This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/yap2swi/yap2swi.c
2010-11-29 23:17:06 +00:00

3149 lines
68 KiB
C
Executable File

/* yap2swi.c */
/*
* Project: jpl for Yap Prolog
* Author: Steve Moyle and Vitor Santos Costa
* Email: steve.moyle@comlab.ox.ac.uk
* Date: 21 January 2002
* Copyright (c) 2002 Steve Moyle. All rights reserved.
*/
//=== includes ===============================================================
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <wchar.h>
#include <assert.h>
#include <Yap.h>
#include <Yatom.h>
#include <YapHeap.h>
#include <eval.h>
#if HAVE_MATH_H
#include <math.h>
#endif
#if HAVE_ERRNO_H
#include <errno.h>
#endif
#define PL_KERNEL 1
#include <SWI-Stream.h>
#include <SWI-Prolog.h>
#include <yapio.h>
#ifdef USE_GMP
#include <gmp.h>
#endif
#ifdef __WIN32__
/* Windows */
#include <fcntl.h>
#endif
#include "swi.h"
extern X_API Int YAP_PLArityOfSWIFunctor(functor_t at);
X_API Int
YAP_PLArityOfSWIFunctor(functor_t at) {
if (IsAtomTerm(at))
return 0;
if ((CELL)(at) & 2)
return ArityOfFunctor(SWI_Functors[((CELL)at)/4]);
return ArityOfFunctor((Functor)at);
}
void
Yap_InitSWIHash(void)
{
int i, j;
memset(SWI_ReverseHash, 0, N_SWI_HASH*sizeof(swi_rev_hash));
for (i=0; i < N_SWI_ATOMS; i++) {
add_to_hash(i*2+1, (ADDR)SWI_Atoms[i]);
}
for (j=0; j < N_SWI_FUNCTORS; j++) {
add_to_hash((((CELL)(j))*4+2), (ADDR)SWI_Functors[j]);
}
}
static void
PredicateInfo(void *p, Atom* a, unsigned long int* arity, Term* m)
{
PredEntry *pd = (PredEntry *)p;
if (pd->ArityOfPE) {
*arity = pd->ArityOfPE;
*a = NameOfFunctor(pd->FunctorOfPred);
} else {
*arity = 0;
*a = (Atom)(pd->FunctorOfPred);
}
if (pd->ModuleOfPred)
*m = pd->ModuleOfPred;
else
*m = TermProlog;
}
static void
UserCPredicate(char *a, CPredicate def, unsigned long int arity, Term mod, int flags)
{
PredEntry *pe;
Term cm = CurrentModule;
/* fprintf(stderr,"doing %s:%s/%d\n", RepAtom(AtomOfTerm(mod))->StrOfAE, a,arity); */
CurrentModule = mod;
Yap_InitCPred(a, arity, def, UserCPredFlag);
if (arity == 0) {
Atom at;
while ((at = Yap_LookupAtom(a)) == NULL) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return;
}
}
pe = RepPredProp(PredPropByAtom(at,mod));
} else {
Atom at;
Functor f;
while ((at = Yap_LookupAtom(a)) == NULL) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return;
}
}
f = Yap_MkFunctor(at, arity);
pe = RepPredProp(PredPropByFunc(f,mod));
}
pe->PredFlags |= (CArgsPredFlag|flags);
CurrentModule = cm;
}
static char *
alloc_ring_buf(void)
{
SWI_buf_index++;
if (SWI_buf_index == SWI_BUF_RINGS)
SWI_buf_index = 0;
if (SWI_buffers_sz[SWI_buf_index+1] == 0) {
char * new;
if (!(new = malloc(512))) {
return NULL;
}
SWI_buffers_sz[SWI_buf_index+1] = 512;
SWI_buffers[SWI_buf_index+1] = new;
}
return SWI_buffers[SWI_buf_index+1];
}
static char *
ensure_space(char **sp, size_t room, unsigned flags) {
size_t min = 512;
int i = 0;
char *ptr = *sp;
if (room < SWI_BUF_SIZE)
return *sp;
while (min < room)
min += 512;
if (flags & BUF_MALLOC) {
PL_free(*sp);
*sp = PL_malloc(room);
return *sp;
} else if (flags & BUF_RING) {
for (i=1; i<= SWI_BUF_RINGS; i++)
if (SWI_buffers[i] == ptr)
break;
} else {
i = 0;
}
if (SWI_buffers_sz[i] >= room)
return ptr;
free(SWI_buffers[i]);
SWI_buffers[i] = malloc(min);
if (SWI_buffers[i])
SWI_buffers_sz[i] = min;
else
SWI_buffers_sz[i] = 0;
*sp = SWI_buffers[i];
return *sp;
}
/* SWI: void PL_agc_hook(void) */
X_API PL_agc_hook_t
PL_agc_hook(PL_agc_hook_t entry)
{
return (PL_agc_hook_t)YAP_AGCRegisterHook((YAP_agc_hook)entry);
}
/* SWI: char* PL_atom_chars(atom_t atom)
YAP: char* AtomName(Atom) */
X_API char* PL_atom_chars(atom_t a) /* SAM check type */
{
return RepAtom(SWIAtomToAtom(a))->StrOfAE;
}
/* SWI: char* PL_atom_chars(atom_t atom)
YAP: char* AtomName(Atom) */
X_API char* PL_atom_nchars(atom_t a, size_t *len) /* SAM check type */
{
char *s = RepAtom(SWIAtomToAtom(a))->StrOfAE;
*len = strlen(s);
return s;
}
X_API int
PL_chars_to_term(const char *s, term_t term) {
YAP_Term t,error;
if ( (t=YAP_ReadBuffer(s,&error))==0L ) {
Yap_PutInSlot(term, error);
return 0L;
}
Yap_PutInSlot(term,t);
return 1L;
}
/* SWI: term_t PL_copy_term_ref(term_t from)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API term_t PL_copy_term_ref(term_t from)
{
return YAP_InitSlot(Yap_GetFromSlot(from));
}
X_API term_t PL_new_term_ref(void)
{
term_t to = Yap_NewSlots(1);
return to;
}
X_API term_t PL_new_term_refs(int n)
{
term_t to = Yap_NewSlots(n);
return to;
}
X_API void PL_reset_term_refs(term_t after)
{
term_t new = Yap_NewSlots(1);
YAP_RecoverSlots(after-new);
}
/* begin PL_get_* functions =============================*/
/* SWI: int PL_get_arg(int index, term_t t, term_t a)
YAP: YAP_Term YAP_ArgOfTerm(int argno, YAP_Term t)*/
X_API int PL_get_arg(int index, term_t ts, term_t a)
{
YAP_Term t = Yap_GetFromSlot(ts);
if ( !YAP_IsApplTerm(t) ) {
if (YAP_IsPairTerm(t)) {
if (index == 1){
Yap_PutInSlot(a,YAP_HeadOfTerm(t));
return 1;
} else if (index == 2) {
Yap_PutInSlot(a,YAP_TailOfTerm(t));
return 1;
}
}
return 0;
}
Yap_PutInSlot(a,YAP_ArgOfTerm(index, t));
return 1;
}
/* SWI: int PL_get_arg(int index, term_t t, term_t a)
YAP: YAP_Term YAP_ArgOfTerm(int argno, YAP_Term t)*/
X_API int _PL_get_arg(int index, term_t ts, term_t a)
{
YAP_Term t = Yap_GetFromSlot(ts);
if ( !YAP_IsApplTerm(t) ) {
if (YAP_IsPairTerm(t)) {
if (index == 1){
Yap_PutInSlot(a,YAP_HeadOfTerm(t));
return 1;
} else if (index == 2) {
Yap_PutInSlot(a,YAP_TailOfTerm(t));
return 1;
}
}
return 0;
}
Yap_PutInSlot(a,YAP_ArgOfTerm(index, t));
return 1;
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_atom(term_t ts, atom_t *a)
{
YAP_Term t = Yap_GetFromSlot(ts);
if ( !IsAtomTerm(t))
return 0;
*a = AtomToSWIAtom(AtomOfTerm(t));
return 1;
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_intptr(term_t ts, intptr_t *a)
{
Term t = Yap_GetFromSlot(ts);
if ( !IsIntegerTerm(t) )
return 0;
*a = (intptr_t)(IntegerOfTerm(t));
return 1;
}
/* SWI: int PL_get_atom_chars(term_t t, char **s)
YAP: char* AtomName(Atom) */
X_API int PL_get_atom_chars(term_t ts, char **a) /* SAM check type */
{
Term t = Yap_GetFromSlot(ts);
if (!IsAtomTerm(t))
return 0;
*a = RepAtom(AtomOfTerm(t))->StrOfAE;
return 1;
}
/* SWI: int PL_get_atom_chars(term_t t, char **s)
YAP: char* AtomName(Atom) */
X_API int PL_get_atom_nchars(term_t ts, size_t *len, char **s) /* SAM check type */
{
Term t = Yap_GetFromSlot(ts);
if (!IsAtomTerm(t))
return 0;
*s = RepAtom(AtomOfTerm(t))->StrOfAE;
*len = strlen(*s);
return 1;
}
/*
int PL_get_chars(term_t +t, char **s, unsigned flags) Convert the
argument term t to a 0-terminated C-string. flags is a bitwise
disjunction from two groups of constants. The first specifies which
term-types should converted and the second how the argument is
stored. Below is a specification of these constants. BUF_RING
implies, if the data is not static (as from an atom), the data is
copied to the next buffer from a ring of sixteen (16) buffers. This is a
convenient way of converting multiple arguments passed to a foreign
predicate to C-strings. If BUF_MALLOC is used, the data must be
freed using free() when not needed any longer.
