/* xsswi.c */ /* * Project: jpl for Yap Prolog * Author: Steve Moyle and Vitor Santos Costa * Email: steve.moyle@comlab.ox.ac.uk * Date: 21 January 2002 * Copyright (c) 2002-2014 Vitor Santos Costa from an original version by Steve Moyle. All rights reserved. */ /** * * @file swi.c * * @addtogroup swi-c-interface * * @{ */ #define PL_KERNEL 1 //=== includes =============================================================== #include #include #include #include #include #include #include #include #include #include #include #include "swi.h" #if HAVE_MATH_H #include #endif #if HAVE_ERRNO_H #include #endif #if HAVE_SIGNAL_H #include #endif #if !HAVE_SNPRINTF #define snprintf(X, Y, Z, A) sprintf(X, Z, A) #endif #define PL_KERNEL 1 #ifdef USE_GMP #include #endif #ifdef __WIN32__ /* Windows */ #include #endif //#include "pl-error.h" static atom_t ATOM_nil; extern int PL_unify_termv(term_t l, va_list args); extern X_API Atom YAP_AtomFromSWIAtom(atom_t at); extern X_API atom_t YAP_SWIAtomFromAtom(Atom at); static int do_gc(UInt sz) { /* always called from user_call_cpred */ CACHE_REGS UInt arity; yamop *nextpc; if (P && PREVOP(P, Osbpp)->opc == Yap_opcode(_call_usercpred)) { arity = PREVOP(P, Osbpp)->y_u.Osbpp.p->ArityOfPE; nextpc = P; } else { arity = 0; nextpc = CP; } return Yap_gcl(sz, arity, ENV, nextpc); } X_API extern Atom YAP_AtomFromSWIAtom(atom_t at) { return SWIAtomToAtom(at); } X_API extern atom_t YAP_SWIAtomFromAtom(Atom at) { return AtomToSWIAtom(at); } extern X_API Int YAP_PLArityOfSWIFunctor(functor_t at); /* This is silly, but let's keep it like that for now */ X_API Int YAP_PLArityOfSWIFunctor(functor_t f) { if (IsAtomTerm(f)) return 0; return ArityOfFunctor((Functor)f); } static void UserCPredicate(char *a, CPredicate def, unsigned long int arity, Term mod, int flags) { CACHE_REGS Term cm = CurrentModule; /* fprintf(stderr,"doing %s:%s/%d\n", RepAtom(AtomOfTerm(mod))->StrOfAE, * a,arity); */ CurrentModule = mod; Yap_InitCPred(a, arity, def, (UserCPredFlag | CArgsPredFlag | flags)); CurrentModule = cm; } //! @{ /** @defgroup swi-ATOMS Atom Construction * @ingroup swi-c-interface * */ static UInt cvtFlags(unsigned flags) { UInt inptype = 0; if (flags & CVT_ATOM) { inptype |= YAP_STRING_ATOM; } if (flags & CVT_STRING) { inptype |= YAP_STRING_STRING; } if (flags & CVT_LIST) { inptype |= (YAP_STRING_CODES | YAP_STRING_ATOMS); } if (flags & CVT_INTEGER) { inptype |= YAP_STRING_INT | YAP_STRING_BIG; } if (flags & CVT_FLOAT) { inptype |= YAP_STRING_FLOAT; } if (flags & CVT_VARIABLE) { inptype |= YAP_STRING_TERM; } if (flags & CVT_WRITE) { inptype |= YAP_STRING_TERM; } if (flags & CVT_WRITEQ) { inptype |= YAP_STRING_TERM | YAP_STRING_WQ; } if (flags & CVT_WRITE_CANONICAL) { inptype |= YAP_STRING_TERM | YAP_STRING_WC; } return inptype; } /* void PL_agc_hook(void) */ /** @brief Atom garbage collection hook * */ X_API PL_agc_hook_t PL_agc_hook(PL_agc_hook_t entry) { return (PL_agc_hook_t)YAP_AGCRegisterHook((YAP_agc_hook)entry); } /* void PL_get_nchars(term_t ref, size_t *length, char **output, unsigned * flags) */ /** @brief extract a text representing the term _ref_. A pointer to a string with the text will * be output to *_s_, and the size of the string will be written to *_length_, * if _length_ is not null. * * The following flags are recognised (as in the SWI manual ) * *CVT_ATOM* Convert if term is an atom. * *CVT_STRING* Convert if term is a string. * *CVT_LIST* Convert if term is a list of of character codes. * *CVT_INTEGER* Convert if term is an integer. * *CVT_FLOAT* Convert if term is a float. The characters returned are the same as write/1 would write for the floating point number. * *CVT_NUMBER* Convert if term is an integer or float. * *CVT_ATOMIC* Convert if term is atomic. * *CVT_VARIABLE* Convert variable to print-name * *CVT_WRITE* Convert any term that is not converted by any of the other flags using write/1. * If no BUF_* is provided, BUF_RING is implied. * *CVT_WRITE_CANONICAL* As CVT_WRITE, but using write_canonical/2. * *CVT_WRITEQ* As CVT_WRITE, but using writeq/2. * *CVT_ALL* Convert if term is any of the above, except for CVT_VARIABLE and CVT_WRITE*. * * *CVT_EXCEPTION* If conversion fails due to a type error, raise a Prolog type error exception in addition to failure * *BUF_DISCARDABLE* Data must copied immediately * *BUF_RING* Data is stored in a ring of buffers, currenty implemented as BUF_DISCARDABLE * *BUF_MALLOC* Data is copied to a new buffer returned by PL_malloc(3). When no longer needed the user must call PL_free() on the data. * * *REP_ISO_LATIN_1 Text is in ISO Latin-1 encoding and the call fails if text cannot be represented. This flag has the value 0 and is thus the default. * *REP_UTF8* Convert the text to a UTF-8 string. This works for all text. * *REP_MB* Convert the text using the current locale */ X_API int PL_get_nchars(term_t l, size_t *lengthp, char **s, unsigned flags) { CACHE_REGS seq_tv_t inp, out; inp.val.t = Yap_GetFromSlot(l); inp.type = cvtFlags(flags); out.type = YAP_STRING_CHARS; out.val.c = *s; if (flags & (REP_UTF8 | REP_MB)) { out.enc = ENC_ISO_UTF8; } else { out.enc = ENC_ISO_LATIN1; } if (flags & BUF_MALLOC) out.type |= YAP_STRING_MALLOC; if (lengthp) { out.type |= YAP_STRING_NCHARS; out.max = *lengthp; } if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return false; *s = out.val.c; return true; } int PL_get_chars(term_t t, char **s, unsigned flags) { return PL_get_nchars(t, NULL, s, flags); } int PL_get_wchars(term_t l, size_t *lengthp, wchar_t **s, unsigned flags) { CACHE_REGS seq_tv_t inp, out; inp.val.t = Yap_GetFromSlot(l); inp.type = cvtFlags(flags); out.type = YAP_STRING_WCHARS; if (flags & BUF_MALLOC) out.type |= YAP_STRING_MALLOC; if (lengthp) { out.type |= YAP_STRING_NCHARS; out.max = *lengthp; } if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return false; *s = out.val.w; if (lengthp && (out.type & YAP_STRING_NCHARS)) *lengthp = out.max; return true; } X_API int PL_unify_chars(term_t l, int flags, size_t length, const char *s) { CACHE_REGS seq_tv_t inp, out; if (flags & REP_UTF8) { inp.val.c0 = s; inp.type = YAP_STRING_CHARS|ENC_ISO_LATIN1; if (length != (size_t)-1) { inp.type |= YAP_STRING_NCHARS; } } if (flags & PL_ATOM) { out.type = YAP_STRING_ATOM; } else if (flags & PL_STRING) { out.type = YAP_STRING_STRING; } else if (flags & PL_CODE_LIST) { out.type = YAP_STRING_CODES; } else if (flags & PL_CHAR_LIST) { out.type = YAP_STRING_ATOMS; } if (length != (size_t)-1) { out.max = length; } if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; return Yap_unify(Yap_GetFromSlot(l), out.val.t); } /** @brief extract the text representation from atom * */ X_API char *PL_atom_chars(atom_t a) /* SAM check type */ { Atom at = SWIAtomToAtom(a); if (IsWideAtom(at)) return NULL; return RepAtom(at)->StrOfAE; } /** @brief extract the text representation from atom, including its length * */ X_API char *PL_atom_nchars(atom_t a, size_t *len) /* SAM check type */ { char *s = RepAtom(SWIAtomToAtom(a))->StrOfAE; *len = strlen(s); return s; } //! @} /** @{ * * @defgroup swi-term_references Term References * @ingroup swi-c-interface * */ /** @brief create a clean term reference * */ X_API term_t PL_new_term_ref(void) { CACHE_REGS term_t to = Yap_NewSlots(1); return to; } /** @brief duplicate a term reference * */ X_API term_t PL_copy_term_ref(term_t from) { CACHE_REGS return Yap_InitSlot(Yap_GetFromSlot(from)); } /** @brief create several new term references * * @par n is the number of references */ X_API term_t PL_new_term_refs(int n) { CACHE_REGS term_t to = Yap_NewSlots(n); return to; } /** @brief dispose of all term references created since after * */ X_API void PL_reset_term_refs(term_t after) { CACHE_REGS term_t new = Yap_NewSlots(1); Yap_RecoverSlots(after - new, new); } /** @} */ //! @{ /** @defgroup swi-term_manipulation Term Manipulation * @ingroup swi-c-interface * */ /** * @defgroup swi-get-operations Reading Terms * @ingroup swi-term_manipulation * */ /** @brief *name is assigned the name and *arity the arity if term ts, or the * operaton fails. * */ X_API int PL_get_name_arity(term_t ts, atom_t *name, int *arity) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (IsAtomTerm(t)) { if (name) *name = AtomToSWIAtom(AtomOfTerm(t)); if (arity) *arity = 0; return 1; } if (YAP_IsApplTerm(t)) { Functor f = FunctorOfTerm(t); if (IsExtensionFunctor(f)) { return 0; } if (name) *name = AtomToSWIAtom(NameOfFunctor(f)); if (arity) *arity = ArityOfFunctor(f); return 1; } if (YAP_IsPairTerm(t)) { if (name) *name = AtomToSWIAtom(AtomDot); if (arity) *arity = 2; return 1; } return 0; } /** @brief a is assigned the argument index from term ts * */ X_API int PL_get_arg(int index, term_t ts, term_t a) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (IsVarTerm(t)) return 0; if (!IsApplTerm(t)) { if (IsPairTerm(t)) { if (index == 1) { Yap_PutInSlot(a, HeadOfTerm(t)); return 1; } else if (index == 2) { Yap_PutInSlot(a, TailOfTerm(t)); return 1; } } return 0; } else { Functor f = FunctorOfTerm(t); if (IsExtensionFunctor(f)) return 0; if (index < 1 || index > ArityOfFunctor(f)) return 0; Yap_PutInSlot(a, ArgOfTerm(index, t)); return 1; } } /** @brief *ap is assigned the name and *ip the arity from term ts * */ X_API int PL_get_compound_name_arity(term_t ts, atom_t *ap, int *ip) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsApplTerm(t)) { if (YAP_IsPairTerm(t)) { if (ip) *ip = 2; if (ap) *ap = ATOM_nil; return 1; } return 0; } else { Functor f = FunctorOfTerm(t); if (IsExtensionFunctor(f)) return FALSE; if (ip) *ip = ArityOfFunctor(f); if (ap) *ap = AtomToSWIAtom(NameOfFunctor(f)); return 1; } } /** @brief *a is assigned the atom in term ts, or the operation fails * */ X_API int PL_get_atom(term_t ts, atom_t *a) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!IsAtomTerm(t)) return 0; *a = AtomToSWIAtom(AtomOfTerm(t)); return 1; } /** @brief *i is assigned the int in term ts, or the operation fails * */ /* int PL_get_integer(term_t t, int *i) YAP: long int YAP_IntOfTerm(Term) */ X_API int PL_get_integer(term_t ts, int *i) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (IsVarTerm(t) || !IsIntegerTerm(t)) return 0; *i = (int)IntegerOfTerm(t); return 1; } /** @brief *i is assigned the boolean atom `true` or `false` in term ts, or the * operation fails * */ X_API int PL_get_long(term_t ts, long *i) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsIntTerm(t)) { if (YAP_IsFloatTerm(t)) { double dbl = YAP_FloatOfTerm(t); if (dbl - (long)dbl == 0.0) { *i = (long)dbl; return 1; } } return 0; } *i = YAP_IntOfTerm(t); return 1; } /* int PL_get_bool(term_t t, int *i) YAP: long int YAP_AtomOfTerm(Term) */ X_API int PL_get_bool(term_t ts, int *i) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); Atom at; if (!IsAtomTerm(t)) return 0; at = AtomOfTerm(t); if (at == AtomTrue) { *i = true; return 1; } if (at == AtomFalse) { *i = false; return 1; } return 0; } /** @brief *a is assigned the int64 in term ts, or the operation fails * */ X_API int PL_get_int64(term_t ts, int64_t *i) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsIntTerm(t)) { if (YAP_IsFloatTerm(t)) { double dbl = YAP_FloatOfTerm(t); if (dbl - (int64_t)dbl == 0.0) { *i = (int64_t)dbl; return 1; } #if SIZEOF_INT_P == 4 && !USE_GMP { union { double d; int64_t i; } udbi_; udbi_.d = YAP_FloatOfTerm(t); *i = udbi_.i; return 1; } #endif return 0; } #if USE_GMP else if (YAP_IsBigNumTerm(t)) { MP_INT g; char s[64]; YAP_BigNumOfTerm(t, (void *)&g); if (mpz_sizeinbase(&g, 2) > 64) { return 0; } mpz_get_str(s, 10, &g); #ifdef _WIN32 sscanf(s, "%I64d", (long long int *)i); #else sscanf(s, "%lld", (long long int *)i); #endif return 1; } #endif return 0; } *i = YAP_IntOfTerm(t); return 1; } X_API int PL_get_int64_ex(term_t ts, int64_t *i) { return PL_get_int64(ts, i); } /** @brief *a is assigned the intptr_t in term ts, or the operation fails * */ X_API int PL_get_intptr(term_t ts, intptr_t *a) { CACHE_REGS Term t = Yap_GetFromSlot(ts); if (!IsIntegerTerm(t)) return 0; *a = (intptr_t)(IntegerOfTerm(t)); return 1; } /** @brief *a is assigned the uintptr_t in term ts, or the operation fails * */ X_API int PL_get_uintptr(term_t ts, uintptr_t *a) { CACHE_REGS Term t = Yap_GetFromSlot(ts); if (!IsIntegerTerm(t)) return 0; *a = (uintptr_t)(IntegerOfTerm(t)); return 1; } #ifdef do_not_ld /** @brief a is assigned the argument index from term ts * */ X_API int _PL_get_arg(int index, term_t ts, term_t a) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsApplTerm(t)) { if (YAP_IsPairTerm(t)) { if (index == 1) { Yap_PutInSlot(a, HeadOfTerm(t) PASS_REGS); return 1; } else if (index == 2) { Yap_PutInSlot(a, TailOfTerm(t) PASS_REGS); return 1; } } return 0; } Yap_PutInSlot(a, ArgOfTerm(index, t) PASS_REGS); return 1; } #endif /** @brief *a is assigned the string representation of the atom in term ts, or * the operation fails * */ X_API int PL_get_atom_chars(term_t ts, char **a) /* SAM check type */ { CACHE_REGS Term t = Yap_GetFromSlot(ts); if (!IsAtomTerm(t) || IsWideAtom(AtomOfTerm(t))) return 0; *a = RepAtom(AtomOfTerm(t))->StrOfAE; return 1; } /** @brief *a is assigned the string representation of the atom in term ts, and * *len its size, or the operation fails * */ X_API int PL_get_atom_nchars(term_t ts, size_t *len, char **s) /* SAM check type */ { CACHE_REGS Term t = Yap_GetFromSlot(ts); if (!IsAtomTerm(t)) return 0; *s = RepAtom(AtomOfTerm(t))->StrOfAE; *len = strlen(*s); return 1; } /** PL_get_chars converts a term t to a string. * * From the SWI manual: * * int PL_get_chars(term_t +t, char **s, unsigned flags) Convert the * argument term t to a 0-terminated C-string. flags is a bitwise * disjunction from two groups of constants. The first specifies which * term-types should converted and the second how the argument is * stored. Below is a specification of these constants. BUF_RING * implies, if the data is not static (as from an atom), the data is * copied to the next buffer from a ring of sixteen (16) buffers. This is a * convenient way of converting multiple arguments passed to a foreign * predicate to C-strings. If BUF_MALLOC is used, the data must be * freed using free() when not needed any longer. - CVT_ATOM Convert if term is an atom - CVT_STRING Convert if term is a string - CVT_LIST Convert if term is a list of integers between 1 and 255 - CVT_INTEGER Convert if term is an integer (using %d) - CVT_FLOAT Convert if term is a float (using %f) - CVT_NUMBER Convert if term is a integer or float - CVT_ATOMIC Convert if term is atomic - CVT_VARIABLE Convert variable to print-name - CVT_ALL Convert if term is any of the above, except for variables - BUF_DISCARDABLE Data must copied immediately - BUF_RING Data is stored in a ring of buffers - BUF_MALLOC Data is copied to a new buffer returned by malloc(3) */ /** @brief *f is assigned the functor of term ts, or the operation fails * */ X_API int PL_get_functor(term_t ts, functor_t *f) { CACHE_REGS Term t = Yap_GetFromSlot(ts); if (IsAtomTerm(t)) { *f = t; } else if (IsPairTerm(t)) { *f = FunctorToSWIFunctor(FunctorDot); } else { *f = FunctorToSWIFunctor(FunctorOfTerm(t)); } return 1; } /** @brief *f is assigned the floating point number of term ts, or the * operation fails * */ X_API int PL_get_float(term_t ts, double *f) /* SAM type check*/ { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (IsFloatTerm(t)) { *f = FloatOfTerm(t); } else if (IsIntegerTerm(t)) { *f = IntegerOfTerm(t); #if USE_GMP } else if (IsBigIntTerm(t)) { *f = Yap_gmp_to_float(t); #endif } else { return 0; } return 1; } /** @brief *s is assigned the string representation of the term ts, and *len * its size, or the operation fails * */ X_API int PL_get_string_chars(term_t t, char **s, size_t *len) { return PL_get_string(t, s, len); } /** @brief *s is assigned the string representation of the string in term ts, * and *len its size, or the operation fails * */ X_API int PL_get_string(term_t t, char **s, size_t *len) { CACHE_REGS Term tt = Yap_GetFromSlot(t); if (!IsStringTerm(tt)) { return false; } else { const unsigned char *s0; s0 = UStringOfTerm(tt); if (s) *s = (char *)s0; if (len) { *len = strlen_utf8(s0); } } return TRUE; } /** @brief h is assigned the head of the pair term ts, and tl its tail, or the * operation fails * */ X_API int PL_get_list(term_t ts, term_t h, term_t tl) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (IsVarTerm(t) || !IsPairTerm(t)) { return 0; } Yap_PutInSlot(h, HeadOfTerm(t)); Yap_PutInSlot(tl, TailOfTerm(t)); return 1; } /** @brief h is assigned the head of the pair term ts, or the operation fails * */ X_API int PL_get_head(term_t ts, term_t h) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsPairTerm(t)) { return 0; } Yap_PutInSlot(h, YAP_HeadOfTerm(t)); return 1; } /** * @} * */ //! @{ /** * @defgroup swi-unify-operations Unifying Terms * @ingroup swi-term_manipulation * */ /** @brief t unifies with the true/false value in a. * */ X_API int PL_unify_bool(term_t t, int a) { CACHE_REGS Term iterm = (a ? MkAtomTerm(AtomTrue) : MkAtomTerm(AtomFalse)); return Yap_unify(Yap_GetFromSlot(t), iterm); } #if USE_GMP /******************************* * GMP * *******************************/ X_API int PL_get_mpz(term_t t, mpz_t mpz) { CACHE_REGS Term t0 = Yap_GetFromSlot(t); return Yap_term_to_existing_big(t0, mpz); } X_API int PL_unify_mpz(term_t t, mpz_t mpz) { CACHE_REGS Term iterm = Yap_MkBigIntTerm(mpz); return Yap_unify(Yap_GetFromSlot(t), iterm); } X_API int PL_get_mpq(term_t t, mpq_t mpz) { CACHE_REGS Term t0 = Yap_GetFromSlot(t); return Yap_term_to_existing_rat(t0, mpz); } X_API int PL_unify_mpq(term_t t, mpq_t mpq) { CACHE_REGS Term iterm = Yap_MkBigRatTerm(mpq); return Yap_unify(Yap_GetFromSlot(t), iterm); } #endif /* int PL_get_module(term_t t, module_t *m) */ X_API int PL_get_module(term_t ts, module_t *m) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!IsAtomTerm(t)) return FALSE; *m = Yap_GetModuleEntry(t); return TRUE; } /* int PL_new_module(term_t t, module_t *m) */ X_API module_t PL_new_module(atom_t swiat) { Atom at = SWIAtomToAtom(swiat); Term t; WRITE_LOCK(RepAtom(at)->ARWLock); t = Yap_Module(MkAtomTerm(at)); WRITE_UNLOCK(RepAtom(at)->ARWLock); return Yap_GetModuleEntry(t); } /* int PL_get_atom(term_t t, YAP_Atom *a) YAP: YAP_Atom YAP_AtomOfTerm(Term) */ X_API int PL_get_nil(term_t ts) { CACHE_REGS Term t = Yap_GetFromSlot(ts); return (t == TermNil); } /* int PL_get_pointer(term_t t, int *i) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_get_pointer(term_t ts, void **i) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (IsVarTerm(t) || !IsIntegerTerm(t)) return 0; *i = (void *)IntegerOfTerm(t); return 1; } X_API int PL_get_tail(term_t ts, term_t tl) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsPairTerm(t)) { return 0; } Yap_PutInSlot(tl, YAP_TailOfTerm(t)); return 1; } /* end PL_get_* functions =============================*/ /* begin PL_new_* functions =============================*/ /* atom_t PL_new_atom(const char *) YAP: YAP_Atom LookupAtom(char *) */ /* SAM should the following be used instead? YAP_Atom FullLookupAtom(char *) */ X_API atom_t PL_new_atom(const char *c) { CACHE_REGS Atom at; atom_t sat; while ((at = Yap_CharsToAtom(c, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_new_atom")) return FALSE; } Yap_AtomIncreaseHold(at); sat = AtomToSWIAtom(at); return sat; } X_API atom_t PL_new_atom_nchars(size_t len, const char *c) { CACHE_REGS Atom at; atom_t sat; while ((at = Yap_NCharsToAtom(c, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_new_atom_nchars")) return FALSE; } Yap_AtomIncreaseHold(at); sat = AtomToSWIAtom(at); return sat; } X_API atom_t PL_new_atom_wchars(size_t len, const wchar_t *c) { CACHE_REGS Atom at; atom_t sat; while ((at = Yap_NWCharsToAtom(c, len PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_new_atom_wchars")) return FALSE; } Yap_AtomIncreaseHold(at); sat = AtomToSWIAtom(at); return sat; } X_API wchar_t *PL_atom_wchars(atom_t name, size_t *sp) { Atom at = SWIAtomToAtom(name); if (!IsWideAtom(at)) return NULL; *sp = wcslen(RepAtom(at)->WStrOfAE); return RepAtom(at)->WStrOfAE; } X_API functor_t PL_new_functor(atom_t name, int arity) { functor_t f; Atom at = SWIAtomToAtom(name); if (arity == 0) { f = FunctorToSWIFunctor((Functor)MkAtomTerm(at)); } else { f = FunctorToSWIFunctor(Yap_MkFunctor(at, arity)); } return f; } X_API atom_t PL_functor_name(functor_t f) { if (IsAtomTerm(f)) { return AtomToSWIAtom(AtomOfTerm((Term)SWIFunctorToFunctor(f))); } else { return AtomToSWIAtom(NameOfFunctor(SWIFunctorToFunctor(f))); } } X_API int PL_functor_arity(functor_t f) { if (IsAtomTerm(f)) { return 0; } else { return ArityOfFunctor(SWIFunctorToFunctor(f)); } } /* end PL_new_* functions =============================*/ /* begin PL_put_* functions =============================*/ X_API int PL_cons_functor(term_t d, functor_t f, ...) { CACHE_REGS va_list ap; int arity, i; Term *tmp, t; Functor ff = SWIFunctorToFunctor(f); if (IsAtomTerm((Term)ff)) { Yap_PutInSlot(d, (YAP_Term)f); return TRUE; } arity = ArityOfFunctor(ff); if (Unsigned(HR) + arity > Unsigned(ASP) - CreepFlag) { if (!do_gc(arity * sizeof(CELL))) { return FALSE; } } if (arity == 2 && ff == FunctorDot) { t = Yap_MkNewPairTerm(); tmp = RepPair(t); } else { t = Yap_MkNewApplTerm(ff, arity); tmp = RepAppl(t) + 1; } va_start(ap, f); for (i = 0; i < arity; i++) { Yap_unify(tmp[i], Yap_GetFromSlot(va_arg(ap, term_t))); } va_end(ap); Yap_PutInSlot(d, t); return TRUE; } X_API int PL_cons_functor_v(term_t d, functor_t f, term_t a0) { CACHE_REGS int arity, i; Term *tmp, t; Functor ff = SWIFunctorToFunctor(f); if (IsAtomTerm((Term)ff)) { Yap_PutInSlot(d, (YAP_Term)f); return TRUE; } arity = ArityOfFunctor(ff); if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) { if (!do_gc(0)) { return FALSE; } } if (arity == 2 && ff == FunctorDot) { t = Yap_MkNewPairTerm(); tmp = RepPair(t); } else { t = Yap_MkNewApplTerm(ff, arity); tmp = RepAppl(t) + 1; } for (i = 0; i < arity; i++) { Yap_unify(tmp[i], Yap_GetFromSlot(a0)); a0++; } Yap_PutInSlot(d, t); return TRUE; } X_API int PL_cons_list(term_t d, term_t h, term_t t) { CACHE_REGS if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) { if (!do_gc(0)) { return FALSE; } } Yap_PutInSlot(d, MkPairTerm(Yap_GetFromSlot(h), Yap_GetFromSlot(t))); return true; } X_API int PL_put_atom(term_t t, atom_t a) { CACHE_REGS Yap_PutInSlot(t, MkAtomTerm(SWIAtomToAtom(a))); return TRUE; } X_API int PL_put_atom_chars(term_t t, const char *s) { CACHE_REGS Atom at; while ((at = Yap_CharsToAtom(s, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars")) return FALSE; } Yap_AtomIncreaseHold(at); Yap_PutInSlot(t, MkAtomTerm(at)); return TRUE; } X_API int PL_put_atom_nchars(term_t t, size_t len, const char *s) { CACHE_REGS Atom at; while ((at = Yap_NCharsToAtom(s, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars")) return FALSE; } Yap_AtomIncreaseHold(at); Yap_PutInSlot(t, MkAtomTerm(at)); return TRUE; } X_API int PL_put_float(term_t t, double fl) { CACHE_REGS Yap_PutInSlot(t, YAP_MkFloatTerm(fl)); return TRUE; } X_API int PL_put_functor(term_t t, functor_t f) { long int arity; Functor ff = SWIFunctorToFunctor(f); CACHE_REGS if (IsAtomTerm((Term)ff)) { Yap_PutInSlot(t, (Term)ff); } else { arity = ArityOfFunctor(ff); if (Unsigned(HR) + arity > Unsigned(ASP) - CreepFlag) { if (!do_gc(arity * sizeof(CELL))) { return FALSE; } } if (arity == 2 && ff == FunctorDot) { } else Yap_PutInSlot(t, YAP_MkNewApplTerm((YAP_Functor)ff, arity)); } return TRUE; } X_API int PL_put_integer(term_t t, long n) { CACHE_REGS Yap_PutInSlot(t, YAP_MkIntTerm(n)); return TRUE; } X_API int PL_put_boolean(term_t t, uintptr_t n) { CACHE_REGS Yap_PutInSlot(t, (n == 0 ? TermFalse : TermTrue)); return TRUE; } X_API int PL_put_int64(term_t t, int64_t n) { CACHE_REGS #if SIZEOF_INT_P == 8 Yap_PutInSlot(t, MkIntegerTerm(n)); return TRUE; #elif USE_GMP char s[64]; MP_INT rop; #ifdef _WIN32 snprintf(s, 64, "%I64d", (long long int)n); #elif HAVE_SNPRINTF snprintf(s, 64, "%lld", (long long int)n); #else sprintf(s, "%lld", (long long int)n); #endif mpz_init_set_str(&rop, s, 10); Yap_PutInSlot(t, YAP_MkBigNumTerm((void *)&rop) PASS_REGS); return TRUE; #else // use a double, but