/* Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@vu.nl WWW: http://www.swi-prolog.org Copyright (C): 2002-2013, University of Amsterdam VU University Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(dcg_basics, [ white//0, % <white inside line> whites//0, % <white inside line>* blank//0, % <blank> blanks//0, % <blank>* nonblank//1, % <nonblank> nonblanks//1, % <nonblank>* --> chars (long) blanks_to_nl//0, % [space,tab,ret]*nl string//1, % <any>* -->chars (short) string_without//2, % Exclude, -->chars (long) % Characters alpha_to_lower//1, % Get lower|upper, return lower % Decimal numbers digits//1, % [0-9]* -->chars digit//1, % [0-9] --> char integer//1, % [+-][0-9]+ --> integer float//1, % [+-]?[0-9]+(.[0-9]*)?(e[+-]?[0-9]+)? --> float number//1, % integer | float % Hexadecimal numbers xdigits//1, % [0-9a-f]* --> 0-15* xdigit//1, % [0-9a-f] --> 0-15 xinteger//1, % [0-9a-f]+ --> integer prolog_var_name//1, % Read a Prolog variable name eos//0, % Test end of input. % generation (TBD) atom//1 % generate atom ]). :- use_module(library(lists)). /** <module> Various general DCG utilities This library provides various commonly used DCG primitives acting on list of character *codes*. Character classification is based on code_type/2. This module started its life as library(http/dcg_basics) to support the HTTP protocol. Since then, it was increasingly used in code that has no relation to HTTP and therefore this library was moved to the core library. @tbd This is just a starting point. We need a comprehensive set of generally useful DCG primitives. */ %% string_without(+End, -Codes)// is det. % % Take as many tokens from the input until the next character code % appears in the list End. The terminating code itself is left on % the input. Typical use is to read upto a defined delimiter such % as a newline or other reserved character. For example: % % == % ..., % string_without("\n", RestOfLine) % == % % @arg End is a list of character codes. % @see string//1. string_without(End, Codes) --> { string(End), !, string_codes(End, EndCodes) }, list_string_without(EndCodes, Codes). string_without(End, Codes) --> list_string_without(End, Codes). list_string_without(Not, [C|T]) --> [C], { \+ memberchk(C, Not) }, !, list_string_without(Not, T). list_string_without(_, []) --> []. %% string(-Codes)// is nondet. % % Take as few as possible tokens from the input, taking one more % each time on backtracking. This code is normally followed by a % test for a delimiter. For example: % % == % upto_colon(Atom) --> % string(Codes), ":", !, % { atom_codes(Atom, Codes) }. % == % % @see string_without//2. string([]) --> []. string([H|T]) --> [H], string(T). %% blanks// is det. % % Skip zero or more white-space characters. blanks --> blank, !, blanks. blanks --> []. %% blank// is semidet. % % Take next =space= character from input. Space characters include % newline. % % @see white//0 blank --> [C], { nonvar(C), code_type(C, space) }. %% nonblanks(-Codes)// is det. % % Take all =graph= characters nonblanks([H|T]) --> [H], { code_type(H, graph) }, !, nonblanks(T). nonblanks([]) --> []. %% nonblank(-Code)// is semidet. % % Code is the next non-blank (=graph=) character. nonblank(H) --> [H], { code_type(H, graph) }. %% blanks_to_nl// is semidet. % % Take a sequence of blank//0 codes if banks are followed by a % newline or end of the input. blanks_to_nl --> "\n", !. blanks_to_nl --> blank, !, blanks_to_nl. blanks_to_nl --> eos. %% whites// is det. % % Skip white space _inside_ a line. % % @see blanks//0 also skips newlines. whites --> white, !, whites. whites --> []. %% white// is semidet. % % Take next =white= character from input. White characters do % _not_ include newline. white --> [C], { nonvar(C), code_type(C, white) }. /******************************* * CHARACTER STUFF * *******************************/ %% alpha_to_lower(+C)// is det. %% alpha_to_lower(-C)// is semidet. % % Read a letter (class =alpha=) and return it as a lowercase % letter. In output mode this simply emits the character. alpha_to_lower(L) --> { integer(L) }, !, [L]. alpha_to_lower(L) --> [C], { code_type(C, alpha), code_type(C, to_upper(L)) }. /******************************* * NUMBERS * *******************************/ %% digits(?Chars)// is det. %% digit(?Char)// is det. %% integer(?Integer)// is det. % % Number processing. The predicate digits//1 matches a posibly % empty set of digits, digit//1 processes a single digit and % integer processes an optional sign followed by a non-empty % sequence of digits into an integer. digits([H|T]) --> digit(H), !, digits(T). digits([]) --> []. digit(C) --> [C], { code_type(C, digit) }. integer(I, Head, Tail) :- integer(I), !, format(codes(Head, Tail), '~w', [I]). integer(I) --> int_codes(Codes), { number_codes(I, Codes) }. int_codes([C,D0|D]) --> sign(C), !, digit(D0), digits(D). int_codes([D0|D]) --> digit(D0), digits(D). %% float(?Float)// is det. % % Process a floating point number. The actual conversion is % controlled by number_codes/2. float(F, Head, Tail) :- float(F), !, with_output_to(codes(Head, Tail), write(F)). float(F) --> number(F), { float(F) }. %% number(+Number)// is det. %% number(-Number)// is semidet. % % Generate extract a number. Handles both integers and floating % point numbers. number(N, Head, Tail) :- number(N), !, format(codes(Head, Tail), '~w', N). number(N) --> int_codes(I), ( dot, digit(DF0), digits(DF) -> {F = [0'., DF0|DF]} ; {F = ""} ), ( exp -> int_codes(DI), {E=[0'e|DI]} ; {E = ""} ), { append([I, F, E], Codes), number_codes(N, Codes) }. sign(0'-) --> "-". sign(0'+) --> "+". dot --> ".". exp --> "e". exp --> "E". /******************************* * HEX NUMBERS * *******************************/ %% xinteger(+Integer)// is det. %% xinteger(-Integer)// is semidet. % % Generate or extract an integer from a sequence of hexadecimal % digits. xinteger(Val, Head, Tail) :- integer(Val), format(codes(Head, Tail), '~16r', [Val]). xinteger(Val) --> xdigit(D0), xdigits(D), { mkval([D0|D], 16, Val) }. %% xdigit(-Weight)// is semidet. % % True if the next code is a hexdecimal digit with Weight. Weight % is between 0 and 15. xdigit(D) --> [C], { code_type(C, xdigit(D)) }. %% xdigits(-WeightList)// is det. % % List of weights of a sequence of hexadecimal codes. WeightList % may be empty. xdigits([D0|D]) --> xdigit(D0), !, xdigits(D). xdigits([]) --> []. mkval([W0|Weights], Base, Val) :- mkval(Weights, Base, W0, Val). mkval([], _, W, W). mkval([H|T], Base, W0, W) :- W1 is W0*Base+H, mkval(T, Base, W1, W). /******************************* * END-OF-STRING * *******************************/ %% eos// % % Matches end-of-input. The implementation behaves as the % following portable implementation: % % == % eos --> call(eos_). % eos_([], []). % == % % @tbd This is a difficult concept and violates the _context free_ % property of DCGs. Explain the exact problems. eos([], []). /******************************* * PROLOG SYNTAX * *******************************/ %% prolog_var_name(-Name:atom)// is semidet. % % Matches a Prolog variable name. Primarily intended to deal with % quasi quotations that embed Prolog variables. prolog_var_name(Name) --> [C0], { code_type(C0, prolog_var_start) }, !, prolog_id_cont(CL), { atom_codes(Name, [C0|CL]) }. prolog_id_cont([H|T]) --> [H], { code_type(H, prolog_identifier_continue) }, !, prolog_id_cont(T). prolog_id_cont([]) --> "". /******************************* * GENERATION * *******************************/ %% atom(+Atom)// is det. % % Generate codes of Atom. Current implementation uses write/1, % dealing with any Prolog term. atom(Atom, Head, Tail) :- format(codes(Head, Tail), '~w', [Atom]).