CVT_ATOM Convert if term is an atom
CVT_STRING Convert if term is a string
CVT_LIST Convert if term is a list of integers between 1 and 255
CVT_INTEGER Convert if term is an integer (using %d)
CVT_FLOAT Convert if term is a float (using %f)
CVT_NUMBER Convert if term is a integer or float
CVT_ATOMIC Convert if term is atomic
CVT_VARIABLE Convert variable to print-name
CVT_ALL Convert if term is any of the above, except for variables
BUF_DISCARDABLE Data must copied immediately
BUF_RING Data is stored in a ring of buffers
BUF_MALLOC Data is copied to a new buffer returned by malloc(3)
*/
static int CvtToStringTerm(Term t, char *buf, char *buf_max)
{
while (IsPairTerm(t)) {
YAP_Term hd = HeadOfTerm(t);
long int i;
if (IsVarTerm(hd) || !IsIntTerm(hd))
return 0;
i = IntOfTerm(hd);
if (i <= 0 || i >= 255)
return 0;
*buf++ = i;
if (buf == buf_max)
return 0;
t = TailOfTerm(t);
if (IsVarTerm(t))
return 0;
}
if (t != TermNil)
return 0;
if (buf+1 == buf_max)
return 0;
buf[0] = '\0';
return 1;
}
#if !HAVE_SNPRINTF
#define snprintf(X,Y,Z,A) sprintf(X,Z,A)
#endif
/* This does not understand UNICODE yet */
static int do_yap_putc(int sno, wchar_t ch) {
if (putc_curp < putc_cur_lim) {
*putc_curp++ = ch;
return TRUE;
} else if (putc_cur_flags & BUF_MALLOC) {
/* handle overflow by using realloc(); */
UInt bufsize = putc_cur_lim-putc_cur_buf;
UInt bufpos = putc_curp-putc_cur_buf;
if (!(putc_cur_buf = PL_realloc(putc_cur_buf, bufsize+SWI_BUF_SIZE))) {
/* we can+t go forever */
return FALSE;
}
putc_curp = putc_cur_buf+bufpos;
putc_cur_lim = putc_cur_buf+(bufsize+SWI_BUF_SIZE);
return do_yap_putc(sno, ch);
}
return FALSE;
}
static int
CvtToGenericTerm(Term t, char *tmp, unsigned flags, char **sp)
{
int wflags = 0;
putc_cur_buf = putc_curp = tmp;
putc_cur_flags = flags;
if ((flags & BUF_RING)) {
putc_cur_lim = tmp+(SWI_TMP_BUF_SIZE-1);
} else {
putc_cur_lim = tmp+(SWI_BUF_SIZE-1);
}
if (flags & CVT_WRITE_CANONICAL) {
wflags |= (YAP_WRITE_IGNORE_OPS|YAP_WRITE_QUOTED);
}
Yap_plwrite(t, do_yap_putc, wflags, 1200);
if (putc_cur_buf == putc_cur_lim)
return 0;
*putc_curp = '\0';
/* may have changed due to overflows */
*sp = putc_cur_buf;
return 1;
}
static int
cv_error(unsigned flags)
{
if (flags & CVT_EXCEPTION) {
YAP_Error(0, 0L, "PL_get_chars");
}
return 0;
}
X_API int PL_get_chars(term_t l, char **sp, unsigned flags)
{
YAP_Term t = Yap_GetFromSlot(l);
char *tmp;
if ((flags & BUF_RING)) {
tmp = alloc_ring_buf();
} else if ((flags & BUF_MALLOC)) {
tmp = PL_malloc(SWI_BUF_SIZE);
} else {
tmp = SWI_buffers[0];
}
*sp = tmp;
if (IsVarTerm(t)) {
if (!(flags & (CVT_VARIABLE|CVT_WRITE|CVT_WRITE_CANONICAL)))
return cv_error(flags);
if (!CvtToGenericTerm(t, tmp, flags, sp))
return 0;
} else if (IsAtomTerm(t)) {
Atom at = AtomOfTerm(t);
if (!(flags & (CVT_ATOM|CVT_ATOMIC|CVT_WRITE|CVT_WRITE_CANONICAL|CVT_ALL)))
return cv_error(flags);
if (IsWideAtom(at)) {
size_t sz = wcslen(RepAtom(at)->WStrOfAE)*sizeof(wchar_t);
if (!(tmp = ensure_space(sp, (sz+1)*sizeof(wchar_t), flags)))
return 0;
} else {
char *s = RepAtom(at)->StrOfAE;
size_t sz = strlen(RepAtom(at)->StrOfAE)+1;
if (!(tmp = ensure_space(sp, sz, flags)))
return 0;
strncpy(*sp,s,sz);
}
} else if (IsNumTerm(t)) {
if (IsFloatTerm(t)) {
if (!(flags & (CVT_FLOAT|CVT_NUMBER|CVT_ATOMIC|CVT_WRITE|CVT_WRITE_CANONICAL|CVT_ALL)))
return cv_error(flags);
snprintf(tmp,SWI_BUF_SIZE,"%f",FloatOfTerm(t));
} else {
if (!(flags & (CVT_INTEGER|CVT_NUMBER|CVT_ATOMIC|CVT_WRITE|CVT_WRITE_CANONICAL|CVT_ALL)))
return cv_error(flags);
#if _WIN64
snprintf(tmp,SWI_BUF_SIZE,"%I64d",IntegerOfTerm(t));
#else
snprintf(tmp,SWI_BUF_SIZE,"%ld",IntegerOfTerm(t));
#endif
}
} else if (IsPairTerm(t)) {
if (!(flags & (CVT_LIST|CVT_WRITE|CVT_WRITE_CANONICAL|CVT_ALL))) {
return cv_error(flags);
}
if (CvtToStringTerm(t,tmp,tmp+SWI_BUF_SIZE) == 0) {
if (flags & (CVT_WRITE|CVT_WRITE_CANONICAL)) {
if (!CvtToGenericTerm(t, tmp, flags, sp))
return 0;
} else {
return cv_error(flags);
}
}
} else {
#if USE_GMP
if (IsBigIntTerm(t)) {
if (!(flags & (CVT_INTEGER|CVT_NUMBER|CVT_ATOMIC|CVT_WRITE|CVT_WRITE_CANONICAL|CVT_ALL)))
return cv_error(flags);
Yap_gmp_to_string(t, tmp, SWI_BUF_SIZE-1, 10);
} else
#endif
if (IsBlobStringTerm(t)) {
if (!(flags & (CVT_STRING|CVT_WRITE|CVT_WRITE_CANONICAL|CVT_ALL))) {
return cv_error(flags);
} else {
char *s = Yap_BlobStringOfTerm(t);
strncat(tmp, s, SWI_BUF_SIZE-1);
}
} else {
if (!(flags & (CVT_WRITE|CVT_WRITE_CANONICAL))) {
return cv_error(flags);
}
if (!CvtToGenericTerm(t, tmp, flags, sp))
return 0;
}
}
if (flags & BUF_MALLOC) {
size_t sz = strlen(tmp);
char *nbf = PL_malloc(sz+1);
if (!nbf)
return 0;
strncpy(nbf,tmp,sz+1);
free(tmp);
*sp = nbf;
}
return 1;
}
X_API int PL_get_nchars(term_t l, size_t *len, char **sp, unsigned flags)
{
int out = PL_get_chars(l, sp, flags);
if (!out) return out;
if (len)
*len = strlen(*sp);
return out;
}
/* same as get_chars, but works on buffers of wide chars */
X_API int PL_get_wchars(term_t l, size_t *len, wchar_t **wsp, unsigned flags)
{
unsigned nflags = ((CVT_MASK & flags) | (CVT_EXCEPTION & flags) | BUF_MALLOC);
size_t room;
wchar_t *buf, *wbuf = NULL;
size_t sz, i;
char *sp, *sp0;
Term t = Yap_GetFromSlot(l);
if (!IsVarTerm(t) && IsAtomTerm(t) && IsWideAtom(AtomOfTerm(t))) {
if (!(flags & (CVT_ATOM|CVT_ATOMIC|CVT_WRITE|CVT_WRITE_CANONICAL|CVT_ALL)))
return cv_error(flags);
wbuf = RepAtom(AtomOfTerm(t))->WStrOfAE;
sz = wcslen(wbuf);
*len = sz;
} else {
if (!PL_get_nchars(l, &sz, &sp, nflags))
return 0;
if (len)
*len = sz;
}
room = (sz+1)*sizeof(wchar_t);
if (flags & BUF_MALLOC) {
*wsp = buf = (wchar_t *)PL_malloc(room);
} else if (flags & BUF_RING) {
*wsp = (wchar_t *)alloc_ring_buf();
buf = (wchar_t *)ensure_space((char **)wsp, room, flags);
} else {
*wsp = (wchar_t *)SWI_buffers[0];
buf = (wchar_t *)ensure_space((char **)wsp, room, flags);
}
if (!buf) {
if (flags & CVT_EXCEPTION)
YAP_Error(0, 0L, "PL_get_wchars: buf_discardable too small for %ld wchars", sz);
return 0;
}
if (wbuf) {
wcsncpy(buf, wbuf, sz);
} else {
sp0 = sp;
buf[sz] = '\0';
for (i=0; i< sz; i++)
*buf++ = *sp++;
free(sp0);
}
return 1;
}
/* SWI: int PL_get_functor(term_t t, functor_t *f)
YAP: YAP_Functor YAP_FunctorOfTerm(Term) */
X_API int PL_get_functor(term_t ts, functor_t *f)
{
Term t = Yap_GetFromSlot(ts);
if ( IsAtomTerm(t)) {
*f = t;
} else {
*f = FunctorToSWIFunctor(FunctorOfTerm(t));
}
return 1;
}
/* SWI: int PL_get_float(term_t t, double *f)
YAP: double YAP_FloatOfTerm(Term) */
X_API int PL_get_float(term_t ts, double *f) /* SAM type check*/
{
YAP_Term t = Yap_GetFromSlot(ts);
if ( YAP_IsFloatTerm(t)) {
*f = YAP_FloatOfTerm(t);
} else if ( YAP_IsIntTerm(t)) {
*f = YAP_IntOfTerm(t);
} else {
return 0;
}
return 1;
}
X_API int PL_get_head(term_t ts, term_t h)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(h,YAP_HeadOfTerm(t));
return 1;
}
X_API int PL_get_string(term_t t, char **s, size_t *len)
{
return PL_get_string_chars(t, s, len);
}