will mess up writing. Int x = n; if (x == n) return PL_put_integer(t, x); else { union { int64_t i; double d; } udi_; udi_.i = n; return PL_put_float(t, udi_.d); } #endif } X_API int PL_put_intptr(term_t t, intptr_t n) { CACHE_REGS Yap_PutInSlot(t, YAP_MkIntTerm(n)); return TRUE; } X_API int PL_put_uintptr(term_t t, uintptr_t n) { CACHE_REGS Yap_PutInSlot(t, YAP_MkIntTerm(n)); return TRUE; } X_API int PL_put_list(term_t t) { CACHE_REGS Yap_PutInSlot(t, YAP_MkNewPairTerm()); if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) { if (!do_gc(0)) { return FALSE; } } return TRUE; } X_API int PL_put_list_chars(term_t t, const char *s) { CACHE_REGS Term nt; while ((nt = Yap_CharsToListOfAtoms(s, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_put_string_nchars")) return FALSE; } Yap_PutInSlot(t, nt); return TRUE; } X_API void PL_put_nil(term_t t) { CACHE_REGS Yap_PutInSlot(t, TermNil); } /* void PL_put_pointer(term_t -t, void *ptr) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_put_pointer(term_t t, void *ptr) { CACHE_REGS YAP_Term tptr = YAP_MkIntTerm((YAP_Int)ptr); Yap_PutInSlot(t, tptr); return TRUE; } X_API int PL_put_string_chars(term_t t, const char *chars) { CACHE_REGS Term nt; while ((nt = Yap_CharsToString(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_putPL_put_string_chars")) return FALSE; } Yap_PutInSlot(t, nt); return TRUE; } X_API int PL_put_string_nchars(term_t t, size_t len, const char *chars) { CACHE_REGS Term nt; while ((nt = Yap_NCharsToString(chars, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_putPL_put_string_chars")) return FALSE; } Yap_PutInSlot(t, nt); return TRUE; } X_API int PL_put_term(term_t d, term_t s) { CACHE_REGS Yap_PutInSlot(d, Yap_GetFromSlot(s)); return TRUE; } X_API int PL_put_variable(term_t t) { CACHE_REGS Yap_PutInSlot(t, MkVarTerm()); return TRUE; } /* end PL_put_* functions =============================*/ /* int PL_raise_exception(term_t exception) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_raise_exception(term_t exception) { CACHE_REGS LOCAL_Error_TYPE = YAP_NO_ERROR; Yap_PutException(Yap_GetFromSlot(exception)); Yap_RaiseException(); return 0; } X_API int PL_throw(term_t exception) { CACHE_REGS YAP_Throw(Yap_GetFromSlot(exception)); if (LOCAL_execution) longjmp(LOCAL_execution->q_env, 0); return 0; } X_API void PL_fatal_error(const char *msg) { fprintf(stderr, "[ FATAL ERROR: %s ]\n", msg); Yap_exit(1); } X_API int PL_warning(const char *msg, ...) { va_list args; va_start(args, msg); // just print the warning message and return? fprintf(stderr, "[Warning:"); fprintf(stderr, msg, args); fprintf(stderr, "]\n"); va_end(args); PL_fail; } /* begin PL_unify_* functions =============================*/ X_API int PL_unify(term_t t1, term_t t2) { CACHE_REGS return Yap_unify(Yap_GetFromSlot(t1), Yap_GetFromSlot(t2)); } /* int PL_unify_atom(term_t ?t, atom *at) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_atom(term_t t, atom_t at) { CACHE_REGS YAP_Term cterm = MkAtomTerm(SWIAtomToAtom(at)); return YAP_Unify(Yap_GetFromSlot(t), cterm); } /* int PL_unify_atom_chars(term_t ?t, const char *chars) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_atom_chars(term_t t, const char *s) { CACHE_REGS Atom at; while ((at = Yap_CharsToAtom(s, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars")) return FALSE; } Yap_AtomIncreaseHold(at); return Yap_unify(Yap_GetFromSlot(t), MkAtomTerm(at)); } /* int PL_unify_atom_chars(term_t ?t, const char *chars) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_atom_nchars(term_t t, size_t len, const char *s) { CACHE_REGS Atom at; while ((at = Yap_NCharsToAtom(s, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars")) return FALSE; } Yap_AtomIncreaseHold(at); return Yap_unify(Yap_GetFromSlot(t), MkAtomTerm(at)); } /* int PL_unify_float(term_t ?t, double f) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_float(term_t t, double f) { CACHE_REGS Term fterm = MkFloatTerm(f); return Yap_unify(Yap_GetFromSlot(t), fterm); } /* int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_integer(term_t t, long n) { CACHE_REGS Term iterm = MkIntegerTerm(n); return Yap_unify(Yap_GetFromSlot(t), iterm); } X_API int PL_unify_intptr(term_t t, intptr_t n) { CACHE_REGS Term iterm = MkIntegerTerm(n); return Yap_unify(Yap_GetFromSlot(t), iterm); } X_API int PL_unify_uintptr(term_t t, uintptr_t n) { CACHE_REGS Term iterm = MkIntegerTerm(n); return Yap_unify(Yap_GetFromSlot(t), iterm); } X_API int PL_unify_boolean(term_t t, int n) { CACHE_REGS Term iterm = (n == 0 ? TermFalse : TermTrue); return Yap_unify(Yap_GetFromSlot(t), iterm); } /* int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_functor(term_t t, functor_t f) { CACHE_REGS Term tt = Yap_GetFromSlot(t); Functor ff = SWIFunctorToFunctor(f); if (IsVarTerm(tt)) { if (Unsigned(HR) + ArityOfFunctor(ff) > Unsigned(ASP) - CreepFlag) { if (!do_gc(0)) { return FALSE; } } return Yap_unify(tt, Yap_MkNewApplTerm(ff, ArityOfFunctor(ff))); } if (IsPairTerm(tt)) return ff == FunctorDot; if (!IsApplTerm(tt)) return FALSE; return ff == FunctorOfTerm(tt); } /* int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_int64(term_t t, int64_t n) { CACHE_REGS #if SIZEOF_INT_P == 8 Term iterm = MkIntegerTerm(n); return Yap_unify(Yap_GetFromSlot(t), iterm); #elif USE_GMP YAP_Term iterm; char s[64]; MP_INT rop; #ifdef _WIN32 snprintf(s, 64, "%I64d", (long long int)n); #elif HAVE_SNPRINTF snprintf(s, 64, "%lld", (long long int)n); #else sprintf(s, "%lld", (long long int)n); #endif mpz_init_set_str(&rop, s, 10); iterm = YAP_MkBigNumTerm((void *)&rop); return YAP_Unify(Yap_GetFromSlot(t), iterm); #else if ((long)n == n) return PL_unify_integer(t, n); // use a double, but will mess up writing. else { union { int64_t i; double d; } udi_; udi_.i = n; return PL_unify_float(t, udi_.d); } #endif } /* int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_list(term_t tt, term_t h, term_t tail) { CACHE_REGS Term t; if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) { if (!do_gc(0)) { return FALSE; } } t = Deref(Yap_GetFromSlot(tt)); if (IsVarTerm(t)) { Term pairterm = Yap_MkNewPairTerm(); Yap_unify(t, pairterm); /* avoid calling deref */ t = pairterm; } else if (!IsPairTerm(t)) { return FALSE; } Yap_PutInSlot(h, HeadOfTerm(t)); Yap_PutInSlot(tail, TailOfTerm(t)); return TRUE; } /* int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_arg(int index, term_t tt, term_t arg) { CACHE_REGS Term t = Deref(Yap_GetFromSlot(tt)), to; if (index < 0) return FALSE; if (IsVarTerm(t) || IsAtomOrIntTerm(t)) { return FALSE; } else if (IsPairTerm(t)) { if (index == 1) to = HeadOfTerm(t); else if (index == 2) to = TailOfTerm(t); else return FALSE; } else { Functor f = FunctorOfTerm(t); if (IsExtensionFunctor(f)) return FALSE; if (index > ArityOfFunctor(f)) return FALSE; to = ArgOfTerm(index, t); } return Yap_unify(Yap_GetFromSlot(arg), to); } /* int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_list_chars(term_t t, const char *chars) { CACHE_REGS Term chterm; while ((chterm = Yap_CharsToListOfAtoms(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_chars")) return FALSE; } return Yap_unify(Yap_GetFromSlot(t), chterm); } /* int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_list_ncodes(term_t t, size_t len, const char *chars) { CACHE_REGS Term chterm; while ((chterm = Yap_NCharsToListOfCodes(chars, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_ncodes")) return FALSE; } return Yap_unify(Yap_GetFromSlot(t), chterm); } X_API int PL_unify_list_codes(term_t t, const char *chars) { CACHE_REGS Term chterm; while ((chterm = Yap_CharsToListOfCodes(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_codes")) return FALSE; } return Yap_unify(Yap_GetFromSlot(t), chterm); } /* int PL_unify_nil(term_t ?l) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_nil(term_t t) { CACHE_REGS return Yap_unify(Yap_GetFromSlot(t), TermNil); } /* int PL_unify_pointer(term_t ?t, void *ptr) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_unify_pointer(term_t t, void *ptr) { CACHE_REGS YAP_Term ptrterm = YAP_MkIntTerm((YAP_Int)ptr); return YAP_Unify(Yap_GetFromSlot(t), ptrterm); } /* int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_string_chars(term_t t, const char *chars) { CACHE_REGS Term chterm; while ((chterm = Yap_CharsToString(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_ncodes")) return FALSE; } return Yap_unify(Yap_GetFromSlot(t), chterm); } X_API int PL_unify_string_nchars(term_t t, size_t len, const char *chars) { CACHE_REGS Term chterm; while ((chterm = Yap_NCharsToString(chars, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_ncodes")) return FALSE; } return Yap_unify(Yap_GetFromSlot(t), chterm); } /* int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s) */ X_API int PL_unify_wchars(term_t t, int type, size_t len, const pl_wchar_t *chars) { CACHE_REGS YAP_Term chterm; while (TRUE) { switch (type) { case PL_ATOM: { Atom at; at = Yap_NWCharsToAtom(chars, len PASS_REGS); if (at) { Yap_AtomIncreaseHold(at); chterm = MkAtomTerm(at); return Yap_unify(Yap_GetFromSlot(t), chterm); } } break; case PL_UTF8_STRING: case PL_STRING: if ((chterm = Yap_NWCharsToString(chars, len PASS_REGS)) != 0) { return YAP_Unify(Yap_GetFromSlot(t), chterm); } break; case PL_CODE_LIST: if ((chterm = Yap_NWCharsToListOfCodes(chars, len PASS_REGS)) != 0) { return YAP_Unify(Yap_GetFromSlot(t), chterm); } break; case PL_CHAR_LIST: if ((chterm = Yap_NWCharsToListOfAtoms(chars, len PASS_REGS)) != 0) { return YAP_Unify(Yap_GetFromSlot(t), chterm); } break; default: /* should give error?? */ return FALSE; } if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_wchars")) return FALSE; } return FALSE; } typedef struct { int type; union { functor_t f; term_t t; atom_t a; long l; int i; double dbl; char *s; struct { size_t n; char *s; } ns; struct { size_t n; wchar_t *w; } nw; void *p; wchar_t *w; } arg; } arg_types; static YAP_Term MkBoolTerm(int b) { if (b) return MkAtomTerm(AtomTrue); else return MkAtomTerm(AtomFalse); } #define MAX_DEPTH 64 typedef struct { int nels; CELL *ptr; } stack_el; /* int PL_unify_term(term_t ?t1, term_t ?t2) YAP long int YAP_Unify(YAP_Term* a, Term* b) */ int PL_unify_termv(term_t l, va_list ap) { CACHE_REGS int type, res; int nels = 1; int depth = 1; Term a[1], *pt; stack_el stack[MAX_DEPTH]; BACKUP_MACHINE_REGS(); if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) { if (!do_gc(0)) { RECOVER_MACHINE_REGS(); return FALSE; } } pt = a; while (depth > 0) { while (nels > 0) { type = va_arg(ap, int); nels--; switch (type) { case PL_VARIABLE: *pt++ = MkVarTerm(); break; case PL_BOOL: *pt++ = MkBoolTerm(va_arg(ap, int)); break; case PL_ATOM: *pt++ = MkAtomTerm(SWIAtomToAtom(va_arg(ap, atom_t))); break; case PL_INTEGER: *pt++ = MkIntegerTerm(va_arg(ap, long)); break; case PL_SHORT: *pt++ = MkIntegerTerm(va_arg(ap, int)); break; case PL_LONG: *pt++ = MkIntegerTerm(va_arg(ap, long)); break; case PL_INT: *pt++ = MkIntegerTerm(va_arg(ap, int)); break; case PL_FLOAT: *pt++ = MkFloatTerm(va_arg(ap, double)); break; case PL_STRING: { Term chterm; const char *chars = va_arg(ap, char *); while ((chterm = Yap_CharsToString(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term")) return FALSE; } *pt++ = chterm; } break; case PL_CHARS: { Atom at; const char *chars = va_arg(ap, char *); while ((at = Yap_CharsToAtom(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term")) return FALSE; } *pt++ = MkAtomTerm(at); Yap_AtomIncreaseHold(at); } break; case PL_NCHARS: { Atom at; size_t sz = va_arg(ap, size_t); const char *chars = va_arg(ap, char *); while ((at = Yap_NCharsToAtom(chars, sz, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term")) return FALSE; } *pt++ = MkAtomTerm(at); Yap_AtomIncreaseHold(at); } break; case PL_NWCHARS: { Atom at; size_t sz = va_arg(ap, size_t); const wchar_t *chars = va_arg(ap, wchar_t *); while ((at = Yap_NWCharsToAtom(chars, sz PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term")) return FALSE; } *pt++ = MkAtomTerm(at); Yap_AtomIncreaseHold(at); } break; case PL_TERM: { Term t = Yap_GetFromSlot(va_arg(ap, size_t)); if (IsVarTerm(t) && VarOfTerm(t) >= ASP && VarOfTerm(t) < LCL0) { Yap_unify(*pt++, t); } else { *pt++ = t; } } break; case PL_POINTER: *pt++ = MkIntegerTerm((Int)va_arg(ap, void *)); break; case PL_INTPTR: *pt++ = MkIntegerTerm((UInt)va_arg(ap, intptr_t)); break; case PL_INT64: #if SIZEOF_INT_P == 8 *pt++ = MkIntegerTerm((Int)va_arg(ap, long int)); #elif USE_GMP { char s[64]; MP_INT rop; #ifdef _WIN32 snprintf(s, 64, "%I64d", va_arg(ap, long long int)); #elif HAVE_SNPRINTF snprintf(s, 64, "%lld", va_arg(ap, long long int)); #else sprintf(s, "%lld", va_arg(ap, long long int)); #endif mpz_init_set_str(&rop, s, 10); *pt++ = YAP_MkBigNumTerm((void *)&rop); } #else { int64_t i = (Int)va_arg(ap, int64_t); intptr_t x = i; if (x == i) *pt++ = MkIntegerTerm(x); else { // use a double, but will mess up writing. union { int64_t i; double d; } udi_; udi_.i = i; *pt++ = MkFloatTerm(udi_.d); } } #endif break; case PL_FUNCTOR: { functor_t f = va_arg(ap, functor_t); Functor ff = SWIFunctorToFunctor(f); UInt arity = ArityOfFunctor(ff); if (!arity) { *pt++ = MkAtomTerm((Atom)f); } else { Term t = Yap_MkNewApplTerm(ff, arity); if (nels) { if (depth == MAX_DEPTH) { fprintf(stderr, "ERROR: very deep term in PL_unify_term, change " "MAX_DEPTH from %d\n", MAX_DEPTH); return FALSE; } stack[depth - 1].nels = nels; stack[depth - 1].ptr = pt + 1; depth++; } *pt = t; if (ff == FunctorDot) pt = RepPair(t); else pt = RepAppl(t) + 1; nels = arity; } } break; case PL_FUNCTOR_CHARS: { char *fname = va_arg(ap, char *); size_t arity = va_arg(ap, size_t); Atom at; while ((at = Yap_CharsToAtom(fname, ENC_ISO_LATIN1 PASS_REGS)) == 0L) { if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term")) return FALSE; } Yap_AtomIncreaseHold(at); if (!arity) { *pt++ = MkAtomTerm(at); } else { Functor ff; Term t; ff = Yap_MkFunctor(at, arity); t = Yap_MkNewApplTerm(ff, arity); if (nels) { if (depth == MAX_DEPTH) { fprintf(stderr, "very deep term in PL_unify_term\n"); return FALSE; } stack[depth - 1].nels = nels; stack[depth - 1].ptr = pt + 1; depth++; } *pt = t; if (ff == FunctorDot) pt = RepPair(t); else pt = RepAppl(t) + 1; nels = arity; } } break; case PL_LIST: { Term t = Yap_MkNewPairTerm(); if (nels) { if (depth == MAX_DEPTH) { fprintf(stderr, "very deep term in PL_unify_term\n"); return FALSE; } stack[depth - 1].nels = nels; stack[depth].ptr = pt + 1; depth++; } *pt = t; pt = RepPair(t); nels = 2; } break; default: fprintf(stderr, "PL_unify_term: %d not supported\n", type); exit(1); } } depth--; if (depth) { pt = stack[depth - 1].ptr; nels = stack[depth - 1].nels; } } res = Yap_unify(Yap_GetFromSlot(l), a[0]); RECOVER_MACHINE_REGS(); return res; } int PL_unify_term(term_t t, ...) { va_list args; int rval; va_start(args, t); rval = PL_unify_termv(t, args); va_end(args); return rval; } /* end PL_unify_* functions =============================*/ /* void PL_register_atom(atom_t atom) */ X_API void PL_register_atom(atom_t atom) { Yap_AtomIncreaseHold(SWIAtomToAtom(atom)); } /* void PL_unregister_atom(atom_t atom) */ X_API void PL_unregister_atom(atom_t atom) { Yap_AtomDecreaseHold(SWIAtomToAtom(atom)); } X_API int PL_term_type(term_t t) { CACHE_REGS /* YAP_ does not support strings as different objects */ YAP_Term v = Yap_GetFromSlot(t); if (IsVarTerm(v)) { return PL_VARIABLE; } else if (IsAtomTerm(v)) { return PL_ATOM; } else if (IsIntegerTerm(v)) { return PL_INTEGER; } else if (IsStringTerm(v)) { return PL_STRING; } else if (IsFloatTerm(v)) { return PL_FLOAT; } else { return PL_TERM; } } X_API int PL_is_atom(term_t t) { CACHE_REGS return IsAtomTerm(Yap_GetFromSlot(t)); } X_API int PL_is_ground(term_t t) { CACHE_REGS return Yap_IsGroundTerm(Yap_GetFromSlot(t)); } X_API int PL_is_acyclic(term_t t) { CACHE_REGS return Yap_IsAcyclicTerm(Yap_GetFromSlot(t)); } X_API int PL_is_callable(term_t t) { CACHE_REGS YAP_Term t1 = Yap_GetFromSlot(t); if (IsVarTerm(t1)) return FALSE; if (IsAtomTerm(t1) || IsPairTerm(t1)) return TRUE; if (IsApplTerm(t1) && !IsExtensionFunctor(FunctorOfTerm(t1))) return