:- module(hprolog, [ prolog_flag/3, % +Flag, -Old, +New append_lists/2, % +ListOfLists, -List nth/3, % ?Index, ?List, ?Element substitute/4, % +OldVal, +OldList, +NewVal, -NewList memberchk_eq/2, % +Val, +List intersect_eq/3, % +List1, +List2, -Intersection list_difference_eq/3, % +List, -Subtract, -Rest take/3, % +N, +List, -FirstElements max_go_list/2, % +List, -Max or_list/2, % +ListOfInts, -BitwiseOr sublist/2, min_list/2, chr_delete/3, strip_attributes/2, restore_attributes/2 ]). :- use_module(library(lists)). % prolog_flag(+Flag, -Old, +New) % % Combine ISO prolog flag reading and writing prolog_flag(Flag, Old, New) :- current_prolog_flag(Flag, Old), ( Old == New -> true ; set_prolog_flag(Flag, New) ). /******************************* * MORE LIST OPERATIONS * *******************************/ % append_lists(+ListOfLists, -List) % % Convert a one-level nested list into a flat one. E.g. % append_lists([[a,b], [c]], X) --> X = [a,b,c]. See also % flatten/3. append_lists([],[]). append_lists([X|Xs],L) :- append(X,T,L), append_lists(Xs,T). % nth(?Index, ?List, ?Element) % % Same as nth1/3 nth(Index, List, Element) :- nth1(Index, List, Element). % substitute(+OldVal, +OldList, +NewVal, -NewList) % % Substitute OldVal by NewVal in OldList and unify the result % with NewList. JW: Shouldn't this be called substitute_eq/4? substitute(_, [], _, []) :- ! . substitute(X, [U|Us], Y, [V|Vs]) :- ( X == U -> V = Y, substitute(X, Us, Y, Vs) ; V = U, substitute(X, Us, Y, Vs) ). % memberchk_eq(+Val, +List) % % Deterministic check of membership using == rather than % unification. memberchk_eq(X, [Y|Ys]) :- ( X == Y -> true ; memberchk_eq(X, Ys) ). % list_difference_eq(+List, -Subtract, -Rest) % % Delete all elements of Subtract from List and unify the result % with Rest. Element comparision is done using ==/2. list_difference_eq([],_,[]). list_difference_eq([X|Xs],Ys,L) :- ( memberchk_eq(X,Ys) -> list_difference_eq(Xs,Ys,L) ; L = [X|T], list_difference_eq(Xs,Ys,T) ). % intersect_eq(+List1, +List2, -Intersection) % % Determine the intersection of two lists without unifying values. intersect_eq([], _, []). intersect_eq([X|Xs], Ys, L) :- ( memberchk_eq(X, Ys) -> L = [X|T], intersect_eq(Xs, Ys, T) ; intersect_eq(Xs, Ys, L) ). % take(+N, +List, -FirstElements) % % Take the first N elements from List and unify this with % FirstElements. The definition is based on the GNU-Prolog lists % library. Implementation by Jan Wielemaker. take(0, _, []) :- !. take(N, [H|TA], [H|TB]) :- N > 0, N2 is N - 1, take(N2, TA, TB). % max_go_list(+List, -Max) % % Return the maximum of List in the standard order of terms. max_go_list([H|T], Max) :- max_go_list(T, H, Max). max_go_list([], Max, Max). max_go_list([H|T], X, Max) :- ( H @=< X -> max_go_list(T, X, Max) ; max_go_list(T, H, Max) ). % or_list(+ListOfInts, -BitwiseOr) % % Do a bitwise disjuction over all integer members of ListOfInts. or_list(L, Or) :- or_list(L, 0, Or). or_list([], Or, Or). or_list([H|T], Or0, Or) :- Or1 is H \/ Or0, or_list(T, Or1, Or). sublist(L, L). sublist(Sub, [H|T]) :- '$sublist1'(T, H, Sub). '$sublist1'(Sub, _, Sub). '$sublist1'([H|T], _, Sub) :- '$sublist1'(T, H, Sub). '$sublist1'([H|T], X, [X|Sub]) :- '$sublist1'(T, H, Sub). min_list([H|T], Min) :- '$min_list1'(T, H, Min). '$min_list1'([], Min, Min). '$min_list1'([H|T], X, Min) :- ( H>=X -> '$min_list1'(T, X, Min) ; '$min_list1'(T, H, Min) ). chr_delete([], _, []). chr_delete([H|T], X, L) :- ( H==X -> chr_delete(T, X, L) ; L=[H|RT], chr_delete(T, X, RT) ). strip_attributes([],[]). strip_attributes([V|R],[V2|R2]) :- ( attvar(V) -> get_attrs(V,VAttrs), remove_attrs(V,VAttrs,V2) ; V2 = [] ), strip_attributes(R,R2). remove_attrs(_V,[],[]). remove_attrs(V,att(X,Y,OtherAttrs),[(X,Y)|R]) :- del_attr(V,X), remove_attrs(V,OtherAttrs,R). restore_attributes([],[]). restore_attributes([_V|R],[[]|R2]) :- restore_attributes(R,R2). restore_attributes([V|R],[[(X,Y)|RVAttr]|R2]) :- put_attr(V,X,Y), restore_attributes([V|R],[RVAttr|R2]).