/* EMBLEM and SLIPCASE Copyright (c) 2011, Fabrizio Riguzzi and Elena Bellodi */ :-use_module(library(lists)). :-use_module(library(random)). :-use_module(library(system)). :-dynamic setting/2,last_id/1, rule/5. :-[revise]. setting(epsilon_em,0.0001). setting(epsilon_em_fraction,0.00001). setting(eps,0.0001). setting(eps_f,0.00001). /* if the difference in log likelihood in two successive em iteration is smaller than epsilon_em, then em stops */ setting(epsilon_sem,2). /* number of random restarts of em */ setting(random_restarts_REFnumber,1). setting(random_restarts_number,1). setting(iterREF,-1). setting(iter,-1). setting(examples,atoms). setting(group,1). setting(d,1). setting(verbosity,1). setting(logzero,log(0.000001)). setting(initial_clauses_modeh,1). setting(max_iter,10). setting(max_var,5). setting(max_rules,10). setting(beamsize,20). sl(File):- generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL), reconsult(FileL), load_models(FileKB,DB), statistics(walltime,[_,_]), (file_exists(FileBG)-> set(compiling,on), load(FileBG,_ThBG,RBG), set(compiling,off), generate_clauses(RBG,_RBG1,0,[],ThBG), assert_all(ThBG) ; true ), (file_exists(FileIn)-> set(compiling,on), load(FileIn,_Th1,R1), set(compiling,off) ; deduct(DB,[],InitialTheory), length(InitialTheory,_LI), %-LI=number of rules of the theory remove_duplicates(InitialTheory,Th0), length(Th0,_LI1), set(compiling,on), process_clauses(Th0,[],_Th1,[],R1), %+Th0: rules Head:-body with prob. in the head,-_Th1: rules in the same form as Th0 but with bdds one/and+getvarn+equality, R1: same theory of the form rule(NR,[head atoms with prob. (with null),[body atoms]. set(compiling,off) ), write('Initial theory'),nl, write_rules(R1,user_output), learn_struct(DB,R1,R2,CLL2), learn_params(DB,R2,R,CLL), statistics(walltime,[_,WT]), WTS is WT/1000, format("~nRefinement CLL ~f - CLL after EMBLEM ~f~n",[CLL2,CLL]), format("Total execution time ~f~n~n",[WTS]), write_rules(R,user_output), listing(setting/2), open(FileOut,write,Stream), format(Stream,'/* SLIPCASE Final CLL ~f~n',[CLL]), format(Stream,'Execution time ~f~n',[WTS]), tell(Stream), listing(setting/2), format(Stream,'*/~n~n',[]), told, open(FileOut,append,Stream1), write_rules(R,Stream1), close(Stream1). learn_struct(DB,R1,R,CLL1):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL1 generate_clauses(R1,R2,0,[],Th1), assert_all(Th1), assert_all(R2),!, findall(R-HN,(rule(R,HL,_BL),length(HL,HN)),L), keysort(L,LS), get_heads(LS,LSH), length(LSH,NR), init(NR,LSH), retractall(v(_,_,_)), length(DB,NEx), (setting(examples,atoms)-> setting(group,G), derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),! % 1 bdd for group of facts (for example if group=1) ; derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),! % 1 bdd for model ), setting(random_restarts_number,N), format("~nInitial CLL ~f~n~n",[CLL0]), random_restarts(N,Nodes,CLL0,CLL,initial,Par,LE), %output:CLL,Par format("CLL after EMBLEM = ~f~n",[CLL]), retract_all(Th1), retract_all(R2),!, end, %frees all variables update_theory(R2,Par,R3), write('updated