X_API int PL_get_string_chars(term_t t, char **s, size_t *len)
{
Term tt = Yap_GetFromSlot(t);
if (!IsBlobStringTerm(tt)) {
return 0;
}
*s = Yap_BlobStringOfTermAndLength(tt, len);
return TRUE;
}
/* SWI: int PL_get_integer(term_t t, int *i)
YAP: long int YAP_IntOfTerm(Term) */
X_API int PL_get_integer(term_t ts, int *i)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) )
return 0;
*i = YAP_IntOfTerm(t);
return 1;
}
/* SWI: int PL_get_bool(term_t t, int *i)
YAP: long int YAP_AtomOfTerm(Term) */
X_API int PL_get_bool(term_t ts, int *i)
{
YAP_Term t = Yap_GetFromSlot(ts);
Atom at;
if (!IsAtomTerm(t) )
return 0;
at = AtomOfTerm(t);
if (at == AtomTrue) {
*i = TRUE;
return 1;
}
if (at == AtomFalse) {
*i = FALSE;
return 1;
}
return 0;
}
X_API int PL_get_long(term_t ts, long *i)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) ) {
if (YAP_IsFloatTerm(t)) {
double dbl = YAP_FloatOfTerm(t);
if (dbl - (long)dbl == 0.0) {
*i = (long)dbl;
return 1;
}
}
return 0;
}
*i = YAP_IntOfTerm(t);
return 1;
}
X_API int PL_get_int64(term_t ts, int64_t *i)
{
#if SIZE_OF_LONG_INT==8
return PL_get_long(ts, (long *)i);
#else
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) ) {
if (YAP_IsFloatTerm(t)) {
double dbl = YAP_FloatOfTerm(t);
if (dbl - (int64_t)dbl == 0.0) {
*i = (int64_t)dbl;
return 1;
}
#if USE_GMP
} else if (YAP_IsBigNumTerm(t)) {
MP_INT g;
char s[64];
YAP_BigNumOfTerm(t, (void *)&g);
if (mpz_sizeinbase(&g,2) > 64) {
return 0;
}
mpz_get_str (s, 10, &g);
#ifdef _WIN32
sscanf(s, "%I64d", (long long int *)i);
#else
sscanf(s, "%lld", (long long int *)i);
#endif
return 1;
#endif
}
return 0;
}
*i = YAP_IntOfTerm(t);
return 1;
#endif
}
#if USE_GMP
/*******************************
* GMP *
*******************************/
X_API int PL_get_mpz(term_t t, mpz_t mpz)
{
Term t0 = Yap_GetFromSlot(t);
return Yap_term_to_existing_big(t0, mpz);
}
X_API int PL_unify_mpz(term_t t, mpz_t mpz)
{
Term iterm = Yap_MkBigIntTerm(mpz);
return Yap_unify(Yap_GetFromSlot(t),iterm);
}
X_API int PL_get_mpq(term_t t, mpq_t mpz)
{
Term t0 = Yap_GetFromSlot(t);
return Yap_term_to_existing_rat(t0, mpz);
}
X_API int PL_unify_mpq(term_t t, mpq_t mpq)
{
Term iterm = Yap_MkBigRatTerm(mpq);
return Yap_unify(Yap_GetFromSlot(t),iterm);
}
#endif
X_API int PL_get_list(term_t ts, term_t h, term_t tl)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (IsVarTerm(t) || !IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(h,HeadOfTerm(t));
Yap_PutInSlot(tl,TailOfTerm(t));
return 1;
}
X_API int PL_get_list_chars(term_t l, char **sp, unsigned flags)
{
if (flags & (CVT_ATOM|CVT_STRING|CVT_INTEGER|CVT_FLOAT|CVT_NUMBER|CVT_ATOMIC|CVT_VARIABLE|CVT_ALL))
return 0;
return PL_get_chars(l, sp, CVT_LIST|flags);
}
/* SWI: int PL_get_module(term_t t, module_t *m) */
X_API int PL_get_module(term_t ts, module_t *m)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!IsAtomTerm(t) )
return FALSE;
*m = (module_t)t;
return TRUE;
}
/* SWI: int PL_new_module(term_t t, module_t *m) */
X_API module_t PL_new_module(atom_t swiat)
{
Atom at = SWIAtomToAtom(swiat);
Term t;
WRITE_LOCK(RepAtom(at)->ARWLock);
t = Yap_Module(MkAtomTerm(at));
WRITE_UNLOCK(RepAtom(at)->ARWLock);
return (module_t)t;
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_name_arity(term_t ts, atom_t *name, int *arity)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (IsAtomTerm(t)) {
*name = AtomToSWIAtom(AtomOfTerm(t));
*arity = 0;
return 1;
}
if (YAP_IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
*name = AtomToSWIAtom(NameOfFunctor(f));
*arity = ArityOfFunctor(f);
return 1;
}
if (YAP_IsPairTerm(t)) {
*name = AtomToSWIAtom(AtomDot);
*arity = 2;
return 1;
}
return 0;
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_nil(term_t ts)
{
Term t = Yap_GetFromSlot(ts);
return ( t == TermNil );
}
/* SWI: int PL_get_pointer(term_t t, int *i)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_get_pointer(term_t ts, void **i)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) )
return 0;
*i = (void *)YAP_IntOfTerm(t);
return 1;
}
X_API int PL_get_tail(term_t ts, term_t tl)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(tl,YAP_TailOfTerm(t));
return 1;
}
/* end PL_get_* functions =============================*/
/* begin PL_new_* functions =============================*/
/* SWI: atom_t PL_new_atom(const char *)
YAP: YAP_Atom LookupAtom(char *) */
/* SAM should the following be used instead?
YAP_Atom FullLookupAtom(char *)
*/
X_API atom_t PL_new_atom(const char *c)
{
Atom at;
while ((at = Yap_LookupAtom((char *)c)) == NULL) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return 0L;
}
}
Yap_AtomIncreaseHold(at);
return AtomToSWIAtom(at);
}
X_API atom_t PL_new_atom_nchars(size_t len, const char *c)
{
Atom at;
char *pt;
if (strlen(c) > len) {
while ((pt = (char *)Yap_AllocCodeSpace(len+1)) == NULL) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return 0L;
}
}
strncpy(pt, c, len);
pt[len] = '\0';
} else {
pt = (char *)c;
}
while ((at = Yap_LookupAtom(pt)) == NULL) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return 0L;
}
}
Yap_AtomIncreaseHold(at);
return AtomToSWIAtom(at);
}
X_API atom_t PL_new_atom_wchars(size_t len, const wchar_t *c)
{
atom_t at;
int i;
for (i=0;i<len;i++) {
if (c[i] > 255) break;
}
if (i!=len) {
Atom at0;
wchar_t *nbf;
while (!(nbf = (wchar_t *)YAP_AllocSpaceFromYap((len+1)*sizeof(wchar_t)))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return 0;
}
}
for (i=0;i<len;i++)
nbf[i] = c[i];
nbf[len]='\0';
while ((at0 = Yap_LookupWideAtom(nbf)) == NULL) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return 0L;
}
}
at = AtomToSWIAtom(at0);
YAP_FreeSpaceFromYap(nbf);
} else {
char *nbf;
Atom at0;
while (!(nbf = (char *)YAP_AllocSpaceFromYap((len+1)*sizeof(char)))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return 0;
}
}
for (i=0;i<len;i++)
nbf[i] = c[i];
nbf[len]='\0';
while (!(at0 = Yap_LookupAtom(nbf))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return 0;
}
}
at = AtomToSWIAtom(at0);
YAP_FreeSpaceFromYap(nbf);
}
return at;
}
X_API wchar_t *PL_atom_wchars(atom_t name, size_t *sp)
{
Atom at = SWIAtomToAtom(name);
if (!IsWideAtom(at))
return NULL;
*sp = wcslen(RepAtom(at)->WStrOfAE);
return RepAtom(at)->WStrOfAE;
}
X_API functor_t PL_new_functor(atom_t name, int arity)
{
functor_t f;
Atom at = SWIAtomToAtom(name);
if (arity == 0) {
f = FunctorToSWIFunctor((Functor)MkAtomTerm(at));
} else {
f = FunctorToSWIFunctor(Yap_MkFunctor(at,arity));
}
return f;
}
X_API atom_t PL_functor_name(functor_t f)
{
if (IsAtomTerm(f)) {
return AtomToSWIAtom(AtomOfTerm((Term)SWIFunctorToFunctor(f)));
} else {
return AtomToSWIAtom(NameOfFunctor(SWIFunctorToFunctor(f)));
}
}
X_API int PL_functor_arity(functor_t f)
{
if (IsAtomTerm(f)) {
return 0;
} else {
return ArityOfFunctor(SWIFunctorToFunctor(f));
}
}
/* end PL_new_* functions =============================*/
/* begin PL_put_* functions =============================*/
X_API int PL_cons_functor(term_t d, functor_t f,...)
