/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arith1.c * Last rev: ** mods: * comments: arithmetical expression evaluation * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif /** @file arith1.c @addtogroup arithmetic_operators - exp( _X_) [ISO]
@anchor exp_1 Natural exponential. - log( _X_) [ISO]
@anchor log_1 Natural logarithm. - log10( _X_)
@anchor log10_1 Decimal logarithm. - sqrt( _X_) [ISO]
@anchor sqrt_1 Square root. - sin( _X_) [ISO]
@anchor sin_1 Sine. - cos( _X_) [ISO]
@anchor cos_1 Cosine. - tan( _X_) [ISO]
@anchor tan_1 Tangent. - asin( _X_) [ISO]
@anchor asin_1 Arc sine. - acos( _X_) [ISO]
@anchor acos_1 Arc cosine. - atan( _X_) [ISO]
@anchor atan_1 Arc tangent. - sinh( _X_)
@anchor sinh_1 Hyperbolic sine. - cosh( _X_)
@anchor cosh_1 Hyperbolic cosine. - tanh( _X_)
@anchor tanh_1 Hyperbolic tangent. - asinh( _X_)
@anchor asinh_1 Hyperbolic arc sine. - acosh( _X_)
@anchor acosh_1 Hyperbolic arc cosine. - atanh( _X_)
@anchor atanh_1 Hyperbolic arc tangent. - lgamma( _X_)
@anchor lgamma_1 Logarithm of gamma function. - erf( _X_)
@anchor erf_1 Gaussian error function. - erfc( _X_)
@anchor erfc_1 Complementary gaussian error function. - random( _X_) [ISO]
@anchor random_1_op An integer random number between 0 and _X_. In `iso` language mode the argument must be a floating point-number, the result is an integer and it the float is equidistant it is rounded up, that is, to the least integer greater than _X_. - integer( _X_)
@anchor integer_1_op If _X_ evaluates to a float, the integer between the value of _X_ and 0 closest to the value of _X_, else if _X_ evaluates to an integer, the value of _X_. - float( _X_) [ISO]
@anchor float_1_op If _X_ evaluates to an integer, the corresponding float, else the float itself. - float_fractional_part( _X_) [ISO]
@anchor float_fractional_part_1 The fractional part of the floating point number _X_, or `0.0` if _X_ is an integer. In the `iso` language mode, _X_ must be an integer. - float_integer_part( _X_) [ISO]
@anchor float_integer_part_1 The float giving the integer part of the floating point number _X_, or _X_ if _X_ is an integer. In the `iso` language mode, _X_ must be an integer. - abs( _X_) [ISO]
@anchor abs_1 The absolute value of _X_. - ceiling( _X_) [ISO]
@anchor ceiling_1 The integer that is the smallest integral value not smaller than _X_. In `iso` language mode the argument must be a floating point-number and the result is an integer. - floor( _X_) [ISO]
@anchor floor_1 The integer that is the greatest integral value not greater than _X_. In `iso` language mode the argument must be a floating point-number and the result is an integer. - round( _X_) [ISO]
@anchor round_1 The nearest integral value to _X_. If _X_ is equidistant to two integers, it will be rounded to the closest even integral value. In `iso` language mode the argument must be a floating point-number, the result is an integer and it the float is equidistant it is rounded up, that is, to the least integer greater than _X_. - sign( _X_) [ISO]
@anchor sign_1 Return 1 if the _X_ evaluates to a positive integer, 0 it if evaluates to 0, and -1 if it evaluates to a negative integer. If _X_ evaluates to a floating-point number return 1.0 for a positive _X_, 0.0 for 0.0, and -1.0 otherwise. - truncate( _X_) [ISO]
@anchor truncate_1 The integral value between _X_ and 0 closest to _X_. - rational( _X_)
@anchor rational_1_op Convert the expression _X_ to a rational number or integer. The function returns the input on integers and rational numbers. For floating point numbers, the returned rational number exactly represents the float. As floats cannot exactly represent all decimal numbers the results may be surprising. In the examples below, doubles can represent `0.25` and the result is as expected, in contrast to the result of `rational(0.1)`. The function `rationalize/1` gives a more intuitive result. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~prolog ?- A is rational(0.25). A is 1 rdiv 4 ?- A is rational(0.1). A = 3602879701896397 rdiv 36028797018963968 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - rationalize( _X_)
