/** * @file arg.yap * @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan> * @date Tue Nov 17 01:08:55 2015 * * @brief arg/3 and friends */ :- module(arg, [ genarg/3, arg0/3, genarg0/3, args/3, args0/3, % project/3 path_arg/3 ]). /** * @defgroup arg Term Argument Manipulation. @ingroup @library @{ Extends arg/3 by including backtracking through arguments and access to sub-arguments, - arg0/3 - args/3 - args0/3 - genarg/3 - genarg0/3 - path_arg/3 It is based on the Quintus Prolog arg library. Except for project, all predicates use the arg/3 argument pattern. This file has been included in the YAP library by Vitor Santos Costa, 2008. No error checking is actuallly performed within the package: this left to the C-code thaat implements arg/3 and genarg/3. */ /** * @pred arg0( +_Index_, +_Term_ , -_Arg_ ) * * Similar to arg/3, but `arg0(0,_T_,_F_)` unifies _F_ with _T_'s principal functor: ~~~~~~~~~ ?- arg0(0, f(a,b), A). A = f. ?- arg0(1, f(a,b), A). A = a. ?- arg0(2, f(a,b), A). A = b. ~~~~~~~~~ */ arg0(0,T,A) :- !, functor(T,A,_). arg0(I,T,A) :- arg(I,T,A). /** * @pred genarg0( +_Index_, +_Term_ , -_Arg_ ) * * Similar to genarg/3, but `genarg0(0,_T_,_F_)` unifies _F_ with _T_'s principal functor: ~~~~~~~~~ ?- genarg0(I,f(a,b),A). A = f, I = 0 ? ; A = a, I = 1 ? ; A = b, I = 2. ~~~~~~~~~ */ genarg0(I,T,A) :- nonvar(I), !, arg0(I,T,A). genarg0(0,T,A) :- functor(T,A,_). genarg0(I,T,A) :- genarg(I,T,A). /** * @pred args( +_Index_, +_ListOfTerms_ , -_ListOfArgs_ ) * * Succeeds if _ListOfArgs_ unifies with the application of genarg/3 to every element of _ListOfTerms_. It corresponds to calling maplist/3 on genarg/3: ~~~~~~~~~ args( I, Ts, As) :- maplist( genarg(I), Ts, As). ~~~~~~~~~ Notice that unification allows _ListOfArgs_ to be bound, eg: ~~~~~~~~~ ?- args(1, [X1+Y1,X2-Y2,X3*Y3,X4/Y4], [1,1,1,1]). X1 = X2 = X3 = X4 = 1. ~~~~~~~~~ */ args(_,[],[]). args(I,[T|List],[A|ArgList]) :- genarg(I, T, A), args(I, List, ArgList). /** * @pred args0( +_Index_, +_ListOfTerms_ , -_ListOfArgs_ ) * * Succeeds if _ListOfArgs_ unifies with the application of genarg0/3 to every element of _ListOfTerms_. It corresponds to calling maplist/3 on genarg0/3: ~~~~~~~~~ args( I, Ts, As) :- maplist( genarg0(I), Ts, As). ~~~~~~~~~ Notice that unification allows _ListOfArgs_ to be bound, eg: ~~~~~~~~~ ?- args(1, [X1+Y1,X2-Y2,X3*Y3,X4/Y4], [1,1,1,1]). X1 = X2 = X3 = X4 = 1. ~~~~~~~~~ */ args0(_,[],[]). args0(I,[T|List],[A|ArgList]) :- genarg(I, T, A), args0(I, List, ArgList). /** * @pred args0( +_ListOfTerms_ , +_Index_, -_ListOfArgs_ ) * * Succeeds if _ListOfArgs_ unifies with the application of genarg0/3 to every element of _ListOfTerms_. It corresponds to calling args0/3 but with a different order. */ project(Terms, Index, Args) :- args0(Index, Terms, Args). % no error checking here! /** * @pred path_arg( +_Path_ , +_Term_, -_Arg_ ) * * Succeeds if _Path_ is empty and _Arg unifies with _Term_, or if _Path_ is a list with _Head_ and _Tail_, genarg/3 succeeds on the current term, and path_arg/3 succeeds on its argument. * * Notice that it can be used to enumerate all possible paths in a term. */ path_arg([], Term, Term). path_arg([Index|Indices], Term, SubTerm) :- genarg(Index, Term, Arg), path_arg(Indices, Arg, SubTerm). %%@}