{
va_list ap;
int arity, i;
Term *tmp, t;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(d, (YAP_Term)f);
return TRUE;
}
arity = ArityOfFunctor(ff);
while (Unsigned(H+arity) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
if (arity == 2 && ff == FunctorDot) {
t = Yap_MkNewPairTerm();
tmp = RepPair(t);
} else {
t = Yap_MkNewApplTerm(ff, arity);
tmp = RepAppl(t)+1;
}
va_start (ap, f);
for (i = 0; i < arity; i++) {
Yap_unify(tmp[i],Yap_GetFromSlot(va_arg(ap, term_t)));
}
va_end (ap);
Yap_PutInSlot(d,t);
return TRUE;
}
X_API int PL_cons_functor_v(term_t d, functor_t f, term_t a0)
{
int arity, i;
Term *tmp, t;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(d, (YAP_Term)f);
return TRUE;
}
arity = ArityOfFunctor(ff);
while (Unsigned(H+arity) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
if (arity == 2 && ff == FunctorDot) {
t = Yap_MkNewPairTerm();
tmp = RepPair(t);
} else {
t = Yap_MkNewApplTerm(ff, arity);
tmp = RepAppl(t)+1;
}
for (i = 0; i < arity; i++) {
Yap_unify(tmp[i],Yap_GetFromSlot(a0));
a0++;
}
Yap_PutInSlot(d,t);
return TRUE;
}
X_API int PL_cons_list(term_t d, term_t h, term_t t)
{
Yap_PutInSlot(d,YAP_MkPairTerm(Yap_GetFromSlot(h),Yap_GetFromSlot(t)));
return TRUE;
}
X_API int PL_put_atom(term_t t, atom_t a)
{
Yap_PutInSlot(t,MkAtomTerm(SWIAtomToAtom(a)));
return TRUE;
}
X_API int PL_put_atom_chars(term_t t, const char *s)
{
Atom at;
while (!(at = Yap_LookupAtom((char *)s))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
Yap_PutInSlot(t,MkAtomTerm(at));
return TRUE;
}
X_API int PL_put_atom_nchars(term_t t, size_t len, const char *s)
{
Atom at;
char *buf;
if (strlen(s) > len) {
while (!(buf = (char *)Yap_AllocCodeSpace(len+1))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
strncpy(buf, s, len);
} else {
buf = (char *)s;
}
while (!(at = Yap_LookupAtom(buf))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
Yap_PutInSlot(t,MkAtomTerm(at));
return TRUE;
}
X_API int PL_put_float(term_t t, double fl)
{
Yap_PutInSlot(t,YAP_MkFloatTerm(fl));
return TRUE;
}
X_API int PL_put_functor(term_t t, functor_t f)
{
long int arity;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(t,(Term)ff);
} else {
arity = ArityOfFunctor(ff);
if (arity == 2 && ff == FunctorDot)
Yap_PutInSlot(t,YAP_MkNewPairTerm());
else
Yap_PutInSlot(t,YAP_MkNewApplTerm((YAP_Functor)ff,arity));
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
}
return TRUE;
}
X_API int PL_put_integer(term_t t, long n)
{
Yap_PutInSlot(t,YAP_MkIntTerm(n));
return TRUE;
}
X_API int PL_put_int64(term_t t, int64_t n)
{
#if USE_GMP
char s[64];
MP_INT rop;
#ifdef _WIN32
snprintf(s, 64, "%I64d", (long long int)n);
#elif HAVE_SNPRINTF
snprintf(s, 64, "%lld", (long long int)n);
#else
sprintf(s, "%lld", (long long int)n);
#endif
mpz_init_set_str (&rop, s, 10);
Yap_PutInSlot(t,YAP_MkBigNumTerm((void *)&rop));
return TRUE;
#else
return FALSE;
#endif
}
X_API int PL_put_list(term_t t)
{
Yap_PutInSlot(t,YAP_MkNewPairTerm());
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
return TRUE;
}
X_API int PL_put_list_chars(term_t t, const char *s)
{
Yap_PutInSlot(t,YAP_BufferToString((char *)s));
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
return TRUE;
}
X_API void PL_put_nil(term_t t)
{
Yap_PutInSlot(t,TermNil);
}
/* SWI: void PL_put_pointer(term_t -t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_put_pointer(term_t t, void *ptr)
{
YAP_Term tptr = YAP_MkIntTerm((YAP_Int)ptr);
Yap_PutInSlot(t,tptr);
return TRUE;
}
X_API int PL_put_string_nchars(term_t t, size_t len, const char *chars)
{
Term tt;
if ((tt = Yap_MkBlobStringTerm(chars, len)) == TermNil)
return FALSE;
Yap_PutInSlot(t,tt);
return TRUE;
}
X_API int PL_put_term(term_t d, term_t s)
{
Yap_PutInSlot(d,Yap_GetFromSlot(s));
return TRUE;
}
X_API int PL_put_variable(term_t t)
{
Yap_PutInSlot(t,MkVarTerm());
return TRUE;
}
/* end PL_put_* functions =============================*/
/* SWI: int PL_raise_exception(term_t exception)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_raise_exception(term_t exception)
{
YAP_Throw(Yap_GetFromSlot(exception));
return 0;
}
X_API int PL_throw(term_t exception)
{
YAP_Throw(Yap_GetFromSlot(exception));
longjmp(execution->env, 0);
return 0;
}
X_API void PL_fatal_error(const char *msg)
{
fprintf(stderr,"[ FATAL ERROR: %s ]\n",msg);
Yap_exit(1);
}
static char *
OsError(void)
{
#ifdef HAVE_STRERROR
#ifdef __WINDOWS__
return NULL;
#else
return strerror(errno);
#endif
#else /*HAVE_STRERROR*/
static char errmsg[64];
#ifdef __unix__
extern int sys_nerr;
#if !EMX
extern char *sys_errlist[];
#endif
extern int errno;
if ( errno < sys_nerr )
return sys_errlist[errno];
#endif
Ssprintf(errmsg, "Unknown Error (%d)", errno);
return errmsg;
#endif /*HAVE_STRERROR*/
}
X_API int PL_warning(const char *msg, ...) {
va_list args;
va_start(args, msg);
// just print the warning message and return?
fprintf(stderr,"[Warning:");
fprintf(stderr,msg,args);
fprintf(stderr,"]\n");
va_end(args);
PL_fail;
}
X_API int PL_error(const char *pred, int arity, const char *msg, int id, ...)
{
term_t formal, swi, predterm, msgterm, except;
va_list args;
formal = PL_new_term_ref();
swi = PL_new_term_ref();
predterm = PL_new_term_ref();
msgterm = PL_new_term_ref();
except = PL_new_term_ref();
if ( msg == ((char *)(-1)) )
{ if ( errno == EPLEXCEPTION )
return FALSE;
msg = OsError();
}
/* This would really require having pl-error.c, but we'll make do so as */
va_start(args, id);
switch(id) {
case ERR_INSTANTIATION:
err_instantiation:
PL_unify_atom(formal, ATOM_instantiation_error);
break;
case ERR_TYPE: /* ERR_INSTANTIATION if var(actual) */
{ atom_t expected = va_arg(args, atom_t);
term_t actual = va_arg(args, term_t);
if ( PL_is_variable(actual) && expected != ATOM_variable )
goto err_instantiation;
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_type_error2,
PL_ATOM, expected,
PL_TERM, actual);
break;
}
case ERR_DOMAIN: /* ERR_INSTANTIATION if var(arg) */
{ atom_t domain = va_arg(args, atom_t);
term_t arg = va_arg(args, term_t);
if ( PL_is_variable(arg) )
goto err_instantiation;
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_domain_error2,
PL_ATOM, domain,
PL_TERM, arg);
break;
}
case ERR_REPRESENTATION:
{ atom_t what = va_arg(args, atom_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_representation_error1,
PL_ATOM, what);
break;
}
case ERR_NOT_IMPLEMENTED_PROC:
{ const char *name = va_arg(args, const char *);
int arity = va_arg(args, int);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_not_implemented2,
PL_ATOM, ATOM_procedure,
PL_FUNCTOR, FUNCTOR_divide2,
PL_CHARS, name,
PL_INT, arity);
break;
}
case ERR_EXISTENCE:
{ atom_t type = va_arg(args, atom_t);
term_t obj = va_arg(args, term_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_existence_error2,
PL_ATOM, type,
PL_TERM, obj);
break;
}
case ERR_PERMISSION:
{ atom_t type = va_arg(args, atom_t);
atom_t op = va_arg(args, atom_t);
term_t obj = va_arg(args, term_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_permission_error3,
PL_ATOM, type,
PL_ATOM, op,
PL_TERM, obj);
break;
}
case ERR_SYSCALL:
{ const char *op = va_arg(args, const char *);
if ( !msg )
msg = op;
switch(errno)
{ case ENOMEM:
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_resource_error1,
PL_ATOM, ATOM_no_memory);
break;
default:
PL_unify_atom(formal, ATOM_system_error);
break;
}
break;
}
case ERR_TIMEOUT:
{ atom_t op = va_arg(args, atom_t);
term_t obj = va_arg(args, term_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_timeout_error2,
PL_ATOM, op,
PL_TERM, obj);
break;
}
case ERR_FILE_OPERATION:
{ atom_t action = va_arg(args, atom_t);
atom_t type = va_arg(args, atom_t);
term_t file = va_arg(args, term_t);
switch(errno)
{ case EACCES:
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_permission_error3,
PL_ATOM, action,
PL_ATOM, type,
PL_TERM, file);
break;
case EMFILE:
case ENFILE:
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_resource_error1,
PL_ATOM, ATOM_max_files);
break;
#ifdef EPIPE
case EPIPE:
if ( !msg )
msg = "Broken pipe";
/*FALLTHROUGH*/
#endif
default: /* what about the other cases? */
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_existence_error2,
PL_ATOM, type,
PL_TERM, file);
break;
}
break;
}
case ERR_NOMEM:
{ PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_resource_error1,
PL_ATOM, ATOM_no_memory);
break;
}
case ERR_EVALUATION:
{ atom_t what = va_arg(args, atom_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_evaluation_error1,
PL_ATOM, what);
break;