Theory'),nl, write_rules(R3,user_output), %definite rules without probabilities in the head are not written setting(max_iter,M), cycle_struct([(R3,CLL)],DB,R3,R,M,CLL,-inf,CLL1). em(File):- generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL), reconsult(FileL), load_models(FileKB,DB), (file_exists(FileBG)-> set(compiling,on), load(FileBG,_ThBG,RBG), set(compiling,off), generate_clauses(RBG,_RBG1,0,[],ThBG), assert_all(ThBG) ; true ), set(compiling,on), load(FileIn,_TH,R0), set(compiling,off), set(verbosity,3), statistics(cputime,[_,_]), learn_params(DB,R0,R,CLL), statistics(cputime,[_,CT]), CTS is CT/1000, format("EM: Final CLL ~f~n",[CLL]), format("Execution time ~f~n~n",[CTS]), write_rules(R,user_output), listing(setting/2), open(FileOut,write,Stream), format(Stream,'/* EMBLEM Final CLL ~f~n',[CLL]), format(Stream,'Execution time ~f~n',[CTS]), tell(Stream), listing(setting/2), format(Stream,'*/~n~n',[]), told, open(FileOut,append,Stream1), write_rules(R,Stream1), close(Stream1). learn_params(DB,R0,R,CLL):- generate_clauses(R0,R1,0,[],Th0), assert_all(Th0), assert_all(R1),!, findall(R-HN,(rule(R,HL,_BL),length(HL,HN)),L), keysort(L,LS), get_heads(LS,LSH), length(LSH,NR), init(NR,LSH), retractall(v(_,_,_)), length(DB,NEx), (setting(examples,atoms)-> setting(group,G), derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),! ; derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),! ), setting(random_restarts_number,N), random_restarts(N,Nodes,CLL0,CLL,initial,Par,LE), %computes new parameters Par end, retract_all(Th0), retract_all(R1),!, update_theory(R1,Par,R). %replaces in R1 the probabilities Par and outputs R update_theory(R,initial,R):-!. update_theory([],_Par,[]). update_theory([def_rule(H,B)|T0],Par,[def_rule(H,B)|T]):-!, update_theory(T0,Par,T). update_theory([(H:-B)|T0],Par,[(H:-B)|T]):-!, update_theory(T0,Par,T). update_theory([rule(N,_H,_B)|T0],Par,T):- member([N,[1.0|_T]],Par),!, update_theory(T0,Par,T). update_theory([rule(N,H,B)|T0],Par,[rule(N,H1,B)|T]):- member([N,P],Par),!, reverse(P,P1), update_head_par(H,P1,H1), update_theory(T0,Par,T). update_head_par([],[],[]). update_head_par([H:_P|T0],[HP|TP],[H:HP|T]):- update_head_par(T0,TP,T). cycle_struct([],_DB,R,R,_M,S,_SP,S):-!. cycle_struct(_B,_DB,R,R,_M,S,SP,S):- setting(eps,Eps), setting(eps_f,EpsF), ( (S-SP)<Eps ; (X is -S*EpsF, Y is S-SP, Y<X) ), !. cycle_struct(_Beam,_DB,R,R,0,S,_SP,S):-!. cycle_struct([(RH,_ScoreH)|T],DB,R0,R,M,Score0,SP0,Score):- format("Iteration ~d",[M]),nl,nl, theory_revisions(RH,LR),!, %+R1=rule(NR,[head],[body]), -LR:list of lists, each correponding to a different revised theory length(LR,NR),%NR:number of different revised theories write('Number of revisions '),write(NR),nl, score_refinements(LR,T,T1,1,NR,DB,R0,Score0,SP0,R3,S3,SP), %-SP, -R3: the best score SP and refined theory R3 (in the form: rule(NR,[head],[body])), from the set of theories generated in revise.pl write('Best refinement:'),nl, write_rules(R3,user_output), M1 is M-1,%decreases the number of max_iter M format("~nBest score (CLL) ~f~n~n",[S3]), cycle_struct(T1,DB,R3,R,M1,S3,SP,Score). score_refinements([],B,B,_N,_NR,_DB,R,S,SP,R,S,SP). score_refinements([R1|T],B0,B,Nrev,NRef,DB,R0,S0,SP0,R,S,SP):- %scans the list of revised theories; returns S,R, the best (highest) score and revised theory R,after the comparisons at the end format('Score ref. ~d of ~d~n',[Nrev,NRef]), write_rules(R1,user_output), generate_clauses(R1,R2,0,[],Th1), assert_all(Th1), assert_all(R2),!, findall(RN-HN,(rule(RN,HL,_BL),length(HL,HN)),L), keysort(L,LS), get_heads(LS,LSH), length(LSH,NR), init(NR,LSH), retractall(v(_,_,_)), length(DB,NEx), (setting(examples,atoms)-> setting(group,G), derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),! ; derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),! ), setting(random_restarts_REFnumber,N), random_restarts_ref(N,Nodes,CLL0,CLL,initial,Par,LE), end, update_theory(R2,Par,R3), write('Updated refinement'),nl, write_rules(R3,user_output), Score = CLL, write('Score (CLL) '),write(Score),nl,nl,nl, retract_all(Th1), retract_all(R2),!, /*compares the score and theory found so far with the latest refinement R1 and associated score*/ (Score>S0-> R4=R3, S4=Score, SP1=S0 ; R4=R0, S4=S0, SP1=SP0 ), setting(beamsize,BS), insert_in_order(B0,(R3,Score),BS,B1), Nrev1 is Nrev+1, score_refinements(T,B1,B,Nrev1,NRef,DB,R4,S4,SP1,R,S,SP). insert_in_order([],C,BeamSize,[C]):- BeamSize>0,!. insert_in_order(Beam,_New,0,Beam):-!. insert_in_order([(Th1,Heuristic1)|RestBeamIn],(Th,Heuristic),BeamSize,BeamOut):- Heuristic>Heuristic1,!, % larger heuristic, insert here NewBeam=[(Th,Heuristic),(Th1,Heuristic1)|RestBeamIn], length(NewBeam,L), (L>BeamSize-> nth(L,NewBeam,_Last,BeamOut) ; BeamOut=NewBeam ). insert_in_order([(Th1,Heuristic1)|RestBeamIn],(Th,Heuristic),BeamSize, [(Th1,Heuristic1)|RestBeamOut]):- BeamSize1 is BeamSize -1, insert_in_order(RestBeamIn,(Th,Heuristic),BeamSize1, RestBeamOut). remove_int_atom_list([],[]). remove_int_atom_list([A|T],[A1|T1]):- A=..[F,_|Arg], A1=..[F|Arg], remove_int_atom_list(T,T1). remove_int_atom(A,A1):- A=..[F,_|T], A1=..[F|T]. get_heads([],[]). get_heads([_-H|T],[H|TN]):- get_heads(T,TN). derive_bdd_nodes([],_E,Nodes,Nodes,CLL,CLL). derive_bdd_nodes([H|T],E,Nodes0,Nodes,CLL0,CLL):- get_output_atoms(O), generate_goal(O,H,[],GL), (prob(H,P)-> CardEx is P*E ; CardEx is 1.0 ), init_bdd, one(One), get_node_list(GL,One,BDD,CardEx), ret_prob(BDD,HP), (HP=:=0.0-> setting(logzero,LZ), CLL1 is CLL0+LZ*CardEx ; CLL1 is CLL0+log(HP)*CardEx ), end_bdd, append(Nodes0,[[BDD,CardEx]],Nodes1), derive_bdd_nodes(T,E,Nodes1,Nodes,CLL1,CLL). get_node_list([],BDD,BDD,_CE). get_node_list([H|T],BDD0,BDD,CE):- get_node(H,BDD1), and(BDD0,BDD1,BDD2), get_node_list(T,BDD2,BDD,CE). derive_bdd_nodes_groupatoms([],_E,_G,Nodes,Nodes,CLL,CLL,LE,LE). derive_bdd_nodes_groupatoms([H|T],E,G,Nodes0,Nodes,CLL0,CLL,LE0,LE):- %[H|T] models get_output_atoms(O), generate_goal(O,H,[],GL), length(GL,NA), (prob(H,P)-> CardEx is P*E/NA ; CardEx is 1.0/NA ), get_node_list_groupatoms(GL,BDDs,CardEx,G,CLL0,CLL1,LE0,LE1), append(Nodes0,BDDs,Nodes1), derive_bdd_nodes_groupatoms(T,E,G,Nodes1,Nodes,CLL1,CLL,LE1,LE). get_node_list_groupatoms([],[],_CE,_Gmax,CLL,CLL,LE,LE). get_node_list_groupatoms([H|T],[[BDD,CE1]|BDDT],CE,Gmax,CLL0,CLL,LE0,LE):- init_bdd, one(One), get_bdd_group([H|T],T1,Gmax,G,One,BDD,CE,LE0,LE1), %output=BDD,CLL CE1 is CE*(Gmax-G), ret_prob(BDD,HP), end_bdd, (HP =:=0.0-> setting(logzero,LZ), CLL2 is CLL0+LZ*CE1 ; CLL2 is CLL0+log(HP)*CE1 ), get_node_list_groupatoms(T1,BDDT,CE,Gmax,CLL2,CLL,LE1,LE). get_bdd_group([],[],G,G,BDD,BDD,_CE,LE,LE):-!. get_bdd_group(T,T,0,0,BDD,BDD,_CE,LE,LE):- !. get_bdd_group([H|T],T1,Gmax,G1,BDD0,BDD,CE,[H|LE0],LE):- get_node(H,BDD1), %creates bdd for atomo H and(BDD0,BDD1,BDD2), G is Gmax-1, get_bdd_group(T,T1,G,G1,BDD2,BDD,CE,LE0,LE). /* EM start */ random_restarts(0,_Nodes,CLL,CLL,Par,Par,_LE):-!. random_restarts(N,Nodes,CLL0,CLL,Par0,Par,LE):- setting(verbosity,Ver), (Ver>2-> setting(random_restarts_number,NMax), Num is NMax-N+1, format("Restart number ~d~n~n",[Num]), flush_output ; true ), randomize, setting(epsilon_em,EA), setting(epsilon_em_fraction,ER), length(Nodes,L), setting(iter,Iter), em(Nodes,EA,ER,L,Iter,CLLR,Par1), setting(verbosity,Ver), (Ver>2-> format("Random_restart: CLL ~f~n",[CLLR]) ; true ), N1 is N-1, (CLLR>CLL0-> random_restarts(N1,Nodes,CLLR,CLL,Par1,Par,LE) ; random_restarts(N1,Nodes,CLL0,CLL,Par0,Par,LE) ). random_restarts_ref(0,_Nodes,CLL,CLL,Par,Par,_LE):-!. random_restarts_ref(N,Nodes,CLL0,CLL,Par0,Par,LE):- setting(verbosity,Ver), (Ver>2-> setting(random_restarts_REFnumber,NMax), Num is NMax-N+1, format("Restart number ~d~n~n",[Num]), flush_output ; true ), setting(epsilon_em,EA), setting(epsilon_em_fraction,ER), length(Nodes,L), setting(iterREF,Iter), em(Nodes,EA,ER,L,Iter,CLLR,Par1), setting(verbosity,Ver), (Ver>2-> format("Random_restart: CLL ~f~n",[CLLR]) ; true ), N1 is N-1, (CLLR>CLL0-> random_restarts_ref(N1,Nodes,CLLR,CLL,Par1,Par,LE) ; random_restarts_ref(N1,Nodes,CLL0,CLL,Par0,Par,LE) ). randomize([],[]):-!. randomize([rule(N,V,NH,HL,BL,LogF)|T],[rule(N,V,NH,HL1,BL,LogF)|T1]):- length(HL,L), Int is 1.0/L, randomize_head(Int,HL,0,HL1), randomize(T,T1). randomize_head(_Int,['':_],P,['':PNull1]):-!, PNull is 1.0-P, (PNull>=0.0-> PNull1 =PNull ; PNull1=0.0 ). randomize_head(Int,[H:_|T],P,[H:PH1|NT]):- PMax is 1.0-P, random(0,PMax,PH1), P1 is P+PH1, randomize_head(Int,T,P1,NT). update_head([],[],_N,[]):-!. update_head([H:_P|T],[PU|TP],N,[H:P|T1]):- P is PU/N, update_head(T,TP,N,T1). /* EM end */ /* utilities */ generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL):- generate_file_name(File,".kb",FileKB), generate_file_name(File,".cpl",FileIn), generate_file_name(File,".rules",FileOut), generate_file_name(File,".bg",FileBG), generate_file_name(File,".l",FileL). generate_file_name(File,Ext,FileExt):- name(File,FileString), append(FileString,Ext,FileStringExt), name(FileExt,FileStringExt). load_models(File,ModulesList):- %carica le interpretazioni, 1 alla volta open(File,read,Stream), read_models(Stream,ModulesList), close(Stream). read_models(Stream,[Name1|Names]):- read(Stream,begin(model(Name))),!, (number(Name)-> name(Name,NameStr), append("i",NameStr,Name1Str), name(Name1,Name1Str) ; Name1=Name ), read_all_atoms(Stream,Name1), read_models(Stream,Names). read_models(_S,[]). read_all_atoms(Stream,Name):- read(Stream,At), At \=end(model(_Name)),!, (At=neg(Atom)-> Atom=..