TRUE; return FALSE; } X_API int PL_is_atomic(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); return !IsVarTerm(t) || !IsApplTerm(t) || !IsPairTerm(t); } X_API int PL_is_compound(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); return (IsApplTerm(t) || IsPairTerm(t)); } X_API int PL_is_functor(term_t ts, functor_t f) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); Functor ff = SWIFunctorToFunctor(f); if (YAP_IsApplTerm(t)) { return FunctorOfTerm(t) == (Functor)ff; } else if (YAP_IsPairTerm(t)) { return ff == FunctorDot; } else return 0; } X_API int PL_is_float(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); return !IsVarTerm(t) && IsFloatTerm(t); } X_API int PL_is_integer(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); if (IsVarTerm(t)) return FALSE; if (IsIntTerm(t)) return TRUE; if (IsApplTerm(t)) { Functor f = FunctorOfTerm(t); if (f == FunctorLongInt) return TRUE; if (f == FunctorBigInt) { CELL mask = RepAppl(t)[1]; return (mask == BIG_INT); } } return FALSE; } X_API int PL_is_list(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); return !IsVarTerm(t) && (t == TermNil || IsPairTerm(t)); } X_API int PL_is_pair(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); return !IsVarTerm(t) && IsPairTerm(t); } X_API int PL_skip_list(term_t list, term_t tail, size_t *len) { CACHE_REGS Term *l = Yap_AddressFromSlot(list); Term *t; intptr_t length; length = Yap_SkipList(l, &t); if (len) *len = length; if (tail) { Term t2 = Yap_GetFromSlot(tail); Yap_unify(t2, *t); } if (*t == TermNil) return PL_LIST; else if (IsVarTerm(*t)) return PL_PARTIAL_LIST; else if (IsPairTerm(*t)) return PL_CYCLIC_TERM; else return PL_NOT_A_LIST; } X_API int PL_is_number(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); return IsIntegerTerm(t) || IsBigIntTerm(t) || IsFloatTerm(t); } X_API int PL_is_string(term_t ts) { CACHE_REGS Term t = Yap_GetFromSlot(ts); return IsStringTerm(t); } X_API int PL_is_variable(term_t ts) { CACHE_REGS YAP_Term t = Yap_GetFromSlot(ts); return YAP_IsVarTerm(t); } X_API int PL_compare(term_t ts1, term_t ts2) { CACHE_REGS YAP_Term t1 = Yap_GetFromSlot(ts1); YAP_Term t2 = Yap_GetFromSlot(ts2); return YAP_CompareTerms(t1, t2); } X_API char *PL_record_external(term_t ts, size_t *sz) { CACHE_REGS Term t = Yap_GetFromSlot(ts); size_t len = 512, nsz; char *s; while (TRUE) { if (!(s = Yap_AllocCodeSpace(len))) return NULL; if ((nsz = Yap_ExportTerm(t, s, len, 0))) { *sz = nsz; return (char *)s; } else { if (len < 16 * 1024) len = len * 2; else len += 16 * 1024; } } return NULL; } /* partial implementation of recorded_external, does not guarantee endianness nor portability, and does not support constraints. */ X_API int PL_recorded_external(const char *tp, term_t ts) { CACHE_REGS Term t = Yap_ImportTerm((void *)tp); if (t == 0) return FALSE; Yap_PutInSlot(ts, t); return TRUE; } X_API int PL_erase_external(char *tp) { Yap_FreeCodeSpace(tp); return TRUE; } X_API record_t PL_record(term_t ts) { CACHE_REGS Term t = Yap_GetFromSlot(ts); return (record_t)YAP_Record(t); } X_API int PL_recorded(record_t db, term_t ts) { CACHE_REGS Term t = YAP_Recorded((void *)db); if (t == ((CELL)0)) return FALSE; Yap_PutInSlot(ts, t); return TRUE; } X_API record_t PL_duplicate_record(record_t db) { Term t = YAP_Recorded((void *)db); if (t == ((CELL)0)) return FALSE; return (record_t)YAP_Record(t); } X_API void PL_erase(record_t db) { YAP_Erase((void *)db); } X_API void PL_halt(int e) { YAP_Halt(e); } X_API int PL_action(int action, ...) { va_list ap; va_start(ap, action); switch (action) { case PL_ACTION_TRACE: fprintf(stderr, "PL_ACTION_TRACE not supported\n"); break; case PL_ACTION_DEBUG: fprintf(stderr, "PL_ACTION_DEBUG not supported\n"); break; case PL_ACTION_BACKTRACE: fprintf(stderr, "PL_ACTION_BACKTRACE not supported\n"); break; case PL_ACTION_HALT: { int halt_arg = va_arg(ap, int); YAP_Halt(halt_arg); } break; case PL_ACTION_ABORT: { YAP_Throw(MkAtomTerm(Yap_LookupAtom("abort"))); } break; case PL_ACTION_BREAK: fprintf(stderr, "PL_ACTION_BREAK not supported\n"); break; case PL_ACTION_GUIAPP: fprintf(stderr, "PL_ACTION_GUIAPP not supported\n"); break; case PL_ACTION_WRITE: fprintf(stderr, "PL_ACTION_WRITE not supported\n"); break; case PL_ACTION_FLUSH: fprintf(stderr, "PL_ACTION_WRITE not supported\n"); break; case PL_ACTION_ATTACH_CONSOLE: fprintf(stderr, "PL_ACTION_WRITE not supported\n"); break; } va_end(ap); return 0; } X_API term_t PL_exception(qid_t q) { YAP_Term t; if (YAP_GoalHasException(&t)) { CACHE_REGS term_t to = Yap_NewSlots(1); Yap_PutInSlot(to, t); return to; } else { return 0L; } } X_API void PL_clear_exception(void) { CACHE_REGS Yap_ResetException(worker_id); } X_API int PL_initialise(int myargc, char **myargv) { YAP_init_args init_args; memset((void *)&init_args, 0, sizeof(init_args)); init_args.Argv = myargv; init_args.Argc = myargc; #if BOOT_FROM_SAVED_STATE init_args.SavedState = "startup.yss"; #else init_args.SavedState = NULL; #endif init_args.YapLibDir = NULL; init_args.YapPrologBootFile = NULL; init_args.HaltAfterConsult = FALSE; init_args.FastBoot = FALSE; init_args.MaxTableSpaceSize = 0; init_args.NumberWorkers = 1; init_args.SchedulerLoop = 10; init_args.DelayedReleaseLoad = 3; YAP_parse_yap_arguments(myargc, myargv, &init_args); GLOBAL_PL_Argc = myargc; GLOBAL_PL_Argv = myargv; GLOBAL_InitialisedFromPL = true; YAP_file_type_t rc = YAP_Init(&init_args) != YAP_FOUND_BOOT_ERROR; ATOM_nil = YAP_SWIAtomFromAtom(AtomNil); return rc; } X_API int PL_is_initialised(int *argcp, char ***argvp) { if (GLOBAL_InitialisedFromPL) { if (argcp) *argcp = GLOBAL_PL_Argc; if (argvp) *argvp = GLOBAL_PL_Argv; } return GLOBAL_InitialisedFromPL; } X_API module_t PL_context(void) { CACHE_REGS return Yap_GetModuleEntry(LOCAL_SourceModule); } X_API int PL_strip_module(term_t raw, module_t *m, term_t plain) { CACHE_REGS Term m0, t; if (m) { if (*m) m0 = MkAtomTerm((*m)->AtomOfME); else m0 = MkAtomTerm(AtomProlog); } else m0 = USER_MODULE; t = Yap_StripModule(Yap_GetFromSlot(raw), &m0); if (!t) return FALSE; *m = Yap_GetModuleEntry(m0); Yap_PutInSlot(plain, t); return TRUE; } X_API atom_t PL_module_name(module_t m) { Atom at = m->AtomOfME; return AtomToSWIAtom(at); } X_API predicate_t PL_pred(functor_t f, module_t m) { Functor ff = SWIFunctorToFunctor(f); Term mod = SWIModuleToModule(m); if (IsAtomTerm((Term)f)) { return YAP_Predicate(YAP_AtomOfTerm((Term)f), 0, mod); } else { return YAP_Predicate((YAP_Atom)NameOfFunctor(ff), ArityOfFunctor(ff), mod); } } X_API predicate_t PL_predicate(const char *name, int arity, const char *m) { CACHE_REGS Term mod; Atom at; if (m == NULL) { mod = CurrentModule; if (!mod) mod = USER_MODULE; } else { Atom at; while (!(at = Yap_LookupAtom((char *)m))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, LOCAL_ErrorMessage); return NULL; } } mod = MkAtomTerm(at); } while (!