}
case ERR_STREAM_OP:
{ atom_t action = va_arg(args, atom_t);
term_t stream = va_arg(args, term_t);
int rc;
rc = PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_io_error2,
PL_ATOM, action,
PL_TERM, stream);
break;
}
default:
fprintf(stderr, "unimplemented SWI error %d\n",id);
goto err_instantiation;
}
va_end(args);
if ( pred )
{ PL_unify_term(predterm,
PL_FUNCTOR, FUNCTOR_divide2,
PL_CHARS, pred,
PL_INT, arity);
}
if ( msg )
{
PL_put_atom_chars(msgterm, msg);
}
PL_unify_term(swi,
PL_FUNCTOR, FUNCTOR_context2,
PL_TERM, predterm,
PL_TERM, msgterm);
PL_unify_term(except,
PL_FUNCTOR, FUNCTOR_error2,
PL_TERM, formal,
PL_TERM, swi);
return PL_raise_exception(except);
}
/* begin PL_unify_* functions =============================*/
X_API int PL_unify(term_t t1, term_t t2)
{
return YAP_Unify(Yap_GetFromSlot(t1),Yap_GetFromSlot(t2));
}
/* SWI: int PL_unify_atom(term_t ?t, atom *at)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom(term_t t, atom_t at)
{
YAP_Term cterm = MkAtomTerm(SWIAtomToAtom(at));
return YAP_Unify(Yap_GetFromSlot(t),cterm);
}
/* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_chars(term_t t, const char *s)
{
Atom catom;
Term cterm;
while (!(catom = Yap_LookupAtom((char *)s))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
cterm = MkAtomTerm(catom);
return Yap_unify(Yap_GetFromSlot(t),cterm);
}
/* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_nchars(term_t t, size_t len, const char *s)
{
Atom catom;
YAP_Term cterm;
char *buf = (char *)YAP_AllocSpaceFromYap(len+1);
if (!buf)
return FALSE;
strncpy(buf, s, len);
buf[len] = '\0';
while (!(catom = Yap_LookupAtom(buf))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
free(buf);
cterm = MkAtomTerm(catom);
return YAP_Unify(Yap_GetFromSlot(t),cterm);
}
/* SWI: int PL_unify_float(term_t ?t, double f)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_float(term_t t, double f)
{
YAP_Term fterm = YAP_MkFloatTerm(f);
return YAP_Unify(Yap_GetFromSlot(t),fterm);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_integer(term_t t, long n)
{
Term iterm = MkIntegerTerm(n);
return Yap_unify(Yap_GetFromSlot(t),iterm);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_functor(term_t t, functor_t f)
{
YAP_Term tt = Yap_GetFromSlot(t);
Functor ff = SWIFunctorToFunctor(f);
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
if (YAP_IsVarTerm(tt))
return YAP_Unify(tt, YAP_MkNewApplTerm((YAP_Functor)ff,YAP_ArityOfFunctor((YAP_Functor)f)));
if (YAP_IsPairTerm(tt))
return ff == FunctorDot;
if (!YAP_IsApplTerm(tt))
return FALSE;
return ff == FunctorOfTerm(tt);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_int64(term_t t, int64_t n)
{
#if SIZEOF_INT_P==8
Term iterm = MkIntegerTerm(n);
return Yap_unify(Yap_GetFromSlot(t),iterm);
#elif USE_GMP
YAP_Term iterm;
char s[64];
MP_INT rop;
#ifdef _WIN32
snprintf(s, 64, "%I64d", (long long int)n);
#elif HAVE_SNPRINTF
snprintf(s, 64, "%lld", (long long int)n);
#else
sprintf(s, "%lld", (long long int)n);
#endif
mpz_init_set_str (&rop, s, 10);
iterm = YAP_MkBigNumTerm((void *)&rop);
return YAP_Unify(Yap_GetFromSlot(t),iterm);
#else
fprintf(stderr,"Error: please install GM\n");
return FALSE;
#endif
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list(term_t tt, term_t h, term_t tail)
{
Term t;
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
t = Deref(Yap_GetFromSlot(tt));
if (IsVarTerm(t)) {
Term pairterm = Yap_MkNewPairTerm();
Yap_unify(t, pairterm);
/* avoid calling deref */
t = pairterm;
} else if (!IsPairTerm(t)) {
return FALSE;
}
Yap_PutInSlot(h,HeadOfTerm(t));
Yap_PutInSlot(tail,TailOfTerm(t));
return TRUE;
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_arg(int index, term_t tt, term_t arg)
{
Term t = Deref(Yap_GetFromSlot(tt)), to;
if (index < 0)
return FALSE;
if (IsVarTerm(t) || IsAtomOrIntTerm(t)) {
return FALSE;
} else if (IsPairTerm(t)) {
if (index == 1)
to = HeadOfTerm(t);
else if (index == 2)
to = TailOfTerm(t);
else
return FALSE;
} else {
Functor f = FunctorOfTerm(t);
if (IsExtensionFunctor(f))
return FALSE;
if (index > ArityOfFunctor(f))
return FALSE;
to = ArgOfTerm(index, t);
}
return Yap_unify(Yap_GetFromSlot(t),to);
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list_chars(term_t t, const char *chars)
{
YAP_Term chterm;
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
chterm = YAP_BufferToString((char *)chars);
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list_ncodes(term_t t, size_t len, const char *chars)
{
Term chterm;
if (Unsigned(H) > Unsigned(ASP+len*2)-CreepFlag) {
if (!Yap_gc(len*2*sizeof(CELL), ENV, CP)) {
return FALSE;
}
}
chterm = Yap_NStringToList((char *)chars, len);
return Yap_unify(Yap_GetFromSlot(t), chterm);
}
X_API int
PL_unify_list_codes(term_t l, const char *chars)
{ return PL_unify_list_ncodes(l, strlen(chars), chars);
}
/* SWI: int PL_unify_nil(term_t ?l)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_nil(term_t l)
{
YAP_Term nilterm = TermNil;
return YAP_Unify(Yap_GetFromSlot(l), nilterm);
}
/* SWI: int PL_unify_pointer(term_t ?t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_unify_pointer(term_t t, void *ptr)
{
YAP_Term ptrterm = YAP_MkIntTerm((YAP_Int)ptr);
return YAP_Unify(Yap_GetFromSlot(t), ptrterm);
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_string_chars(term_t t, const char *chars)
{
YAP_Term chterm;
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
chterm = YAP_BufferToString((char *)chars);
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
X_API int PL_unify_string_nchars(term_t t, size_t len, const char *chars)
{
YAP_Term chterm;
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
chterm = YAP_NBufferToString((char *)chars, len);
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
/* SWI: int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s)
*/
X_API int PL_unify_wchars(term_t t, int type, size_t len, const pl_wchar_t *chars)
{
YAP_Term chterm;
if (len == (size_t)-1)
len = wcslen(chars);
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
switch (type) {
case PL_ATOM:
{
Atom at;
while ((at = Yap_LookupMaybeWideAtomWithLength((wchar_t *)chars, len)) == NULL) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
chterm = MkAtomTerm(at);
}
break;
case PL_STRING:
chterm = Yap_MkBlobWideStringTerm(chars, len);
break;
case PL_CODE_LIST:
chterm = YAP_NWideBufferToString(chars, len);
break;
case PL_CHAR_LIST:
chterm = YAP_NWideBufferToAtomList(chars, len);
break;
default:
/* should give error?? */
return FALSE;
}
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
/* SWI: int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s)
*/
X_API int PL_unify_wchars_diff(term_t t, term_t tail, int type, size_t len, const pl_wchar_t *chars)
{
YAP_Term chterm;
if (tail == 0)
return PL_unify_wchars(t, type, len, chars);
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
if (len == (size_t)-1)
len = wcslen(chars);
switch (type) {
case PL_CODE_LIST:
chterm = YAP_NWideBufferToDiffList(chars, Yap_GetFromSlot(tail), len);
break;
case PL_CHAR_LIST:
chterm = YAP_NWideBufferToAtomDiffList(chars, Yap_GetFromSlot(tail), len);
break;
default:
fprintf(stderr,"NOT GOOD option %d PL_unify_chars_wdiff\n",type);
/* should give error?? */
return FALSE;
}
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
typedef struct {
int type;
union {
functor_t f;
term_t t;
atom_t a;
long l;
int i;
double dbl;
char *s;
struct {
size_t n;
char *s;
} ns;
struct {
size_t n;
wchar_t *w;
} nw;
void *p;
wchar_t *w;
} arg;
} arg_types;
static Atom
LookupMaxAtom(size_t n, char *s)
{
Atom catom;
char *buf = (char *)Yap_AllocCodeSpace(n+1);
if (!buf)
return FALSE;
strncpy(buf, s, n);
buf[n] = '\0';
while (!(catom = Yap_LookupAtom(buf))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return NULL;
}
}
Yap_FreeCodeSpace(buf);
return catom;
}
static Atom
LookupMaxWideAtom(size_t n, wchar_t *s)
{
Atom catom;
wchar_t *buf = (wchar_t *)Yap_AllocCodeSpace((n+1)*sizeof(wchar_t));
if (!buf)
return FALSE;
wcsncpy(buf, s, n);
buf[n] = '\0';
while (!(catom = Yap_LookupMaybeWideAtom(buf))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return NULL;
}
}
Yap_FreeAtomSpace((ADDR)buf);
return catom;
}
static YAP_Term
MkBoolTerm(int b)
{
if (b)
return MkAtomTerm(AtomTrue);
else
return MkAtomTerm(AtomFalse);
}
#define MAX_DEPTH 64
typedef struct {
int nels;
CELL *ptr;
} stack_el;
/* SWI: int PL_unify_term(term_t ?t1, term_t ?t2)
YAP long int YAP_Unify(YAP_Term* a, Term* b) */
X_API int PL_unify_term(term_t l,...)