@anchor rationalize_1 Convert the expression _X_ to a rational number or integer. The function is similar to [rational/1](@ref rational_1), but the result is only accurate within the rounding error of floating point numbers, generally producing a much smaller denominator. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~prolog ?- A is rationalize(0.25). A = 1 rdiv 4 ?- A is rationalize(0.1). A = 1 rdiv 10 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - \\ _X_ [ISO]
Integer bitwise negation. - msb( _X_)
@anchor msb_1 The most significant bit of the non-negative integer _X_. - lsb( _X_)
@anchor lsb_1 The least significant bit of the non-negative integer _X_. - popcount( _X_)
@anchor popcount_1 The number of bits set to `1` in the binary representation of the non-negative integer _X_. - [ _X_]
Evaluates to _X_ for expression _X_. Useful because character strings in Prolog are lists of character codes. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.prolog} X is Y*10+C-"0" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ is the same as ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.prolog} X is Y*10+C-[48]. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ which would be evaluated as: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.prolog} X is Y*10+C-48. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include "Yap.h" #include "YapEval.h" #include "YapHeap.h" #include "Yatom.h" static Term float_to_int(Float v USES_REGS) { #if USE_GMP Int i = (Int)v; if (i - v == 0.0) { return MkIntegerTerm(i); } else { return Yap_gmp_float_to_big(v); } #else return MkIntegerTerm(v); #endif } #define RBIG_FL(v) return (float_to_int(v PASS_REGS)) typedef struct init_un_eval { char *OpName; arith1_op f; } InitUnEntry; /* Some compilers just don't get it */ #ifdef __MINGW32__ #undef HAVE_ASINH #undef HAVE_ACOSH #undef HAVE_ATANH #undef HAVE_FINITE #endif #if !HAVE_ASINH #define asinh(F) (log((F) + sqrt((F) * (F) + 1))) #endif #if !HAVE_ACOSH #define acosh(F) (log((F) + sqrt((F) * (F)-1))) #endif #if !HAVE_ATANH #define atanh(F) (log((1 + (F)) / (1 - (F))) / 2) #endif static inline Float get_float(Term t) { if (IsFloatTerm(t)) { return FloatOfTerm(t); } if (IsIntTerm(t)) { return IntOfTerm(t); } if (IsLongIntTerm(t)) { return LongIntOfTerm(t); } #ifdef USE_GMP if (IsBigIntTerm(t)) { return Yap_gmp_to_float(t); } #endif return 0.0; } /* WIN32 machines do not necessarily have rint. This will do for now */ #if HAVE_RINT #define my_rint(X) rint(X) #else static double my_rint(double x) { double y, z; Int n; if (x >= 0) { y = x + 0.5; z = floor(y); n = (Int)z; if (y == z && n % 2) return (z - 1); } else { y = x - 0.5; z = ceil(y); n = (Int)z; if (y == z && n % 2) return (z + 1); } return (z); } #endif static Int msb(Int inp USES_REGS) /* calculate the most significant bit for an integer */ { /* the obvious solution: do it by using binary search */ Int out = 0; if (inp < 0) { Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, MkIntegerTerm(inp), "msb/1 received %d", inp); } #if HAVE__BUILTIN_FFSLL out = __builtin_ffsll(inp); #elif HAVE_FFSLL out = ffsll(inp); #else if (inp == 0) return 0L; #if SIZEOF_INT_P == 8 if (inp & ((CELL)0xffffffffLL << 32)) { inp >>= 32; out += 32; } #endif if (inp & ((CELL)0xffffL << 16)) { inp >>= 16; out += 16; } if (inp & ((CELL)0xffL << 8)) { inp >>= 8; out += 8; } if (inp & ((CELL)0xfL << 4)) { inp >>= 4; out += 4; } if (inp & ((CELL)0x3L << 2)) { inp >>= 2; out += 2; } if (inp & ((CELL)0x1 << 1)) out++; #endif return out; } Int Yap_msb( Int inp USES_REGS) /* calculate the most significant bit for an integer */ { return msb(inp PASS_REGS); } static Int lsb(Int inp USES_REGS) /* calculate the least significant bit for an integer */ { /* the obvious solution: do it by using binary search */ Int out = 0; if (inp < 0) { Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, MkIntegerTerm(inp), "msb/1 received %d", inp); } if (inp == 0) return 0L; #if SIZEOF_INT_P == 8 if (!