(at = Yap_LookupAtom((char *)name))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, LOCAL_ErrorMessage); return NULL; } } return YAP_Predicate((YAP_Atom)at, arity, mod); } X_API int PL_unify_predicate(term_t head, predicate_t pred, int how) { CACHE_REGS PredEntry *pe = (PredEntry *)pred; Term ts[2], nt; if (!pe->ModuleOfPred) { ts[0] = pe->ModuleOfPred; } else { ts[0] = TermProlog; } if (how == GP_NAMEARITY) { Term nts[2]; nts[1] = MkIntegerTerm(pe->ArityOfPE); if (pe->ArityOfPE) { nts[0] = MkAtomTerm(NameOfFunctor(pe->FunctorOfPred)); } else { nts[0] = MkAtomTerm((Atom)pe->FunctorOfPred); } ts[1] = Yap_MkApplTerm(FunctorSlash, 2, nts); } else { if (pe->ArityOfPE) { ts[1] = Yap_MkNewApplTerm(pe->FunctorOfPred, pe->ArityOfPE); } else { ts[1] = MkAtomTerm((Atom)pe->FunctorOfPred); } } nt = Yap_MkApplTerm(FunctorModule, 2, ts); return Yap_unify(Yap_GetFromSlot(head), nt); } X_API void PL_predicate_info(predicate_t p, atom_t *name, int *arity, module_t *m) { PredEntry *pd = (PredEntry *)p; Atom aname; if (pd->ArityOfPE) { if (arity) *arity = pd->ArityOfPE; aname = NameOfFunctor(pd->FunctorOfPred); } else { if (arity) *arity = 0; aname = (Atom)(pd->FunctorOfPred); } if (pd->ModuleOfPred && m) *m = Yap_GetModuleEntry(pd->ModuleOfPred); else if (m) *m = Yap_GetModuleEntry(TermProlog); if (name) *name = AtomToSWIAtom(aname); } #undef S_YREG X_API fid_t PL_open_foreign_frame(void) { CACHE_REGS /* initialise a new marker choicepoint */ choiceptr cp_b = ((choiceptr)(ASP - 1)) - 1; cp_b->cp_tr = TR; cp_b->cp_h = HR; cp_b->cp_b = B; cp_b->cp_cp = CP; cp_b->cp_env = ENV; cp_b->cp_ap = NOCODE; #ifdef DEPTH_LIMIT cp_b->cp_depth = DEPTH; #endif /* DEPTH_LIMIT */ cp_b->cp_a1 = MkIntTerm(Yap_StartSlots()); HB = HR; B = cp_b; ASP = (CELL *)B; return (fid_t)(LCL0 - (CELL *)cp_b); } X_API void PL_close_foreign_frame(fid_t f) { CACHE_REGS choiceptr cp_b = (choiceptr)(LCL0 - (UInt)f); Yap_CloseSlots(IntOfTerm(cp_b->cp_a1)); B = cp_b; HB = B->cp_h; Yap_TrimTrail(); B = cp_b->cp_b; CP = cp_b->cp_cp; ENV = cp_b->cp_env; #ifdef DEPTH_LIMIT DEPTH = cp_b->cp_depth; #endif /* DEPTH_LIMIT */ HB = B->cp_h; ASP = ((CELL *)(cp_b + 1)) + 1; } static void backtrack(void) { CACHE_REGS P = FAILCODE; Yap_absmi(0); TR = B->cp_tr; } X_API void PL_rewind_foreign_frame(fid_t f) { CACHE_REGS choiceptr cp_b = (choiceptr)(LCL0 - (UInt)f); if (B != cp_b) { while (B->cp_b != cp_b) B = B->cp_b; } backtrack(); // restore to original location ASP = (CELL *)B; Yap_CloseSlots(IntOfTerm(cp_b->cp_a1)); } X_API void PL_discard_foreign_frame(fid_t f) { CACHE_REGS choiceptr cp_b = (choiceptr)(LCL0 - (UInt)f); if (B != cp_b) { while (B->cp_b != cp_b) B = B->cp_b; backtrack(); } Yap_CloseSlots(IntOfTerm(cp_b->cp_a1)); B = cp_b->cp_b; CP = cp_b->cp_cp; ENV = cp_b->cp_env; HB = B->cp_h; #ifdef DEPTH_LIMIT DEPTH = cp_b->cp_depth; #endif /* DEPTH_LIMIT */ /* we can assume there was a slot before */ ASP = ((CELL *)(cp_b + 1)) + 1; } X_API qid_t PL_open_query(module_t ctx, int flags, predicate_t p, term_t t0) { CACHE_REGS /* ignore flags and module for now */ qid_t new = (qid_t)Yap_AllocCodeSpace(sizeof(struct open_query_struct)); new->oq = LOCAL_execution; LOCAL_execution = new; new->q_open = 1; new->q_state = 0; new->q_flags = flags; new->q_pe = (PredEntry *)p; new->q_g = t0; return new; } X_API int PL_next_solution(qid_t qi) { CACHE_REGS int result; if (qi->q_open != 1) return 0; if (setjmp(LOCAL_execution->q_env)) return 0; // don't forget, on success these guys must create slots if (qi->q_state == 0) { result = YAP_EnterGoal((YAP_PredEntryPtr)qi->q_pe, qi->q_g, &qi->q_h); } else { LOCAL_AllowRestart = qi->q_open; result = YAP_RetryGoal(&qi->q_h); } qi->q_state = 1; if (result == 0) { YAP_LeaveGoal(FALSE, &qi->q_h); qi->q_open = 0; } return result; } X_API void PL_cut_query(qid_t qi) { CACHE_REGS if (qi->q_open != 1 || qi->q_state == 0) return; YAP_LeaveGoal(FALSE, &qi->q_h); qi->q_open = 0; LOCAL_execution = qi->oq; Yap_FreeCodeSpace((char *)qi); } X_API void PL_close_query(qid_t qi) { CACHE_REGS if (Yap_HasException() && !(qi->q_flags & (PL_Q_CATCH_EXCEPTION))) { Yap_ResetException(worker_id); } /* need to implement backtracking here */ if (qi->q_open != 1 || qi->q_state == 0) { return; } YAP_LeaveGoal(FALSE, &qi->q_h); qi->q_open = 0; LOCAL_execution = qi->oq; Yap_FreeCodeSpace((char *)qi); } X_API int PL_call_predicate(module_t ctx, int flags, predicate_t p, term_t t0) { fid_t f = PL_open_foreign_frame(); qid_t qi = PL_open_query(ctx, flags, p, t0); int ret = PL_next_solution(qi); PL_cut_query(qi); PL_close_foreign_frame(f); return ret; } X_API int PL_toplevel(void) { while (TRUE) { if (YAP_RunGoal(MkAtomTerm(Yap_FullLookupAtom("$live")))) { return TRUE; } } return TRUE; } X_API int PL_call(term_t tp, module_t m) { CACHE_REGS int out; BACKUP_B(); BACKUP_H(); Term t[2], g; t[0] = SWIModuleToModule(m); t[1] = Yap_GetFromSlot(tp); g = Yap_MkApplTerm(FunctorModule, 2, t); out = YAP_RunGoal(g); RECOVER_H(); RECOVER_B(); return out; } X_API void PL_register_foreign_in_module(const char *module, const char *name, int arity, pl_function_t function, int flags) { CACHE_REGS Term tmod; Int nflags = 0; #ifdef DEBUG if (flags & (PL_FA_CREF)) { fprintf(stderr, "PL_register_foreign_in_module called with non-implemented " "flag %x when creating predicate %s:%s/%d\n", flags, module, name, arity); } #endif if (module == NULL) { tmod = CurrentModule; } else { tmod = MkAtomTerm(Yap_LookupAtom((char *)module)); } if (flags & PL_FA_VARARGS) { nflags = SWIEnvPredFlag; } if (flags & PL_FA_TRANSPARENT) { nflags |= ModuleTransparentPredFlag; } else { nflags |= CArgsPredFlag; } if (flags & PL_FA_NONDETERMINISTIC) { Yap_InitCPredBackCut((char *)name, arity, sizeof(struct foreign_context) / sizeof(CELL), (CPredicate)function, (CPredicate)function, (CPredicate)function, UserCPredFlag | nflags); } else { UserCPredicate((char *)name, (CPredicate)function, arity, tmod, nflags); } if (flags & PL_FA_NOTRACE) { Yap_SetNoTrace((char *)name, arity, tmod); } } X_API void PL_register_extensions(const PL_extension *ptr) { // implemented as register foreign // may cause problems during initialization? PL_load_extensions(ptr); } X_API void PL_register_extensions_in_module(const char *module, const PL_extension *e) { // implemented as register foreign /* ignore flags for now */ while (e->predicate_name != NULL) { PL_register_foreign_in_module(module, e->predicate_name, e->arity, e->function, e->flags); e++; } } X_API void PL_register_foreign(const char *name, int arity, pl_function_t function, int flags) { PL_register_foreign_in_module(NULL, name, arity, function, flags); } X_API void PL_load_extensions(const PL_extension *ptr) { /* ignore flags for now */ while (ptr->predicate_name != NULL) { PL_register_foreign_in_module(NULL, ptr->predicate_name, ptr->arity, ptr->function, ptr->flags); ptr++; } } X_API int PL_is_inf(term_t st) { CACHE_REGS Term t = Deref(Yap_GetFromSlot(st)); if (IsVarTerm(t)) return FALSE; if (!IsFloatTerm(t)) return FALSE; #if HAVE_ISINF Float fl; fl = FloatOfTerm(t); return isinf(fl); #elif HAVE_FPCLASS Float fl; fl = FloatOfTerm(t); return (fpclass(fl) == FP_NINF || fpclass(fl) == FP_PINF); #else return FALSE; #endif } X_API int PL_thread_self(void) { CACHE_REGS #if THREADS if (pthread_getspecific(Yap_yaamregs_key) == NULL) return -1; return (worker_id + 1) << 3; #else return -2; #endif } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PL_thread_raise() is used for re-routing interrupts in the Windows version, where the signal handler is running from a different thread as Prolog. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ #if 0 int PL_thread_raise(int tid, int sig) { PL_LOCK(L_THREAD); if ( tid < 1 ) { error: PL_UNLOCK(L_THREAD); return FALSE; } if ( !REMOTE_ThreadHandle(tid).in_use ) goto error; PL_UNLOCK(L_THREAD); return TRUE; } #else int PL_thread_raise(int tid, int sig) { #if 0 if ( !raiseSignal(NULL, sig) ) #endif return FALSE; return TRUE; } #endif X_API int PL_unify_thread_id(term_t t, int i) { CACHE_REGS Term iterm = MkIntegerTerm(i); return Yap_unify(Yap_GetFromSlot(t), iterm); } static int pl_thread_self(void) { CACHE_REGS #if THREADS if (pthread_getspecific(Yap_yaamregs_key) == NULL) return -1; return worker_id; #else return -2; #endif } X_API int PL_thread_attach_engine(const PL_thread_attr_t *attr) { int wid = pl_thread_self(); if (wid < 0) { /* we do not have an engine */ if (attr) { YAP_thread_attr yapt; yapt.ssize = attr->local_size; yapt.tsize = attr->global_size; yapt.alias = MkAtomTerm(Yap_LookupAtom(attr->alias)); yapt.cancel = attr->cancel; wid = YAP_ThreadCreateEngine(&yapt); } else { wid = YAP_ThreadCreateEngine(NULL); } if (wid < 0) return -1; if (YAP_ThreadAttachEngine(wid)) { return wid; } return -1; } else { /* attach myself again */ return YAP_ThreadAttachEngine(wid); } } X_API int PL_thread_destroy_engine(void) { int wid = pl_thread_self(); if (wid < 0) { /* we do not have an engine */ return FALSE; } YAP_ThreadDetachEngine(wid); return YAP_ThreadDestroyEngine(wid); } X_API int PL_thread_at_exit(void (*function)(void *), void *closure, int global) { /* don't do nothing for now */ fprintf(stderr, "%% YAP ERROR: PL_thread_at_exit not implemented yet\n"); return TRUE; } X_API PL_engine_t PL_create_engine(const PL_thread_attr_t *attr) { #if THREADS int eng; if (attr) { YAP_thread_attr yapt; yapt.ssize = attr->local_size; yapt.tsize = attr->global_size; yapt.alias = MkAtomTerm(Yap_LookupAtom(attr->alias)); yapt.cancel = attr->cancel; eng = YAP_ThreadCreateEngine(&yapt); } else { eng = YAP_ThreadCreateEngine(NULL); } if (eng >= 0) return Yap_local[eng]; #endif return NULL; } X_API int PL_destroy_engine(PL_engine_t e) { #if THREADS return YAP_ThreadDestroyEngine( ((struct worker_local *)e)->ThreadHandle_.current_yaam_regs->worker_id_); #else return FALSE; #endif } X_API int PL_set_engine(PL_engine_t engine, PL_engine_t *old) { CACHE_REGS #if THREADS int cwid = pl_thread_self(), nwid; if (cwid >= 0) { if (old) *old = (PL_engine_t)(Yap_local[cwid]); } if (!engine) { if (cwid < 0) return PL_ENGINE_INVAL; if (!YAP_ThreadDetachEngine(worker_id)) { return PL_ENGINE_INVAL; } return PL_ENGINE_SET; } if (engine == PL_ENGINE_MAIN) { nwid = 0; } else if (engine == PL_ENGINE_CURRENT) { if (cwid < 0) { if (old) *old = NULL; return PL_ENGINE_INVAL; } return PL_ENGINE_SET; } else { nwid = ((struct worker_local *)engine)->ThreadHandle_.id; } MUTEX_LOCK(&(REMOTE_ThreadHandle(nwid).tlock)); if (REMOTE_ThreadHandle(nwid).ref_count) { MUTEX_UNLOCK(&(REMOTE_ThreadHandle(nwid).tlock)); if (cwid != nwid) { return PL_ENGINE_INUSE; } return PL_ENGINE_SET; } if (!YAP_ThreadAttachEngine(nwid)) { return PL_ENGINE_INVAL; } return PL_ENGINE_SET; #else if (old) *old = (PL_engine_t)&Yap_local; return FALSE; #endif } X_API void *PL_malloc(size_t sz) { if (sz == 0) return NULL; return (void *)malloc((long unsigned int)sz); } X_API void *PL_realloc(void *ptr, size_t sz) { if (ptr) { if (sz) { return realloc((char *)ptr, (long unsigned int)sz); } else { free(ptr); return NULL; } } else { return PL_malloc(sz); } } X_API void PL_free(void *obj) { if (obj) free(obj); } X_API int PL_eval_expression_to_int64_ex(term_t t, int64_t *val) { CACHE_REGS Term res = Yap_Eval(Yap_GetFromSlot(t)); if (!res) { return FALSE; } if (IsIntegerTerm(res)) { *val = IntegerOfTerm(res); return TRUE; #if SIZEOF_INT_P == 4 && USE_GMP } else if (YAP_IsBigNumTerm(res)) { MP_INT g; char s[64]; YAP_BigNumOfTerm(t, (void *)&g); if (mpz_sizeinbase(&g, 2) > 64) { Yap_Error(EVALUATION_ERROR_INT_OVERFLOW, Yap_GetFromSlot(t), "integer_overflow"); } mpz_get_str(s, 10, &g); #ifdef _WIN32 sscanf(s, "%I64d", (long long int *)val); #else sscanf(s, "%lld", (long long int *)val); #endif return 1; #endif } Yap_Error(TYPE_ERROR_ATOM, Yap_GetFromSlot(t), "integer_expression"); return FALSE; } foreign_t _PL_retry(intptr_t v) { return (((uintptr_t)(v) << FRG_REDO_BITS) | REDO_INT); } foreign_t _PL_retry_address(void *addr) { return (((uintptr_t)(addr)) | REDO_PTR); } X_API int PL_foreign_control(control_t ctx) { switch (ctx->control) { case FRG_REDO: return PL_REDO; case FRG_FIRST_CALL: return PL_FIRST_CALL; default: return PL_CUTTED; } } X_API intptr_t PL_foreign_context(control_t ctx) { switch (ctx->control) { case FRG_FIRST_CALL: return 0L; default: return (intptr_t)(ctx->context); } } X_API void *PL_foreign_context_address(control_t ctx) { switch (ctx->control) { case FRG_FIRST_CALL: return NULL; default: return (void *)(ctx->context); } } X_API int PL_get_signum_ex(term_t sig, int *n) { CACHE_REGS char *s; int i = -1; if (PL_get_integer(sig, &i)) { } else if (IsAtomTerm(Yap_GetFromSlot(sig))) { s = RepAtom(AtomOfTerm(Yap_GetFromSlot(sig)))->StrOfAE; i = Yap_signal_index(s); } else { Yap_Error(TYPE_ERROR_ATOM, Yap_GetFromSlot(sig), "signal handling"); return FALSE; } if (i > 0 && i < 32) /* where to get these? */ { *n = i; return TRUE; } Yap_Error(DOMAIN_ERROR_OUT_OF_RANGE, Yap_GetFromSlot(sig), "signal handling"); return FALSE; } typedef struct blob { Functor f; CELL type; MP_INT blinfo; /* total size should go here */ PL_blob_t *blb; size_t size; CELL blob_data[1]; } blob_t; X_API intptr_t PL_query(int query) { switch (query) { case PL_QUERY_ARGC: return (intptr_t)GLOBAL_argc; case PL_QUERY_ARGV: return (intptr_t)GLOBAL_argv; case PL_QUERY_USER_CPU: return (intptr_t)Yap_cputime(); case PL_QUERY_VERSION: return (intptr_t)60300; default: fprintf(stderr, "Unimplemented PL_query %d\n", query); return (intptr_t)0; } } X_API void PL_cleanup_fork(void) {} X_API void (*PL_signal(int sig, void (*func)(int)))(int) { // return Yap_signal2(sig,func); return NULL; } X_API void PL_on_halt(int (*f)(int, void *), void *closure) { Yap_HaltRegisterHook((HaltHookFunc)f, closure); } #define is_signalled() unlikely(LD && LD->signal.pending != 0) #ifdef O_PLMT #include static pthread_key_t atomgen_key; #endif typedef struct scan_atoms { Int pos; Atom atom; } scan_atoms_t; static inline int str_prefix(const char *p0, char *s) { char *p = (char *)p0; while (*p && *p == *s) { p++; s++; } return p[0] == '\0'; } static int atom_generator(const char *prefix, char **hit, int state) { CACHE_REGS struct scan_atoms *index; Atom catom; UInt i; if (!state) { index = (struct scan_atoms *)malloc(sizeof(struct scan_atoms)); i = 0; catom = NIL; } else { index = LOCAL_search_atoms; catom = index->atom; i = index->pos; } while (catom != NIL || i < AtomHashTableSize) { // if ( is_signalled() ) /* Notably allow windows version */ // PL_handle_signals(); /* to break out on ^C */ AtomEntry *ap; if (catom == NIL) { /* move away from current hash table line */ READ_LOCK(HashChain[i].AERWLock); catom = HashChain[i].Entry; READ_UNLOCK(HashChain[i].AERWLock); i++; } else { ap = RepAtom(catom); READ_LOCK(ap->ARWLock); if (str_prefix(prefix, ap->StrOfAE)) { CACHE_REGS index->pos = i; index->atom = ap->NextOfAE; LOCAL_search_atoms = index; *hit = ap->StrOfAE; READ_UNLOCK(ap->ARWLock); return TRUE; } catom = ap->NextOfAE; READ_UNLOCK(ap->ARWLock); } } LOCAL_search_atoms = NULL; free(index); return FALSE; } char *PL_atom_generator(const char *prefix, int state) { char *hit = NULL; if (atom_generator(prefix, &hit, state)) { return hit; } return NULL; } X_API pl_wchar_t *PL_atom_generator_w(const pl_wchar_t *pref, pl_wchar_t *buffer, size_t buflen, int state) { return NULL; } const char *Yap_GetCurrentPredName(void); Int Yap_GetCurrentPredArity(void); const char *Yap_GetCurrentPredName(void) { CACHE_REGS if (!PP) return NULL; if (PP->ArityOfPE) return NameOfFunctor(PP->FunctorOfPred)->StrOfAE; return RepAtom((Atom)(PP->FunctorOfPred))->StrOfAE; } Int Yap_GetCurrentPredArity(void) { CACHE_REGS if (!PP) return (Int)0; return PP->ArityOfPE; } void Yap_swi_install(void) { Yap_install_blobs(); } X_API int PL_raise(int sig) { Yap_signal(YAP_INT_SIGNAL); return 1; } int raiseSignal(void *ld, int sig); int raiseSignal(void *ld, int sig) { #if THREADSX if (sig == SIG_THREAD_SIGNAL) { Yap_signal(YAP_ITI_SIGNAL); return TRUE; } #endif fprintf(stderr, "Unsupported signal %d\n", sig); return FALSE; } #if THREADS void Yap_LockStream(void *s) { // if ( s->mutex ) recursiveMutexLock(s->mutex); } void Yap_UnLockStream(void *s) { // if ( s->mutex ) recursiveMutexUnlock(s->mutex); } #endif extern term_t Yap_CvtTerm(term_t ts); term_t Yap_CvtTerm(term_t ts) { CACHE_REGS Term t = Yap_GetFromSlot(ts); if (IsVarTerm(t)) return ts; if (IsPairTerm(t)) return ts; if (IsAtomTerm(t)) return ts; if (IsIntTerm(t)) return ts; if (IsApplTerm(t)) { Functor f = FunctorOfTerm(t); if (IsExtensionFunctor(f)) { if (f == FunctorBigInt) { big_blob_type flag = RepAppl(t)[1]; switch (flag) { case BIG_INT: return ts; case BIG_RATIONAL: #if USE_GMP { MP_RAT *b = Yap_BigRatOfTerm(t); Term ta[2]; ta[0] = Yap_MkBigIntTerm(mpq_numref(b)); if (ta[0] == TermNil) return ts; ta[1] = Yap_MkBigIntTerm(mpq_denref(b)); if (ta[1] == TermNil) return ts; return Yap_InitSlot(Yap_MkApplTerm(FunctorRDiv, 2, ta)); } #endif case EMPTY_ARENA: case ARRAY_INT: case ARRAY_FLOAT: case CLAUSE_LIST: case EXTERNAL_BLOB: return Yap_InitSlot(MkIntTerm(0)); default: return ts; } } else if (f == FunctorDBRef) { Term ta[1]; ta[0] = MkIntegerTerm((Int)DBRefOfTerm(t)); return Yap_InitSlot(Yap_MkApplTerm(FunctorDBREF, 1, ta)); } } } return ts; } char *PL_cwd(char *cwd, size_t cwdlen) { return (char *)Yap_getcwd((const char *)cwd, cwdlen); } /** * @} * @} */