[d(G,all(Dlist))|Lanss0],Lanss,Tab) ) ; reduce_completed_anslist(List,Lanss0,Lanss,Tab) ) ; ( filter_delays(D0,[],D,conj,_V,Tab) -> ( D == [] -> Lanss = [d(G,[])] ; reduce_completed_anslist(List,[d(G,D)|Lanss0],Lanss,Tab) ) ; reduce_completed_anslist(List,Lanss0,Lanss,Tab) ) ). % simplify a delay list by the completed table: delete true negations, % fail if a false one. filter_delays([],Fds,Fds,_DC,_V,_Tab). filter_delays([Lit|Ds],Fds0,Fds,DC,V,Tab) :- lit_to_call(Lit,Gcall), find(Tab,Gcall,Gent), ent_to_comp(Gent,Gcomp), ent_to_anss(Gent,Ganss), extract_lit_val(Lit,Ganss,Gcomp,Val), ( Val == succ -> ( DC == conj -> filter_delays(Ds,Fds0,Fds,DC,V,Tab) ; DC == disj -> V = true ) ; Val == fail -> ( DC == conj -> fail ; DC == disj -> filter_delays(Ds,Fds0,Fds,DC,V,Tab) ) ; % Val == undefined filter_delays(Ds,[Lit|Fds0],Fds,DC,V,Tab) ). lit_to_call(\+G,G). lit_to_call(Gcall-_,Gcall). not_subsumed_ans(Ans,Lanss0) :- \+ ( numbervars(Ans,0,_), subsumed_ans1(Ans,Lanss0) ). % succeed if answer is subsumed by any in list1 or 2. subsumed_ans(Tv,List1,List2) :- \+ (numbervars(Tv,0,_), \+ subsumed_ans1(Tv,List1), \+ subsumed_ans1(Tv,List2) ). % check if a delay is subsumed one of the element in the list subsumed_ans1(d(T,V),List) :- member(d(T,V1),List), ( V1 == [] ; V = all(LV), V1 = all(LV1) -> subset(LV,LV1) ; subset(V1,V) ). /****************** auxiliary routines *******************/ % variantchk/2 finds a variant in a list of atoms. variantchk(G,[G1|_]) :- variant(G,G1), !. variantchk(G,[_|L]) :- variantchk(G,L). variant(A, B) :- A == B -> true ; subsumes_chk(A, B), subsumes_chk(B, A), A = B. /* subsumes_chk(General, Specific) :- \+ ( numbervars(Specific, 0, _), \+ General = Specific ). */ ground(O,C) :- ground(O) -> C = O ; copy_term(O,C), numbervars(C,0,_). subset([],_). subset([E|L1],L2) :- memberchk(E,L2), subset(L1,L2). reverse([],R,R). reverse([Goal|Scc],R0,R) :- reverse(Scc,[Goal|R0],R). /***************** routines for debugging *******************/ % Debugging help: pretty-prints strongly connected components and local table. display_stack(Stack,Tab) :- reverse(Stack,[],Rstack), display_st(Rstack,Tab). display_st([],_Tab). display_st([Ggoal|Scc],Tab) :- find(Tab,Ggoal,Ent), ent_to_dfn(Ent,Dfn:Pmin-Nmin), tab(2), write(Ggoal-Dfn), write(': '), write('Pmin='), write(Pmin), write('; '), write('Nmin='), write(Nmin), write('; '), nl, display_st(Scc,Tab). display_dlist([]) :- nl,nl. display_dlist([Ngoal-_|Dlist]) :- write(\+ Ngoal), write('; '), display_dlist(Dlist). display_table(Tab) :- write('Table: '), nl, write_tab(Tab). display_final(Tab) :- write(' Final Set of Answers: '), nl, display_final1(Tab). display_final1([]). display_final1(l(_,e(_,_,Anss,_,_,_,_))) :- write_anss(Anss). display_final1(n2(X,_,Y)) :- display_final1(X), display_final1(Y). display_final1(n3(X,_,Y,_,Z)) :- display_final1(X), display_final1(Y), display_final1(Z). write_tab([]). write_tab(l(G,e(Nodes,ANegs,Anss,_,Comp,Dfn:_,_))) :- write(' Entry: '), write(G-Dfn), write(': '), ( Comp == true -> write('Complete!') ; write('Incomplete!') ), nl, ( Anss == [] -> true ; write(' Anss: '), nl, write_anss(Anss) ), ( ( Comp == true; Nodes == []) -> true ; write(' Nodes: '), write(Nodes), nl ), ( ( Comp == true; ANegs == []) -> true ; write(' ANegs: '), write(ANegs), nl ). write_tab(n2(X,_,Y)) :- write_tab(X), write_tab(Y). write_tab(n3(X,_,Y,_,Z)) :- write_tab(X), write_tab(Y), write_tab(Z). write_anss([]). write_anss(l(_,Lanss)) :- write_anss_list(Lanss). write_anss(n2(T1,_,T2)) :- write_anss(T1), write_anss(T2). write_anss(n3(T1,_,T2,_,T3)) :- write_anss(T1), write_anss(T2), write_anss(T3). write_anss_list([]). write_anss_list([Ans|Anss]) :- write_ans(Ans), write_anss_list(Anss). write_ans(d(H,Ds)) :- write(' '), write(H), ( Ds == [] -> true ; write(' :- '), ( Ds = all([D|Ds1]) -> ( D = (_-GH) -> write(GH) ; write(D) ), write_delay(Ds1,'; ') ; Ds = [D|Ds1], ( D = (_-GH) -> write(GH) ; write(D) ), write_delay(Ds1,', ') ) ), write('.'), nl. write_delay([],_). write_delay([D|Ds1],Sep) :- write(Sep), ( D = (_Gcall-GH) -> write(GH) ; write(D) ), write_delay(Ds1,Sep). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* This is a set of routines that supports indexed tables. Tables are sets of key-value_list pairs. With each key is associated a list of values. It uses 2-3 trees for the index (modified by D.S. Warren from Ivan Bratko: ``Prolog Programming for Artificial Intelligence'', Addison Wesley, 1986). Operations are: Keys must be ground! (so numbervar them) addkey(Tree,Key,V,Tree1) adds a new Key with value V, returning new Tree1. Fails if the key is already there. find(Tree,Key,V) finds the entry with Key and returns associated values in V. updatevs(Tree,Key,OldV,NewV,Tree1) replaces value of entry with key Key and value OldV with NewV. */ addkey(Tree,X,V,Tree1) :- ins2(Tree,X,V,Trees), cmb0(Trees,Tree1). addkey([],X,V,l(X,V)). find(l(X,V),Xs,V) :- X == Xs. find(n2(T1,M,T2),X,V) :- M @=< X -> find(T2,X,V) ; find(T1,X,V). find(n3(T1,M2,T2,M3,T3),X,V) :- M2 @=< X -> (M3 @=< X -> find(T3,X,V) ; find(T2,X,V) ) ; find(T1,X,V). % updatevs(Tab0,X,Ov,Nv,Tab) updates Tab0 to Tab, by replacing % Ov of entry with key X by Nv. /* updatevs(Tab0,X,Ov,Nv,Tab) :- updatevs(Tab0,X,Ov,Nv), Tab = Tab0. updatevs(Tab,X,Ov,Nv) :- ( Tab = l(Xs,Ov), Xs == X -> setarg(2,Tab,Nv) ; Tab = n2(T1,M,T2) -> ( M @=< X -> updatevs(T2,X,Ov,Nv) ; updatevs(T1,X,Ov,Nv) ) ; Tab = n3(T1,M2,T2,M3,T3) -> ( M2 @=< X -> ( M3 @=< X -> updatevs(T3,X,Ov,Nv) ; updatevs(T2,X,Ov,Nv) ) ; updatevs(T1,X,Ov,Nv) ) ). */ updatevs(l(X,Ov),Xs,Ov,Nv,l(X,Nv)) :- X == Xs. updatevs(n2(T1,M,T2),X,Ov,Nv,n2(NT1,M,NT2)) :- M @=< X -> NT1=T1, updatevs(T2,X,Ov,Nv,NT2) ; NT2=T2, updatevs(T1,X,Ov,Nv,NT1). updatevs(n3(T1,M2,T2,M3,T3),X,Ov,Nv,n3(NT1,M2,NT2,M3,NT3)) :- M2 @=< X -> (M3 @=< X -> NT2=T2, NT1=T1, updatevs(T3,X,Ov,Nv,NT3) ; NT1=T1, NT3=T3, updatevs(T2,X,Ov,Nv,NT2) ) ; NT2=T2, NT3=T3, updatevs(T1,X,Ov,Nv,NT1). ins2(n2(T1,M,T2),X,V,Tree) :- M @=< X -> ins2(T2,X,V,Tree1), cmb2(Tree1,T1,M,Tree) ; ins2(T1,X,V,Tree1), cmb1(Tree1,M,T2,Tree). ins2(n3(T1,M2,T2,M3,T3),X,V,Tree) :- M2 @=< X -> (M3 @=< X -> ins2(T3,X,V,Tree1), cmb4(Tree1,T1,M2,T2,M3,Tree) ; ins2(T2,X,V,Tree1), cmb5(Tree1,T1,M2,M3,T3,Tree) ) ; ins2(T1,X,V,Tree1), cmb3(Tree1,M2,T2,M3,T3,Tree). ins2(l(A,V),X,Vn,Tree) :- A @=< X -> (X @=< A -> fail ; Tree = t(l(A,V),X,l(X,Vn)) ) ; Tree = t(l(X,Vn),A,l(A,V)). cmb0(t(Tree),Tree). cmb0(t(T1,M,T2),n2(T1,M,T2)). cmb1(t(NT1),M,T2,t(n2(NT1,M,T2))). cmb1(t(NT1a,Mb,NT1b),M,T2,t(n3(NT1a,Mb,NT1b,M,T2))). cmb2(t(NT2),T1,M,t(n2(T1,M,NT2))). cmb2(t(NT2a,Mb,NT2b),T1,M,t(n3(T1,M,NT2a,Mb,NT2b))). cmb3(t(NT1),M2,T2,M3,T3,t(n3(NT1,M2,T2,M3,T3))). cmb3(t(NT1a,Mb,NT1b),M2,T2,M3,T3,t(n2(NT1a,Mb,NT1b),M2,n2(T2,M3,T3))). cmb4(t(NT3),T1,M2,T2,M3,t(n3(T1,M2,T2,M3,NT3))). cmb4(t(NT3a,Mb,NT3b),T1,M2,T2,M3,t(n2(T1,M2,T2),M3,n2(NT3a,Mb,NT3b))). cmb5(t(NT2),T1,M2,M3,T3,t(n3(T1,M2,NT2,M3,T3))). cmb5(t(NT2a,Mb,NT2b),T1,M2,M3,T3,t(n2(T1,M2,NT2a),Mb,n2(NT2b,M3,T3))). start_slg:- assertz(( term_expansion(X,Y) :- !, do_term_expansion(X,Y) )).