:- module(bnt, [do_bnt/3, create_bnt_graph/2, check_if_bnt_done/1]). :- use_module(library('clpbn/display'), [ clpbn_bind_vals/3]). :- use_module(library('clpbn/dists'), [ get_dist_domain_size/2, get_dist_domain/2, get_dist_params/2 ]). :- use_module(library('clpbn/discrete_utils'), [ reorder_CPT/5]). :- use_module(library(matlab), [start_matlab/1, close_matlab/0, matlab_on/0, matlab_eval_string/1, matlab_eval_string/2, matlab_matrix/4, matlab_vector/2, matlab_sequence/3, matlab_initialized_cells/4, matlab_get_variable/2, matlab_call/2 ]). :- use_module(library(dgraphs), [dgraph_new/1, dgraph_add_vertices/3, dgraph_add_edges/3, dgraph_top_sort/2, dgraph_vertices/2, dgraph_edges/2 ]). :- use_module(library(lists), [ member/2]). :- use_module(library(ordsets), [ ord_insert/3]). :- yap_flag(write_strings,on). % syntactic sugar for matlab_call. :- op(800,yfx,<--). G <-- Y :- matlab_call(Y,G). :- attribute bnt_id/1. :- dynamic bnt/1. :- dynamic bnt_solver/1, bnt_path/1, bnt_model/1. % belprop bnt_solver(jtree). % likelihood_weighting bnt_path('/u/vitor/Yap/CLPBN/FullBNT-1.0.3/BNT'). % % What BNT are we using: % a propositional one % a tied parameter one. % %bnt_model(propositional). bnt_model(tied). /***************************************** BNT uses: bnet dag discrete_nodes: which nodes are discrete (all by now), node_sizes engine evidence marg *****************************************/ check_if_bnt_done(Var) :- get_atts(Var, [map(_)]). do_bnt([], _, _) :- !. do_bnt(QueryVars, AllVars, AllDiffs) :- create_bnt_graph(AllVars, _, SortedVertices, NumberedVertices, Size), set_inference, add_evidence(SortedVertices, Size, NumberedVertices), marginalize(QueryVars, Ps), clpbn_bind_vals(QueryVars, Ps, AllDiffs). create_bnt_graph(AllVars, Representatives) :- create_bnt_graph(AllVars, Representatives, _, _, _). create_bnt_graph(AllVars, Representatives, SortedVertices, NumberedVertices, Size) :- init_matlab, sort_nodes(AllVars, SortedVertices), number_graph(SortedVertices, NumberedVertices, 0, Size), bnt_model(ModelType), init_bnet(ModelType, SortedVertices, NumberedVertices, Size, Representatives). % make sure MATLAB works. init_matlab :- bnt(on), !. init_matlab :- start_matlab, bnt_path(Path), atom_concat('cd ', Path, Command), matlab_eval_string(Command), matlab_eval_string('add_BNT_to_path',_), assert(bnt(on)). start_matlab :- matlab_on, !. start_matlab :- start_matlab('matlab -nojvm -nosplash'). sort_nodes(AllVars, SortedVertices) :- bnt_model(tied), !, extract_tied(AllVars, SortedVertices). sort_nodes(AllVars, SortedVertices) :- bnt_model(propositional), !, extract_graph(AllVars, Graph), dgraph_top_sort(Graph, SortedVertices). extract_tied(AllVars, SortedVars) :- extract_kvars(AllVars,KVars), keysort(KVars,SVars), split_tied_vars(SVars,TVars, Vertices), tied_graph(TVars,TGraph,Vertices), dgraph_top_sort(TGraph, Sort), distribute_tied_variables(Sort, TVars, 