(inp & (CELL)0xffffffffLL)) { inp >>= 32; out += 32; } #endif if (!(inp & (CELL)0xffffL)) { inp >>= 16; out += 16; } if (!(inp & (CELL)0xffL)) { inp >>= 8; out += 8; } if (!(inp & (CELL)0xfL)) { inp >>= 4; out += 4; } if (!(inp & (CELL)0x3L)) { inp >>= 2; out += 2; } if (!(inp & ((CELL)0x1))) out++; return out; } static Int popcount( Int inp USES_REGS) /* calculate the least significant bit for an integer */ { /* the obvious solution: do it by using binary search */ Int c = 0, j = 0, m = ((CELL)1); if (inp < 0) { Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, MkIntegerTerm(inp), "popcount/1 received %d", inp); } if (inp == 0) return 0L; for (j = 0, c = 0; j < sizeof(inp) * 8; j++, m <<= 1) { if (inp & m) c++; } return c; } static Term eval1(Int fi, Term t USES_REGS) { arith1_op f = fi; switch (f) { case op_uplus: return t; case op_uminus: switch (ETypeOfTerm(t)) { case long_int_e: { #ifdef USE_GMP Int i = IntegerOfTerm(t); if (i == Int_MIN) { return Yap_gmp_neg_int(i); } else #endif RINT(-IntegerOfTerm(t)); } case double_e: RFLOAT(-FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_neg_big(t); #endif default: RERROR(); } case op_unot: switch (ETypeOfTerm(t)) { case long_int_e: RINT(~IntegerOfTerm(t)); case double_e: Yap_ArithError(TYPE_ERROR_INTEGER, t, "\\(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_unot_big(t); #endif default: RERROR(); } case op_exp: RFLOAT(exp(get_float(t))); case op_log: { Float dbl = get_float(t); if (dbl >= 0) { RFLOAT(log(dbl)); } else { Yap_ArithError(EVALUATION_ERROR_UNDEFINED, t, "log(%f)", dbl); } } case op_log10: { Float dbl = get_float(t); if (dbl >= 0) { RFLOAT(log10(dbl)); } else { Yap_ArithError(EVALUATION_ERROR_UNDEFINED, t, "log10(%f)", dbl); } } case op_sqrt: { Float dbl = get_float(t), out; out = sqrt(dbl); #if HAVE_ISNAN if (isnan(out)) { Yap_ArithError(EVALUATION_ERROR_UNDEFINED, t, "sqrt(%f)", dbl); } #endif RFLOAT(out); } case op_sin: { Float dbl = get_float(t), out; out = sin(dbl); RFLOAT(out); } case op_cos: { Float dbl = get_float(t), out; out = cos(dbl); RFLOAT(out); } case op_tan: { Float dbl = get_float(t), out; out = tan(dbl); RFLOAT(out); } case op_sinh: { Float dbl = get_float(t), out; out = sinh(dbl); RFLOAT(out); } case op_cosh: { Float dbl = get_float(t), out; out = cosh(dbl); RFLOAT(out); } case op_tanh: { Float dbl = get_float(t), out; out = tanh(dbl); RFLOAT(out); } case op_asin: { Float dbl, out; dbl = get_float(t); out = asin(dbl); #if HAVE_ISNAN if (isnan(out)) { Yap_ArithError(EVALUATION_ERROR_UNDEFINED, t, "asin(%f)", dbl); } #endif RFLOAT(out); } case op_acos: { Float dbl, out; dbl = get_float(t); out = acos(dbl); #if HAVE_ISNAN if (isnan(out)) { Yap_ArithError(EVALUATION_ERROR_UNDEFINED, t, "acos(%f)", dbl); } #endif RFLOAT(out); } case op_atan: { Float dbl, out; dbl = get_float(t); out = atan(dbl); #if HAVE_ISNAN if (isnan(out)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "atan(%f)", dbl); } #endif RFLOAT(out); } case op_asinh: { Float dbl, out; dbl = get_float(t); out = asinh(dbl); #if HAVE_ISNAN if (isnan(out)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "asinh(%f)", dbl); } #endif RFLOAT(out); } case op_acosh: { Float dbl, out; dbl = get_float(t); out = acosh(dbl); #if HAVE_ISNAN if (isnan(out)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "acosh(%f)", dbl); } #endif RFLOAT(out); } case op_atanh: { Float dbl, out; dbl = get_float(t); out = atanh(dbl); #if HAVE_ISNAN if (isnan(out)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "atanh(%f)", dbl); } #endif RFLOAT(out); } case op_lgamma: { #if HAVE_LGAMMA Float dbl; dbl = get_float(t); RFLOAT(lgamma(dbl)); #else RERROR(); #endif } case op_erf: { #if HAVE_ERF Float dbl = get_float(t), out; out = erf(dbl); RFLOAT(out); #else RERROR(); #endif } case op_erfc: { #if HAVE_ERF Float dbl = get_float(t), out; out = erfc(dbl); RFLOAT(out); #else RERROR(); #endif } /* floor(x) maximum integer greatest or equal to X There are really two built-ins: SICStus converts from int/big/float -> float ISO only converts from float -> int/big */ case op_floor: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_floor(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer\ (%f)", dbl); } #endif RBIG_FL(floor(dbl)); } case op_ceiling: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_ceiling(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer\ (%f)", dbl); } #endif RBIG_FL(ceil(dbl)); } case op_round: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_round(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer\ (%f)", dbl); } #endif RBIG_FL(my_rint(dbl)); } case op_truncate: case op_integer: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_trunc(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer (%f)", dbl); } #endif if (dbl < 0.0) RBIG_FL(ceil(dbl)); else RBIG_FL(floor(dbl)); } case op_float: switch (ETypeOfTerm(t)) { case long_int_e: RFLOAT(IntegerOfTerm(t)); case double_e: return t; case big_int_e: #ifdef USE_GMP RFLOAT(Yap_gmp_to_float(t)); #endif default: RERROR(); } case op_rational: switch (ETypeOfTerm(t)) { case long_int_e: return t; #ifdef USE_GMP case double_e: return Yap_gmp_float_to_rational(FloatOfTerm(t)); #endif case big_int_e: return t; default: RERROR(); } case op_rationalize: switch (ETypeOfTerm(t)) { case long_int_e: return t; #ifdef USE_GMP case double_e: return Yap_gmp_float_rationalize(FloatOfTerm(t)); #endif case big_int_e: return t; default: RERROR(); } case op_abs: switch (ETypeOfTerm(t)) { case long_int_e: RINT(labs(IntegerOfTerm(t))); case double_e: RFLOAT(fabs(FloatOfTerm(t))); case big_int_e: #ifdef USE_GMP return Yap_gmp_abs_big(t); #endif default: RERROR(); } case op_msb: switch (ETypeOfTerm(t)) { case long_int_e: RINT(msb(IntegerOfTerm(t) PASS_REGS)); case double_e: Yap_ArithError(TYPE_ERROR_INTEGER, t, "msb(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_msb(t); #endif default: RERROR(); } case op_lsb: switch (ETypeOfTerm(t)) { case long_int_e: RINT(lsb(IntegerOfTerm(t) PASS_REGS)); case double_e: Yap_ArithError(TYPE_ERROR_INTEGER, t, "lsb(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_lsb(t); #endif default: RERROR(); } case op_popcount: switch (ETypeOfTerm(t)) { case long_int_e: RINT(popcount(IntegerOfTerm(t) PASS_REGS)); case double_e: Yap_ArithError(TYPE_ERROR_INTEGER, t, "popcount(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_popcount(t); #endif default: RERROR(); } case op_ffracp: switch (ETypeOfTerm(t)) { case long_int_e: if (isoLanguageFlag()) { /* iso */ Yap_ArithError(TYPE_ERROR_FLOAT, t, "X is float_fractional_part(%f)", IntegerOfTerm(t)); } else { RFLOAT(0.0); } case double_e: { Float dbl; dbl = FloatOfTerm(t); RFLOAT(dbl - ceil(dbl)); } break; case big_int_e: #ifdef USE_GMP return Yap_gmp_float_fractional_part(t); #endif default: RERROR(); } case op_fintp: switch (ETypeOfTerm(t)) { case long_int_e: Yap_ArithError(TYPE_ERROR_FLOAT, t, "X is float_integer_part(%f)", IntegerOfTerm(t)); case double_e: RFLOAT(rint(FloatOfTerm(t))); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_float_integer_part(t); #endif default: RERROR(); } case op_sign: switch (ETypeOfTerm(t)) { case long_int_e: { Int x = IntegerOfTerm(t); RINT((x > 0 ? 