%%% -*- Mode: Prolog; -*- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ProbLog program describing a viral marketing problem % example for using tabled decision theory ProbLog % $Id: viralmarketing_tabled.pl 4875 2010-10-05 15:28:35Z theo $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The viral marketing example consists of a social network of friend relations. You have to decido which persons to market. Sending marketing has a cost of 2, but might cause people to buy your product, giving you a profit of 5. When someone buys the product, it becomes more likely that his friends also buy the product. :- use_module('../dtproblog'). % Decisions ? :: marketed(P) :- person(P). % Utility attributes buys(P) => 5 :- person(P). marketed(P) => -2 :- person(P). % Probabilistic facts 0.2 :: buy_from_marketing(_). 0.3 :: buy_from_trust(_,_). % Background knowledge person(bernd). person(ingo). person(theo). person(angelika). person(guy). person(martijn). person(laura). person(kurt). trusts(X,Y) :- trusts_directed(X,Y). trusts(X,Y) :- trusts_directed(Y,X). trusts_directed(bernd,ingo). trusts_directed(ingo,theo). trusts_directed(theo,angelika). trusts_directed(bernd,martijn). trusts_directed(ingo,martijn). trusts_directed(martijn,guy). trusts_directed(guy,theo). trusts_directed(guy,angelika). trusts_directed(laura,ingo). trusts_directed(laura,theo). trusts_directed(laura,guy). trusts_directed(laura,martijn). trusts_directed(kurt,bernd). % The buys predicate is tabled to speed up exact inference. K-best inference does not support tabled predicates. % Add this before a tabled predicate. :- dynamic buys/1. buys(X) :- marketed(X), buy_from_marketing(X). buys(X) :- trusts(X,Y), buy_from_trust(X,Y), buys(Y). % Add this after a tabled predicate. :- problog_table buys/1. :- set_problog_flag(use_db_trie, true). :- set_problog_flag(use_old_trie, false). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % EXAMPLE USE:: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Find the globally optimal strategy. % % ?- dtproblog_solve(Strategy,ExpectedValue). % ExpectedValue = 3.21097, % Strategy = [marketed(martijn),marketed(guy),marketed(theo),marketed(ingo)] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Compute the expected value for a given strategy. % % ?- dtproblog_ev([marketed(martijn),marketed(laura)],ExpectedValue). % ExpectedValue = 2.35771065 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Find a locally optimal strategy. % % ?- set_problog_flag(optimization, local), dtproblog_solve(Strategy,ExpectedValue). % ExpectedValue = 3.19528, % Strategy = [marketed(martijn),marketed(laura),marketed(guy),marketed(ingo)] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Find all ground utility facts in the theory. % % ?- dtproblog_utility_facts(Facts). % Facts = [buys(bernd)=>5, buys(ingo)=>5, buys(theo)=>5, buys(angelika)=>5, buys(guy)=>5, buys(martijn)=>5, buys(laura)=>5, buys(kurt)=>5, marketed(bernd)=> -2, marketed(ingo)=> -2, marketed(theo)=> -2, marketed(angelika)=> -2, marketed(guy)=> -2, marketed(martijn)=> -2, marketed(laura)=> -2, marketed(kurt)=> -2] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Find all ground decisions relevant to the utility attributes. % % ?- dtproblog_decisions(Decisions). % Decisions = [marketed(angelika), marketed(theo), marketed(kurt), marketed(ingo), marketed(laura), marketed(martijn), marketed(guy), marketed(bernd)] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % (K-best inference and optimization does not support tabled predicates. Please use the non-tabled viral marketing example.) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%