[Pred|Args], Atom1=..[Pred,Name|Args], assertz(neg(Atom1)) ; (At=prob(Pr)-> assertz(prob(Name,Pr)) ; At=..[Pred|Args], Atom1=..[Pred,Name|Args], assertz(Atom1) ) ), read_all_atoms(Stream,Name). read_all_atoms(_S,_N). write_param(initial,S):-!, format("~nInitial parameters~n",[]), findall(rule(R,H,B),rule(R,H,B),LDis), findall(rule(d,[H:1.0],B),def_rule(H,B),LDef), append(LDis,LDef,L), write_model(L,S). write_param(L,S):- reverse(L,L1), write_par(L1,S). write_par([],S):- findall(rule(d,[H:1.0],B),def_rule(H,B),L), write_model(L,S). write_par([[N,P]|T],S):- rule(N,HL0,BL), reverse(P,PR), new_par(PR,HL0,HL), copy_term((HL,BL),(HL1,BL1)), numbervars((HL1,BL1),0,_M), write_disj_clause(S,(HL1:-BL1)), write_par(T,S). write_rules([],_S). write_rules([rule(_N,HL,BL)|T],S):- copy_term((HL,BL),(HL1,BL1)), numbervars((HL1,BL1),0,_M), write_disj_clause(S,(HL1:-BL1)), write_rules(T,S). new_par([],[],[]). new_par([HP|TP],[Head:_|TO],[Head:HP|TN]):- new_par(TP,TO,TN). write_model([],_Stream):-!. write_model([rule(_N,HL,BL)|Rest],Stream):- copy_term((HL,BL),(HL1,BL1)), numbervars((HL1,BL1),0,_M), write_disj_clause(Stream,(HL1:-BL1)), write_model(Rest,Stream). write_disj_clause(S,(H:-[])):-!, write_head(S,H), format(S,".~n~n",[]). write_disj_clause(S,(H:-B)):- write_head(S,H), write(S,' :-'), nl(S), write_body(S,B). write_head(S,[A:1.0|_Rest]):-!, format(S,"~p",[A]). write_head(S,[A:P,'':_P]):-!, format(S,"~p:~g",[A,P]). write_head(S,[A:P]):-!, format(S,"~p:~g",[A,P]). write_head(S,[A:P|Rest]):- format(S,"~p:~g ; ",[A,P]), write_head(S,Rest). write_body(S,[A]):-!, format(S,"\t~p.~n~n",[A]). write_body(S,[A|T]):- format(S,"\t~p,~n",[A]), write_body(S,T). list2or([],true):-!. list2or([X],X):- X\=;(_,_),!. list2or([H|T],(H ; Ta)):-!, list2or(T,Ta). list2and([],true):-!. list2and([X],X):- X\=(_,_),!. list2and([H|T],(H,Ta)):-!, list2and(T,Ta). deduct([],Th,Th). deduct([M|T],InTheory0,InTheory):- get_head_atoms(O), generate_head(O,M,[],HL), generate_body(HL,InTheory1), append(InTheory0,InTheory1,InTheory2), deduct(T,InTheory2,InTheory). get_head_atoms(O):- findall(A,modeh(_,A),O). generate_head([],_M,HL,HL):-!. generate_head([A|T],M,H0,H1):- functor(A,F,N), functor(F1,F,N), F1=..[F|Arg], Pred1=..[F,M|Arg], findall((A,Pred1),call(neg(Pred1)),L), setting(initial_clauses_modeh,IC), %IC: represents how many samples are extracted from the list L of example sample(IC,L,L1), %+IC,L, -L1 append(H0,L1,H2), generate_head(T,M,H2,H1). sample(0,_List,[]):-!. sample(N,List,List):- length(List,L), L=<N,!. sample(N,List,[El|List1]):- length(List,L), random(0,L,Pos), nth0(Pos,List,El,Rest), N1 is N-1, sample(N1,Rest,List1). generate_body([],[]):-!. generate_body([(A,H)|T],[(Head:0.5:-Body)|CL0]):- findall((R,B),modeb(R,B),BL), A=..[F|ArgsTypes], H=..