{
va_list ap;
int type;
int nels = 1;
int depth = 1;
Term a[1], *pt;
stack_el stack[MAX_DEPTH];
if (Unsigned(H) > Unsigned(ASP)-CreepFlag) {
if (!Yap_gc(0, ENV, CP)) {
return FALSE;
}
}
va_start (ap, l);
pt = a;
while (depth > 0) {
while (nels > 0) {
type = va_arg(ap, int);
nels--;
switch(type) {
case PL_VARIABLE:
*pt++ = MkVarTerm();
break;
case PL_BOOL:
*pt++ = MkBoolTerm(va_arg(ap, int));
break;
case PL_ATOM:
*pt++ = MkAtomTerm(SWIAtomToAtom(va_arg(ap, atom_t)));
break;
case PL_INTEGER:
*pt++ = MkIntegerTerm(va_arg(ap, long));
break;
case PL_SHORT:
*pt++ = MkIntegerTerm(va_arg(ap, int));
break;
case PL_LONG:
*pt++ = MkIntegerTerm(va_arg(ap, long));
break;
case PL_INT:
*pt++ = MkIntegerTerm(va_arg(ap, int));
break;
case PL_FLOAT:
*pt++ = MkFloatTerm(va_arg(ap, double));
break;
case PL_STRING:
*pt++ = Yap_MkBlobStringTerm(va_arg(ap, char *), -1);
break;
case PL_CHARS:
{
Atom at;
char *s = va_arg(ap, char *);
while (!(at = Yap_LookupAtom(s))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
*pt++ = MkAtomTerm(at);
}
break;
case PL_NCHARS:
{
size_t sz = va_arg(ap, size_t);
*pt++ = MkAtomTerm(LookupMaxAtom(sz,va_arg(ap, char *)));
}
break;
case PL_NWCHARS:
{
size_t sz = va_arg(ap, size_t);
wchar_t * arg = va_arg(ap, wchar_t *);
*pt++ = MkAtomTerm(LookupMaxWideAtom(sz,arg));
}
break;
case PL_TERM:
{
Term t = Yap_GetFromSlot(va_arg(ap, size_t));
if (IsVarTerm(t) && VarOfTerm(t) >= ASP && VarOfTerm(t) < LCL0) {
Yap_unify(*pt++, t);
}
else {
*pt++ = t;
}
}
break;
case PL_POINTER:
*pt++ = MkIntegerTerm((Int)va_arg(ap, void *));
break;
case PL_INT64:
#if SIZE_OF_LONG_INT==8
*pt++ = MkIntegerTerm((Int)va_arg(ap, long int));
#elif USE_GMP
{
char s[64];
MP_INT rop;
#ifdef _WIN32
snprintf(s, 64, "%I64d", va_arg(ap, long long int));
#elif HAVE_SNPRINTF
snprintf(s, 64, "%lld", va_arg(ap, long long int));
#else
sprintf(s, "%lld", va_arg(ap, long long int));
#endif
mpz_init_set_str (&rop, s, 10);
*pt++ = YAP_MkBigNumTerm((void *)&rop);
}
#else
fprintf(stderr, "PL_unify_term: PL_int64 not supported\n");
exit(1);
#endif
break;
case PL_FUNCTOR:
{
functor_t f = va_arg(ap, functor_t);
Functor ff = SWIFunctorToFunctor(f);
UInt arity = ArityOfFunctor(ff);
if (!arity) {
*pt++ = MkAtomTerm((Atom)f);
} else {
Term t = Yap_MkNewApplTerm(ff, arity);
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"ERROR: very deep term in PL_unify_term, change MAX_DEPTH from %d\n", MAX_DEPTH);
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth-1].ptr = pt+1;
depth++;
}
*pt = t;
if (ff == FunctorDot)
pt = RepPair(t);
else
pt = RepAppl(t)+1;
nels = arity;
}
}
break;
case PL_FUNCTOR_CHARS:
{
char *fname = va_arg(ap, char *);
size_t arity = va_arg(ap, size_t);
if (!arity) {
Atom at;
while (!(at = Yap_LookupAtom(fname))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
*pt++ = MkAtomTerm(at);
} else {
Atom at;
Functor ff;
Term t;
while (!(at = Yap_LookupAtom(fname))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
ff = Yap_MkFunctor(at,arity);
t = Yap_MkNewApplTerm(ff, arity);
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"very deep term in PL_unify_term\n");
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth-1].ptr = pt+1;
depth++;
}
*pt = t;
if (ff == FunctorDot)
pt = RepPair(t);
else
pt = RepAppl(t)+1;
nels = arity;
}
}
break;
case PL_LIST:
{
Term t = Yap_MkNewPairTerm();
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"very deep term in PL_unify_term\n");
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth].ptr = pt+1;
depth++;
}
*pt = t;
pt = RepPair(t);
nels = 2;
}
break;
default:
fprintf(stderr, "PL_unify_term: %d not supported\n", type);
exit(1);
}
}
depth--;
if (depth) {
pt = stack[depth-1].ptr;
nels = stack[depth-1].nels;
}
}
va_end (ap);
return YAP_Unify(Yap_GetFromSlot(l),a[0]);
}
/* end PL_unify_* functions =============================*/
/* SWI: void PL_register_atom(atom_t atom) */
X_API void PL_register_atom(atom_t atom)
{
Yap_AtomIncreaseHold(SWIAtomToAtom(atom));
}
/* SWI: void PL_unregister_atom(atom_t atom) */
X_API void PL_unregister_atom(atom_t atom)
{
Yap_AtomDecreaseHold(SWIAtomToAtom(atom));
}
X_API int PL_term_type(term_t t)
{
/* YAP_ does not support strings as different objects */
YAP_Term v = Yap_GetFromSlot(t);
if (YAP_IsVarTerm(v)) {
return PL_VARIABLE;
} else if (IsAtomTerm(v)) {
return PL_ATOM;
} else if (YAP_IsIntTerm(v)) {
return PL_INTEGER;
} else if (YAP_IsFloatTerm(v)) {
return PL_FLOAT;
} else {
return PL_TERM;
}
}
X_API int PL_is_atom(term_t t)
{
return IsAtomTerm(Yap_GetFromSlot(t));
}
X_API int PL_is_ground(term_t t)
{
return Yap_IsGroundTerm(Yap_GetFromSlot(t));
}
X_API int PL_is_callable(term_t t)
{
YAP_Term t1 = Yap_GetFromSlot(t);
if (IsVarTerm(t1))
return FALSE;
if (IsAtomTerm(t1) || IsPairTerm(t1))
return TRUE;
if (IsApplTerm(t1) && !IsExtensionFunctor(FunctorOfTerm(t1)))
return TRUE;
return FALSE;
}
X_API int PL_is_atomic(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return !YAP_IsVarTerm(t) || !YAP_IsApplTerm(t) || !YAP_IsPairTerm(t);
}
X_API int PL_is_compound(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return (YAP_IsApplTerm(t) || YAP_IsPairTerm(t));
}
X_API int PL_is_functor(term_t ts, functor_t f)
{
YAP_Term t = Yap_GetFromSlot(ts);
Functor ff = SWIFunctorToFunctor(f);
if (YAP_IsApplTerm(t)) {
return FunctorOfTerm(t) == (Functor)ff;
} else if (YAP_IsPairTerm(t)) {
return FunctorOfTerm(t) == FunctorDot;
} else
return 0;
}
X_API int PL_is_float(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsFloatTerm(t);
}
X_API int PL_is_integer(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsIntTerm(t);
}
X_API int PL_is_list(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return Yap_IsListTerm(t);
}
X_API int PL_is_number(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsIntTerm(t) || YAP_IsFloatTerm(t);
}
X_API int PL_is_string(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
while (YAP_IsPairTerm(t)) {
YAP_Term hd = YAP_HeadOfTerm(t);
long int i;
if (!YAP_IsIntTerm(hd))
return 0;
i = YAP_IntOfTerm(hd);
if (i <= 0 || i >= 255)
return 0;
if (!YAP_IsIntTerm(hd))
return 0;
t = YAP_TailOfTerm(t);
}
if (t != TermNil)
return 0;
return FALSE;
}
X_API int PL_is_variable(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsVarTerm(t);
}
X_API int PL_compare(term_t ts1, term_t ts2)
{
YAP_Term t1 = Yap_GetFromSlot(ts1);
YAP_Term t2 = Yap_GetFromSlot(ts2);
return YAP_CompareTerms(t1, t2);
}
X_API char *
PL_record_external
(term_t ts, size_t *sz)
{
Term t = Yap_GetFromSlot(ts);
size_t len = 512, nsz;
char *s;
while(TRUE) {
if (!(s = Yap_AllocCodeSpace(len)))
return NULL;
if ((nsz = Yap_ExportTerm(t, s, len))) {
*sz = nsz;
return s;
} else {
if (len < 16*1024)
len = len *2;
else
len += 16*1024;
}
}
return NULL;
}
/*
partial implementation of recorded_external, does not guarantee endianness nor portability, and does not
support constraints.
*/
X_API int
PL_recorded_external
(char *tp, term_t ts)
{
Term t = Yap_ImportTerm(tp);
if (t == 0)
return FALSE;
Yap_PutInSlot(ts,t);
return TRUE;
}
X_API int
PL_erase_external
(char *tp)
{
Yap_FreeCodeSpace(tp);
return TRUE;
}
X_API record_t
PL_record(term_t ts)
{
Term t = Yap_GetFromSlot(ts);
return (record_t)Yap_StoreTermInDB(t, 0);
}
X_API int
PL_recorded(record_t db, term_t ts)
{
Term t = Yap_FetchTermFromDB((DBTerm *)db);
if (t == 0L)
return FALSE;
Yap_PutInSlot(ts,t);
return TRUE;
}
X_API void
PL_erase(record_t db)
{
Yap_ReleaseTermFromDB((DBTerm *)db);
}
X_API void PL_halt(int e)
{
YAP_Halt(e);
}
X_API int PL_action(int action,...)