1, SortedVars). extract_kvars([],[]). extract_kvars([V|AllVars],[N-i(V,Parents)|KVars]) :- clpbn:get_atts(V, [dist(N,Parents)]), extract_kvars(AllVars,KVars). split_tied_vars([],[],[]). split_tied_vars([N-i(V,Par)|More],[N-g(Vs,Ns,Es)|TVars],[N|LNs]) :- get_pars(Par,N,V,NPs,[],Es0,Es), get_tied(More,N,Vs,[V],Ns,NPs,Es,Es0,SVars), split_tied_vars(SVars,TVars,LNs). get_pars([],_,_,NPs,NPs,Es,Es). get_pars([V|Par],N,V0,NPs,NPs0,Es,Es0) :- clpbn:get_atts(V, [dist(N,_)]), !, get_pars(Par,N,V0,NPs,NPs0,Es,[V-V0|Es0]). get_pars([V|Par],N,V0,NPs,NPs0,Es,Es0) :- clpbn:get_atts(V, [dist(M,_)]), ord_insert(NPs0,M,NPsI), get_pars(Par,N,V0,NPs,NPsI,Es,Es0). get_tied([N-i(V,Par)|More],N,Vs,Vs0,Ns,NPs,Es,Es0,SVars) :- !, get_pars(Par,N,V,NPsI,NPs,EsI,Es0), get_tied(More,N,Vs,[V|Vs0],Ns,NPsI,Es,EsI,SVars). get_tied(More,_,Vs,Vs,Ns,Ns,Es,Es,More). tied_graph(TVars,Graph,Vertices) :- dgraph_new(Graph0), dgraph_add_vertices(Vertices, Graph0, Graph1), get_tied_edges(TVars,Edges), dgraph_add_edges(Edges, Graph1, Graph). get_tied_edges([],[]). get_tied_edges([N-g(_,Vs,_)|TGraph],Edges) :- add_tied(Vs,N,Edges,Edges0), get_tied_edges(TGraph,Edges0). add_tied([],_,Edges,Edges). add_tied([N1|Vs],N,[N1-N|Edges],Edges0) :- add_tied(Vs,N,Edges,Edges0). distribute_tied_variables([], _, _, []). distribute_tied_variables([N|Sort], TVars, I0, SortedVars) :- member(N-g(Vs,_,_),TVars), distribute_tied(Vs,I0,In,SortedVars,SortedVars0), distribute_tied_variables(Sort, TVars, In, SortedVars0). distribute_tied([],I,I,Vs,Vs). distribute_tied([V|Vs],I0,In,[V|NVs],NVs0) :- I is I0+1, put_atts(V, [bnt_id(I0)]), % clpbn:get_atts(V,[key(K)]), distribute_tied(Vs,I,In,NVs,NVs0). extract_graph(AllVars, Graph) :- dgraph_new(Graph0), dgraph_add_vertices(AllVars, Graph0, Graph1), get_edges(AllVars,Edges), dgraph_add_edges(Edges, Graph1, Graph). get_edges([],[]). get_edges([V|AllVars],Edges) :- clpbn:get_atts(V, [dist(_,Parents)]), add_parent_child(Parents,V,Edges,Edges0), get_edges(AllVars,Edges0). add_parent_child([],_,Edges,Edges). add_parent_child([P|Parents],V,[P-V|Edges],Edges0) :- add_parent_child(Parents,V,Edges,Edges0). number_graph([], [], I, I). number_graph([V|SortedGraph], [I|Is], I0, IF) :- I is I0+1, put_atts(V, [bnt_id(I)]), % clpbn:get_atts(V,[key(K)]), % write(I:K),nl, number_graph(SortedGraph, Is, I, IF). init_bnet(propositional, SortedGraph, NumberedGraph, Size, []) :- build_dag(SortedGraph, Size), init_discrete_nodes(SortedGraph, Size), bnet <-- mk_bnet(dag, node_sizes, \discrete, discrete_nodes), dump_cpts(SortedGraph, NumberedGraph), matlab_eval_string('bnet.CPD{3}',S),format('~s~n',[S]). init_bnet(tied, SortedGraph, NumberedGraph, Size, Representatives) :- build_dag(SortedGraph, Size), init_discrete_nodes(SortedGraph, Size), dump_tied_cpts(SortedGraph, NumberedGraph, Representatives). build_dag(SortedVertices, Size) :- get_numbered_edges(SortedVertices, Edges), mkdag(Size, Edges). get_numbered_edges([], []). get_numbered_edges([V|SortedVertices], Edges) :- clpbn:get_atts(V, [dist(_,Ps)]), v2number(V,N), add_numbered_edges(Ps, N, Edges, Edges0), get_numbered_edges(SortedVertices, Edges0). add_numbered_edges([], _, Edges, Edges). add_numbered_edges([P|Ps], N, [PN-N|Edges], Edges0) :- v2number(P,PN), add_numbered_edges(Ps, N, Edges, Edges0). v2number(V,N) :- get_atts(V,[bnt_id(N)]). init_discrete_nodes(SortedGraph, Size) :- matlab_sequence(1,Size,discrete_nodes), mksizes(SortedGraph, Size). mkdag(N,Els) :- Tot is N*N, functor(Dag,dag,Tot), add_els(Els,N,Dag), Dag=..