[F,M|Args], setting(d,D), cycle_modeb(ArgsTypes,Args,[],[],BL,a,[],BLout0,D,M), remove_duplicates(BLout0,BLout), variabilize((H:-BLout),CLV), %+(Head):-Bodylist; -CLV:(Head):-Bodylist with variables _num in place of constants copy_term((H:-BLout),CLa), numbervars(CLa,0,_N1), copy_term(CLV,CLav), numbervars(CLav,0,_N1v), CLV=(Head1:-BodyList1), remove_int_atom(Head1,Head), remove_int_atom_list(BodyList1,BodyList), list2and(BodyList,Body), generate_body(T,CL0). variabilize((H:-B),(H1:-B1)):- variabilize_list([H|B],[H1|B1],[],_AS,_M). variabilize_list([],[],A,A,_M). variabilize_list([H|T],[H1|T1],A0,A,M):- H=..[F,_M|Args], variabilize_args(Args,Args1,A0,A1), H1=..[F,M|Args1], variabilize_list(T,T1,A1,A,M). variabilize_args([],[],A,A). variabilize_args([C|T],[V|TV],A0,A):- member(C/V,A0),!, variabilize_args(T,TV,A0,A). variabilize_args([C|T],[V|TV],A0,A):- variabilize_args(T,TV,[C/V|A0],A). cycle_modeb(ArgsTypes,Args,ArgsTypes,Args,_BL,L,L,L,_,_M):-!. cycle_modeb(_ArgsTypes,_Args,_ArgsTypes1,_Args1,_BL,_L,L,L,0,_M):-!. cycle_modeb(ArgsTypes,Args,_ArgsTypes0,_Args0,BL,_L0,L1,L,D,M):- find_atoms(BL,ArgsTypes,Args,ArgsTypes1,Args1,L1,L2,M), D1 is D-1, cycle_modeb(ArgsTypes1,Args1,ArgsTypes,Args,BL,L1,L2,L,D1,M). find_atoms([],ArgsTypes,Args,ArgsTypes,Args,L,L,_M). find_atoms([(R,H)|T],ArgsTypes0,Args0,ArgsTypes,Args,L0,L1,M):- H=..[F|ArgsT], findall(A,instantiate_query(ArgsT,ArgsTypes0,Args0,F,M,A),L), call_atoms(L,[],At), remove_duplicates(At,At1), (R = '*' -> R1= +inf ; R1=R ), sample(R1,At1,At2), extract_output_args(At2,ArgsT,ArgsTypes0,Args0,ArgsTypes1,Args1), append(L0,At2,L2), find_atoms(T,ArgsTypes1,Args1,ArgsTypes,Args,L2,L1,M). call_atoms([],A,A). call_atoms([H|T],A0,A):- findall(H,H,L), append(A0,L,A1), call_atoms(T,A1,A). extract_output_args([],_ArgsT,ArgsTypes,Args,ArgsTypes,Args). extract_output_args([H|T],ArgsT,ArgsTypes0,Args0,ArgsTypes,Args):- H=..[_F,_M|ArgsH], add_const(ArgsH,ArgsT,ArgsTypes0,Args0,ArgsTypes1,Args1), extract_output_args(T,ArgsT,ArgsTypes1,Args1,ArgsTypes,Args). add_const([],[],ArgsTypes,Args,ArgsTypes,Args). add_const([_A|T],[+_T|TT],ArgsTypes0,Args0,ArgsTypes,Args):-!, add_const(T,TT,ArgsTypes0,Args0,ArgsTypes,Args). add_const([A|T],[-Type|TT],ArgsTypes0,Args0,ArgsTypes,Args):- (already_present(ArgsTypes0,Args0,A,Type)-> ArgsTypes1=ArgsTypes0, Args1=Args0 ; ArgsTypes1=[+Type|ArgsTypes0], Args1=[A|Args0] ), add_const(T,TT,ArgsTypes1,Args1,ArgsTypes,Args). already_present([+T|_TT],[C|_TC],C,T):-!. already_present([_|TT],[_|TC],C,T):- already_present(TT,TC,C,T). instantiate_query(ArgsT,ArgsTypes,Args,F,M,A):- instantiate_input(ArgsT,ArgsTypes,Args,ArgsB), A=..[F,M|ArgsB]. instantiate_input([],_AT,_A,[]). instantiate_input([-_Type|T],AT,A,[_V|TA]):-!, instantiate_input(T,AT,A,TA). instantiate_input([+Type|T],AT,A,[H|TA]):- find_val(AT,A,+Type,H), instantiate_input(T,AT,A,TA). find_val([T|_TT],[A|_TA],T,A). find_val([_T|TT],[_A|TA],T,A):- find_val(TT,TA,T,A). get_output_atoms(O):- findall((A/Ar),output((A/Ar)),O). generate_goal([],_H,G,G):-!. generate_goal([P/A|T],H,G0,G1):- functor(Pred,P,A), Pred=..[P|Rest], Pred1=..[P,H|Rest], findall(Pred1,call(Pred1),L), findall(\+ Pred1,call(neg(Pred1)),LN), append(G0,L,G2), append(G2,LN,G3), generate_goal(T,H,G3,G1). :-[inference_sl].