1 : (x < 0 ? -1 : 0))); } case double_e: { Float dbl = FloatOfTerm(t); RINT((dbl > 0.0 ? 1 : (dbl < 0.0 ? -1 : 0))); } case big_int_e: #ifdef USE_GMP return Yap_gmp_sign(t); #endif default: RERROR(); } case op_random1: switch (ETypeOfTerm(t)) { case long_int_e: RINT(Yap_random() * IntegerOfTerm(t)); case double_e: Yap_ArithError(TYPE_ERROR_INTEGER, t, "random(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_mul_float_big(Yap_random(), t); #endif default: RERROR(); } } /// end of switch RERROR(); } Term Yap_eval_unary(Int f, Term t) { CACHE_REGS return eval1(f, t PASS_REGS); } static InitUnEntry InitUnTab[] = {{"+", op_uplus}, {"-", op_uminus}, {"\\", op_unot}, {"exp", op_exp}, {"log", op_log}, {"log10", op_log10}, {"sqrt", op_sqrt}, {"sin", op_sin}, {"cos", op_cos}, {"tan", op_tan}, {"sinh", op_sinh}, {"cosh", op_cosh}, {"tanh", op_tanh}, {"asin", op_asin}, {"acos", op_acos}, {"atan", op_atan}, {"asinh", op_asinh}, {"acosh", op_acosh}, {"atanh", op_atanh}, {"floor", op_floor}, {"ceiling", op_ceiling}, {"round", op_round}, {"truncate", op_truncate}, {"integer", op_integer}, {"float", op_float}, {"abs", op_abs}, {"msb", op_msb}, {"lsb", op_lsb}, {"popcount", op_popcount}, {"float_fractional_part", op_ffracp}, {"float_integer_part", op_fintp}, {"sign", op_sign}, {"lgamma", op_lgamma}, {"erf", op_erf}, {"erfc", op_erfc}, {"rational", op_rational}, {"rationalize", op_rationalize}, {"random", op_random1}}; Atom Yap_NameOfUnaryOp(int i) { return Yap_LookupAtom(InitUnTab[i].OpName); } static Int p_unary_is(USES_REGS1) { /* X is Y */ Term t = Deref(ARG2); Term top; bool go; if (IsVarTerm(t)) { Yap_EvalError(INSTANTIATION_ERROR, t, "unbound unary operator"); return FALSE; } Yap_ClearExs(); top = Yap_Eval(Deref(ARG3)); if (IsIntTerm(t)) { Term tout; Int i; i = IntegerOfTerm(t); tout = eval1(i, top PASS_REGS); return Yap_unify_constant(ARG1, tout); } else if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; Term out; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 1)))) { Yap_EvalError(TYPE_ERROR_EVALUABLE, takeIndicator(t), "functor %s/1 for arithmetic expression", RepAtom(name)->StrOfAE); return FALSE; } do { out = eval1(p->FOfEE, top PASS_REGS); go = Yap_CheckArithError(); } while (go); return Yap_unify_constant(ARG1, out); } return false; } static Int p_unary_op_as_integer(USES_REGS1) { /* X is Y */ Term t = Deref(ARG1); if (IsVarTerm(t)) { Yap_EvalError(INSTANTIATION_ERROR, t, "X is _Y"); return (FALSE); } if (IsIntTerm(t)) { return Yap_unify_constant(ARG2, t); } if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 1)))) { return Yap_unify(ARG1, ARG2); } return Yap_unify_constant(ARG2, MkIntTerm(p->FOfEE)); } return (FALSE); } void Yap_InitUnaryExps(void) { unsigned int i; ExpEntry *p; for (i = 0; i < sizeof(InitUnTab) / sizeof(InitUnEntry); ++i) { AtomEntry *ae = RepAtom(Yap_LookupAtom(InitUnTab[i].OpName)); if (ae == NULL) { Yap_EvalError(RESOURCE_ERROR_HEAP, TermNil, "at InitUnaryExps"); return; } WRITE_LOCK(ae->ARWLock); if (Yap_GetExpPropHavingLock(ae, 1)) { WRITE_UNLOCK(ae->ARWLock); break; } p = (ExpEntry *)Yap_AllocAtomSpace(sizeof(ExpEntry)); p->KindOfPE = ExpProperty; p->ArityOfEE = 1; p->ENoOfEE = 1; p->FOfEE = InitUnTab[i].f; AddPropToAtom(ae, (PropEntry *)p); WRITE_UNLOCK(ae->ARWLock); } Yap_InitCPred("is", 3, p_unary_is, TestPredFlag | SafePredFlag); Yap_InitCPred("$unary_op_as_integer", 2, p_unary_op_as_integer, TestPredFlag | SafePredFlag); } /* This routine is called from Restore to make sure we have the same arithmetic * operators */ int Yap_ReInitUnaryExps(void) { return TRUE; }