[_|L], addzeros(L), matlab_matrix(N,N,L,dag). add_els([],_,_). add_els([X-Y|Els],N,Dag) :- Pos is (X-1)*N+Y, arg(Pos,Dag,1), add_els(Els,N,Dag). addzeros([]). addzeros([0|L]) :- !, addzeros(L). addzeros([1|L]) :- addzeros(L). mksizes(SortedVertices, Size) :- get_szs(SortedVertices,Sizes), matlab_matrix(1,Size,Sizes,node_sizes). get_szs([],[]). get_szs([V|SortedVertices],[LD|Sizes]) :- clpbn:get_atts(V, [dist(Id,_)]), get_dist_domain_size(Id,LD), get_szs(SortedVertices,Sizes). dump_cpts([], []). dump_cpts([V|SortedGraph], [I|Is]) :- clpbn:get_atts(V, [dist(Id,Parents)]), get_dist_params(Id,CPT), reorder_cpt(CPT,V,Parents,Tab), mkcpt(bnet,I,Tab), dump_cpts(SortedGraph, Is). % % This is complicated, the BNT and we have different orders % reorder_cpt(CPT,_, [], CPT) :- !. reorder_cpt(CPT,V,Parents,Tab) :- % get BNT label get_sizes_and_ids(Parents,Ids), % sort to BNT keysort(Ids,NIds), % get vars in order extract_vars(NIds, [], NParents), % do the actual work reorder_CPT([V|Parents],CPT,[V|NParents],STab,_), STab=..[_|Tab]. get_sizes_and_ids([],[]). get_sizes_and_ids([V|Parents],[Id-V|Ids]) :- get_atts(V, [bnt_id(Id)]), get_sizes_and_ids(Parents,Ids). extract_vars([], L, L). extract_vars([_-V|NIds], NParents, Vs) :- extract_vars(NIds, [V|NParents], Vs). mkcpt(BayesNet, I, Tab) :- (BayesNet.'CPD'({I})) <-- tabular_CPD(BayesNet,I,Tab). dump_tied_cpts(Graph, Is, Reps) :- create_class_vector(Graph, Is, Classes, Reps0), matlab_vector(Classes, eclass), keysort(Reps0,Reps1), representatives(Reps1,Reps), bnet <-- mk_bnet(dag, node_sizes, \discrete, discrete_nodes, \equiv_class, eclass), dump_tied_cpts(Reps). create_class_vector([], [], [],[]). create_class_vector([V|Graph], [I|Is], [Id|Classes], [Id-v(V,I,Parents)|Sets]) :- clpbn:get_atts(V, [dist(Id,Parents)]), create_class_vector(Graph, Is,Classes,Sets). representatives([],[]). representatives([Class-Rep|Reps1],[Class-Rep|Reps]) :- nonrepresentatives(Reps1, Class, Reps2), representatives(Reps2,Reps). nonrepresentatives([Class-_|Reps1], Class, Reps2) :- !, nonrepresentatives(Reps1, Class, Reps2). nonrepresentatives(Reps, _, Reps). dump_tied_cpts([]). dump_tied_cpts([Class-v(V,Id,Parents)|SortedGraph]) :- get_dist_params(Class,CPT), reorder_cpt(CPT,V,Parents,NCPT), mktiedcpt(bnet,Id,Class,NCPT), dump_tied_cpts(SortedGraph). mktiedcpt(BayesNet, V, Class, Tab) :- (BayesNet.'CPD'({Class})) <-- tabular_CPD(BayesNet,V,Tab). set_inference :- bnt_solver(Solver), init_solver(Solver). init_solver(jtree) :- engine <-- jtree_inf_engine(bnet). init_solver(belprop) :- engine <-- belprop_inf_engine(bnet). init_solver(likelihood_weighting) :- engine <-- likelihood_weighting_inf_engine(bnet). init_solver(enumerative) :- engine <-- enumerative_inf_engine(bnet). init_solver(gibbs) :- engine <-- gibbs_sampling_inf_engine(bnet). init_solver(global_joint) :- engine <-- global_joint_inf_engine(bnet). init_solver(pearl) :- engine <-- pearl_inf_engine(bnet). init_solver(var_elim) :- engine <-- var_elim_inf_engine(bnet). add_evidence(Graph, Size, Is) :- mk_evidence(Graph, Is, LN), matlab_initialized_cells( 1, Size, LN, evidence), [engine, loglik] <-- enter_evidence(engine, evidence). mk_evidence([], [], []). mk_evidence([V|L], [I|Is], [ar(1,I,Val)|LN]) :- clpbn:get_atts(V, [evidence(Ev),dist(Id,_)]), !, get_dist_domain(Id, Domain), evidence_val(Ev,1,Domain,Val), mk_evidence(L, Is, LN). mk_evidence([_|L], [_|Is], LN) :- mk_evidence(L, Is, LN). evidence_val(Ev,Val,[Ev|_],Val) :- !. evidence_val(Ev,I0,[_|Domain],Val) :- I1 is I0+1, evidence_val(Ev,I1,Domain,Val). marginalize([V], Ps) :- !, v2number(V,Pos), marg <-- marginal_nodes(engine, Pos), matlab_get_variable( marg.'T', Ps).