{
va_list ap;
va_start (ap, action);
switch (action) {
case PL_ACTION_TRACE:
fprintf(stderr, "PL_ACTION_TRACE not supported\n");
break;
case PL_ACTION_DEBUG:
fprintf(stderr, "PL_ACTION_DEBUG not supported\n");
break;
case PL_ACTION_BACKTRACE:
fprintf(stderr, "PL_ACTION_BACKTRACE not supported\n");
break;
case PL_ACTION_HALT:
{
int halt_arg = va_arg(ap, int);
YAP_Halt(halt_arg);
}
break;
case PL_ACTION_ABORT:
{
YAP_Throw(MkAtomTerm(Yap_LookupAtom("abort")));
}
break;
case PL_ACTION_BREAK:
fprintf(stderr, "PL_ACTION_BREAK not supported\n");
break;
case PL_ACTION_GUIAPP:
fprintf(stderr, "PL_ACTION_GUIAPP not supported\n");
break;
case PL_ACTION_WRITE:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
case PL_ACTION_FLUSH:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
case PL_ACTION_ATTACH_CONSOLE:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
}
va_end (ap);
return 0;
}
X_API term_t
PL_exception(qid_t q)
{
YAP_Term t;
if (YAP_GoalHasException(&t)) {
term_t to = Yap_NewSlots(1);
Yap_PutInSlot(to,t);
return to;
} else {
return 0L;
}
}
X_API void
PL_clear_exception(void)
{
EX = NULL;
}
X_API int
PL_initialise(int myargc, char **myargv)
{
YAP_init_args init_args;
memset((void *)&init_args,0,sizeof(init_args));
init_args.Argv = myargv;
init_args.Argc = myargc;
#if BOOT_FROM_SAVED_STATE
init_args.SavedState = "startup.yss";
#else
init_args.SavedState = NULL;
#endif
init_args.YapLibDir = NULL;
init_args.YapPrologBootFile = NULL;
init_args.HaltAfterConsult = FALSE;
init_args.FastBoot = FALSE;
init_args.MaxTableSpaceSize = 0;
init_args.NumberWorkers = 1;
init_args.SchedulerLoop = 10;
init_args.DelayedReleaseLoad = 3;
Yap_PL_Argc = myargc;
Yap_PL_Argv = myargv;
Yap_InitialisedFromPL = TRUE;
return YAP_Init(&init_args) != YAP_BOOT_ERROR;
}
X_API int
PL_is_initialised(int *argcp, char ***argvp)
{
if (Yap_InitialisedFromPL) {
if (argcp)
*argcp = Yap_PL_Argc;
if (argvp)
*argvp = Yap_PL_Argv;
}
return Yap_InitialisedFromPL;
}
X_API module_t
PL_context(void)
{
return (module_t)YAP_CurrentModule();
}
X_API int
PL_strip_module(term_t raw, module_t *m, term_t plain)
{
YAP_Term t = YAP_StripModule(Yap_GetFromSlot(raw),(YAP_Term *)m);
if (!t)
return FALSE;
Yap_PutInSlot(plain, t);
return TRUE;
}
X_API atom_t PL_module_name(module_t m)
{
Term t;
Atom at = AtomOfTerm((Term)m);
WRITE_LOCK(RepAtom(at)->ARWLock);
t = Yap_Module(MkAtomTerm(at));
WRITE_UNLOCK(RepAtom(at)->ARWLock);
return AtomToSWIAtom(at);
}
X_API predicate_t PL_pred(functor_t f, module_t m)
{
Functor ff = SWIFunctorToFunctor(f);
Term mod = SWIModuleToModule(m);
if (IsAtomTerm((Term)f)) {
return YAP_Predicate(YAP_AtomOfTerm((Term)f),0,mod);
} else {
return YAP_Predicate((YAP_Atom)NameOfFunctor(ff),ArityOfFunctor(ff),mod);
}
}
X_API predicate_t PL_predicate(const char *name, int arity, const char *m)
{
Term mod;
Atom at;
if (m == NULL) {
mod = CurrentModule;
if (!mod) mod = USER_MODULE;
} else {
Atom at;
while (!(at = Yap_LookupAtom((char *)m))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return NULL;
}
}
mod = MkAtomTerm(at);
}
while (!(at = Yap_LookupAtom((char *)name))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage);
return NULL;
}
}
return YAP_Predicate((YAP_Atom)at, arity, mod);
}
X_API void PL_predicate_info(predicate_t p,atom_t *name, int *arity, module_t *m)
{
PredEntry *pd = (PredEntry *)p;
Atom aname;
if (pd->ArityOfPE) {
*arity = pd->ArityOfPE;
aname = NameOfFunctor(pd->FunctorOfPred);
} else {
*arity = 0;
aname = (Atom)(pd->FunctorOfPred);
}
if (pd->ModuleOfPred)
*m = (module_t)pd->ModuleOfPred;
else
*m = (module_t)TermProlog;
*name = AtomToSWIAtom(aname);
}
X_API fid_t
PL_open_foreign_frame(void)
{
open_query *new = (open_query *)malloc(sizeof(open_query));
if (!new) return 0;
new->old = execution;
new->g = TermNil;
new->open = FALSE;
new->cp = CP;
new->p = P;
new->slots = CurSlot;
Yap_StartSlots();
execution = new;
return (fid_t)new;
}
X_API void
PL_close_foreign_frame(fid_t f)
{
execution = (open_query *)f;
CP = execution->cp;
P = execution->p;
CurSlot = execution->slots;
execution = execution->old;
}
X_API void
PL_rewind_foreign_frame(fid_t f)
{
execution = (open_query *)f;
CurSlot = execution->slots;
}
X_API void
PL_discard_foreign_frame(fid_t f)
{
execution = (open_query *)f;
CP = execution->cp;
P = execution->p;
CurSlot = execution->slots;
execution = execution->old;
}
X_API qid_t PL_open_query(module_t ctx, int flags, predicate_t p, term_t t0)
{
Atom yname;
unsigned long int arity;
Term t[2], m;
/* ignore flags and module for now */
if (execution == NULL)
PL_open_foreign_frame();
if (execution->open != 0) {
YAP_Error(0, 0L, "only one query at a time allowed\n");
return FALSE;
}
execution->open=1;
execution->state=0;
PredicateInfo((PredEntry *)p, &yname, &arity, &m);
t[0] = SWIModuleToModule(ctx);
if (arity == 0) {
t[1] = MkAtomTerm(yname);
} else {
Functor f = Yap_MkFunctor(yname, arity);
t[1] = Yap_MkApplTerm(f,arity,Yap_AddressFromSlot(t0));
}
if (ctx) {
Term ti;
t[0] = MkAtomTerm((Atom)ctx);
ti = Yap_MkApplTerm(FunctorModule,2,t);
t[0] = ti;
execution->g = Yap_MkApplTerm(FunctorCall,1,t);
} else {
if (m && m != CurrentModule) {
Term ti;
t[0] = m;
ti = Yap_MkApplTerm(FunctorModule,2,t);
t[0] = ti;
execution->g = Yap_MkApplTerm(FunctorCall,1,t);
} else {
execution->g = t[1];
}
}
return execution;
}
X_API int PL_next_solution(qid_t qi)
{
int result;
if (qi->open != 1) return 0;
if (setjmp(execution->env))
return 0;
if (qi->state == 0) {
result = YAP_RunGoal(qi->g);
} else {
result = YAP_RestartGoal();
}
qi->state = 1;
if (result == 0) {
qi->open = 0;
}
return result;
}
X_API void PL_cut_query(qid_t qi)
{
if (qi->open != 1) return;
YAP_PruneGoal();
YAP_cut_up();
qi->open = 0;
}
X_API void PL_close_query(qid_t qi)
{
/* need to implement backtracking here */
if (qi->open != 1)
return;
YAP_PruneGoal();
YAP_RestartGoal();
qi->open = 0;
}
X_API int PL_call_predicate(module_t ctx, int flags, predicate_t p, term_t t0)
{
qid_t qi = PL_open_query(ctx, flags, p, t0);
int ret = PL_next_solution(qi);
PL_cut_query(qi);
return ret;
}
X_API int PL_toplevel(void)
{
return YAP_RunGoal(MkAtomTerm(Yap_FullLookupAtom("$live")));
}
X_API int PL_call(term_t tp, module_t m)
{
int out;
BACKUP_B();
BACKUP_H();
Term t[2], g;
t[0] = SWIModuleToModule(m);
t[1] = Yap_GetFromSlot(tp);
g = Yap_MkApplTerm(FunctorModule,2,t);
out = YAP_RunGoal(g);
RECOVER_H();
RECOVER_B();
return out;
}
X_API void PL_register_foreign_in_module(const char *module, const char *name, int arity, pl_function_t function, int flags)
{
Term tmod;
Int nflags = 0;
if (flags & (PL_FA_NOTRACE|PL_FA_CREF)) {
fprintf(stderr,"PL_register_foreign_in_module called with non-implemented flag %x when creating predicate %s:%s/%d\n", flags, module, name, arity);
}
if (module == NULL) {
tmod = CurrentModule;
} else {
tmod = MkAtomTerm(Yap_LookupAtom((char *)module));
}
if (flags & PL_FA_VARARGS) {
nflags = SWIEnvPredFlag;
}
if (flags & PL_FA_TRANSPARENT) {
nflags |= ModuleTransparentPredFlag;
} else {
nflags |= CArgsPredFlag;
}
if (flags & PL_FA_NONDETERMINISTIC) {
Yap_InitCPredBackCut((char *)name, arity, sizeof(struct foreign_context)/sizeof(CELL), (CPredicate)function, (CPredicate)function, (CPredicate)function, UserCPredFlag|nflags);
} else {
UserCPredicate((char *)name,(CPredicate)function,arity,tmod,nflags);
}
}
X_API void PL_register_extensions(const PL_extension *ptr)
{
PL_load_extensions(ptr);
}
X_API void PL_register_foreign(const char *name, int arity, pl_function_t function, int flags)
{
PL_register_foreign_in_module(NULL, name, arity, function, flags);
}
X_API void PL_load_extensions(const PL_extension *ptr)
{
/* ignore flags for now */
while(ptr->predicate_name != NULL) {
PL_register_foreign_in_module(NULL, ptr->predicate_name, ptr->arity, ptr->function, ptr->flags);
ptr++;
}
}
X_API int PL_is_inf(term_t st)
{
Term t = Deref(Yap_GetFromSlot(st));
Float fl;
if (IsVarTerm(t)) return FALSE;
if (!IsFloatTerm(t)) return FALSE;
fl = FloatOfTerm(t);
#if HAVE_ISINF
return isinf(fl);
#elif HAVE_FPCLASS
return (fpclass(fl) == FP_NINF || fpclass(fl) == FP_PINF);
#else
return FALSE;
#endif
}
X_API int PL_thread_self(void)
{
#if THREADS
if (pthread_getspecific(Yap_yaamregs_key) == NULL)
return -1;
return worker_id;
#else
return -2;
#endif
}
X_API int PL_unify_thread_id(term_t t, int i)
{
Term iterm = MkIntegerTerm(i);
return Yap_unify(Yap_GetFromSlot(t),iterm);
}
X_API int PL_thread_attach_engine(const PL_thread_attr_t *attr)
{
int wid = PL_thread_self();
if (wid < 0) {
/* we do not have an engine */
if (attr) {
YAP_thread_attr yapt;
int wid;
yapt.ssize = attr->local_size;
yapt.tsize = attr->global_size;
yapt.alias = (YAP_Term)attr->alias;
yapt.cancel = attr->cancel;
wid = YAP_ThreadCreateEngine(&yapt);
} else {
wid = YAP_ThreadCreateEngine(NULL);
}
if (wid < 0)
return -1;
if (YAP_ThreadAttachEngine(wid)) {
return wid;
}
return -1;
} else {
/* attach myself again */
return YAP_ThreadAttachEngine(wid);
}
}
X_API int PL_thread_destroy_engine(void)
{
int wid = PL_thread_self();
if (wid < 0) {
/* we do not have an engine */
return FALSE;
}
YAP_ThreadDetachEngine(wid);
return YAP_ThreadDestroyEngine(wid);
}
X_API int
PL_thread_at_exit(void (*function)(void *), void *closure, int global)
{
/* don't do nothing for now */
fprintf(stderr,"%% YAP ERROR: PL_thread_at_exit not implemented yet\n");
return TRUE;
}
X_API PL_engine_t
PL_create_engine(const PL_thread_attr_t *attr)
{
#if THREADS
if (attr) {
YAP_thread_attr yapt;
yapt.ssize = attr->local_size;
yapt.tsize = attr->global_size;
yapt.alias = (YAP_Term)attr->alias;
yapt.cancel = attr->cancel;
return Yap_WLocal+YAP_ThreadCreateEngine(&yapt);
} else {
return Yap_WLocal+YAP_ThreadCreateEngine(NULL);
}
#else
return NULL;
#endif
}
X_API int
PL_destroy_engine(PL_engine_t e)
{
#if THREADS
return YAP_ThreadDestroyEngine((struct worker_local *)e-Yap_WLocal);
#else
return FALSE;
#endif
}
X_API int
PL_set_engine(PL_engine_t engine, PL_engine_t *old)
{
#if THREADS
int cwid = PL_thread_self(), nwid;
if (cwid >= 0) {
if (old) *old = (PL_engine_t)(Yap_WLocal+cwid);
}
if (!engine) {
if (cwid < 0)
return PL_ENGINE_INVAL;
if (!YAP_ThreadDetachEngine(worker_id)) {
return PL_ENGINE_INVAL;
}
return PL_ENGINE_SET;
}
if (engine == PL_ENGINE_MAIN) {
nwid = 0;
} else if (engine == PL_ENGINE_CURRENT) {
if (cwid < 0) {
if (old) *old = NULL;
return PL_ENGINE_INVAL;
}
return PL_ENGINE_SET;
} else {
nwid = (struct worker_local *)engine-Yap_WLocal;
}
pthread_mutex_lock(&(FOREIGN_ThreadHandle(nwid).tlock));
if (FOREIGN_ThreadHandle(nwid).pthread_handle) {
pthread_mutex_unlock(&(FOREIGN_ThreadHandle(nwid).tlock));
if (cwid != nwid) {
return PL_ENGINE_INUSE;
}
return PL_ENGINE_SET;
}
if (cwid >= 0) {
if (!YAP_ThreadDetachEngine(cwid)) {
*old = NULL;
pthread_mutex_unlock(&(FOREIGN_ThreadHandle(nwid).tlock));
return PL_ENGINE_INVAL;
}
}
if (!YAP_ThreadAttachEngine(nwid)) {
return PL_ENGINE_INVAL;
}
return PL_ENGINE_SET;
#else
return FALSE;
#endif
}
X_API void *
PL_malloc(size_t sz)
{
if ( sz == 0 )
return NULL;
return (void *)malloc((long unsigned int)sz);
}
X_API void *
PL_realloc(void *ptr, size_t sz)
{
if (ptr) {
if (sz) {
return realloc((char *)ptr,(long unsigned int)sz);
} else {
free(ptr);
return NULL;
}
} else {
return PL_malloc(sz);
}
}
X_API void
PL_free(void *obj)
{
if (obj)
free(obj);
}
X_API int
PL_eval_expression_to_int64_ex(term_t t, int64_t *val)
{
Term res = Yap_Eval(Yap_GetFromSlot(t));
if (!res) {
return FALSE;
}
if (IsIntegerTerm(res)) {
*val = IntegerOfTerm(res);
return TRUE;
#if SIZEOF_LONG_INT==4 && USE_GMP
} else if (YAP_IsBigNumTerm(res)) {
MP_INT g;
char s[64];
YAP_BigNumOfTerm(t, (void *)&g);
if (mpz_sizeinbase(&g,2) > 64) {
return PL_error(NULL,0,NULL, ERR_EVALUATION, AtomToSWIAtom(Yap_LookupAtom("int_overflow")));
}
mpz_get_str (s, 10, &g);
#ifdef _WIN32
sscanf(s, "%I64d", (long long int *)val);
#else
sscanf(s, "%lld", (long long int *)val);
#endif
return 1;
#endif
}
PL_error(NULL,0,NULL, ERR_TYPE, AtomToSWIAtom(Yap_LookupAtom("integer_expression")));
return FALSE;
}
foreign_t
_PL_retry(intptr_t n)
{
/* first we need to get the pointer to the predicate */
PredEntry *pe = B->cp_ap->u.OtapFs.p;
struct foreign_context *ctx = (struct foreign_context *)(&EXTRA_CBACK_ARG(pe->ArityOfPE,1));
ctx->context = n;
return LCL0-(CELL *)ctx;
}
foreign_t
_PL_retry_address(void *addr)
{
/* first we need to get the pointer to the predicate */
PredEntry *pe = B->cp_ap->u.OtapFs.p;
struct foreign_context *ctx = (struct foreign_context *)(&EXTRA_CBACK_ARG(pe->ArityOfPE,1));
ctx->context = (intptr_t)addr;
return LCL0-(CELL *)ctx;
}
X_API int
PL_foreign_control(control_t ctx)
{
switch (ctx->control) {
case FRG_REDO:
return PL_REDO;
case FRG_FIRST_CALL:
return PL_FIRST_CALL;
default:
return PL_CUTTED;
}
}
X_API intptr_t
PL_foreign_context(control_t ctx)
{
switch (ctx->control) {
case FRG_FIRST_CALL:
return 0L;
default:
return (intptr_t)(ctx->context);
}
}
X_API void *
PL_foreign_context_address(control_t ctx)
{
switch (ctx->control) {
case FRG_FIRST_CALL:
return NULL;
default:
return (void *)(ctx->context);
}
}
static int
SWI_ctime(void)
{
#if HAVE_CTIME
time_t tim;
#endif
YAP_Term t1 = YAP_ARG1;
if (YAP_IsVarTerm(t1)) {
YAP_Error(0,t1,"bad argumento to ctime");
return FALSE;
}
#if HAVE_CTIME
if (YAP_IsIntTerm(t1))
tim = (time_t)YAP_IntOfTerm(t1);
else if (YAP_IsFloatTerm(t1))
tim = (time_t)YAP_FloatOfTerm(t1);
else
return FALSE;
return YAP_Unify(YAP_BufferToString(ctime(&tim)), YAP_ARG2);
#else
YAP_Error(0,0L,"convert_time requires ctime");
return FALSE;
#endif
}
X_API int
PL_get_signum_ex(term_t sig, int *n)
{
char *s;
int i = -1;
if ( PL_get_integer(sig, &i) )
{
} else if ( PL_get_chars(sig, &s, CVT_ATOM) )
{ i = Yap_signal_index(s);
} else
{ return PL_error(NULL, 0, NULL, ERR_TYPE, ATOM_signal, sig);
}
if ( i > 0 && i < 32 ) /* where to get these? */
{ *n = i;
return TRUE;
}
return PL_error(NULL, 0, NULL, ERR_DOMAIN, ATOM_signal, sig);
}
typedef struct blob {
Functor f;
CELL type;
MP_INT blinfo; /* total size should go here */
PL_blob_t *blb;
size_t size;
CELL blob_data[1];
} blob_t;
X_API intptr_t
PL_query(int query)
{
switch(query) {
case PL_QUERY_ARGC:
return (intptr_t)Yap_argc;
case PL_QUERY_ARGV:
return (intptr_t)Yap_argv;
case PL_QUERY_USER_CPU:
return (intptr_t)Yap_cputime();
default:
fprintf(stderr,"Unimplemented PL_query %d\n",query);
return (intptr_t)0;
}
}
/* glue function to connect back PLStream to YAP IO */
X_API void
PL_YAP_InitSWIIO(struct SWI_IO *swio)
{
FSWIStream = SWIFunctorToFunctor(swio->f);
SWIGetc = swio->get_c;
SWIPutc = swio->put_c;
SWIWideGetc = swio->get_w;
SWIWidePutc = swio->put_w;
SWIFlush = swio->flush_s;
SWIClose = swio->close_s;
}
X_API void (*PL_signal(int sig, void (*func)(int)))(int)
{
// return Yap_signal2(sig,func);
return NULL;
}
X_API void PL_on_halt(void (*f)(int, void *), void *closure)
{
Yap_HaltRegisterHook((HaltHookFunc)f,closure);
}
void
Yap_swi_install(void)
{
Yap_install_blobs();
YAP_UserCPredicate("ctime", SWI_ctime, 2);
}
#ifdef _WIN32
#include <windows.h>
int WINAPI PROTO(win_yap2swi, (HANDLE, DWORD, LPVOID));
int WINAPI win_yap2swi(HANDLE hinst, DWORD reason, LPVOID reserved)
{
switch (reason)
{
case DLL_PROCESS_ATTACH:
break;
case DLL_PROCESS_DETACH:
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
}
return 1;
}
#endif