This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/yap-lbfgs/liblbfgs-1.10/lib/arithmetic_sse_double.h
Vítor Santos Costa f4ef6702e1 upgrade version
2013-06-19 21:34:30 -05:00

295 lines
8.6 KiB
C

/*
* SSE2 implementation of vector oprations (64bit double).
*
* Copyright (c) 2007-2010 Naoaki Okazaki
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* $Id$ */
#include <stdlib.h>
#ifndef __APPLE__
#include <malloc.h>
#endif
#include <memory.h>
#if 1400 <= _MSC_VER
#include <intrin.h>
#endif/*1400 <= _MSC_VER*/
#if HAVE_EMMINTRIN_H
#include <emmintrin.h>
#endif/*HAVE_EMMINTRIN_H*/
inline static void* vecalloc(size_t size)
{
#if defined(_MSC_VER)
void *memblock = _aligned_malloc(size, 16);
#elif defined(__APPLE__) /* OS X always aligns on 16-byte boundaries */
void *memblock = malloc(size);
#else
void *memblock = NULL, *p = NULL;
if (posix_memalign(&p, 16, size) == 0) {
memblock = p;
}
#endif
if (memblock != NULL) {
memset(memblock, 0, size);
}
return memblock;
}
inline static void vecfree(void *memblock)
{
#ifdef _MSC_VER
_aligned_free(memblock);
#else
free(memblock);
#endif
}
#define fsigndiff(x, y) \
((_mm_movemask_pd(_mm_set_pd(*(x), *(y))) + 1) & 0x002)
#define vecset(x, c, n) \
{ \
int i; \
__m128d XMM0 = _mm_set1_pd(c); \
for (i = 0;i < (n);i += 8) { \
_mm_store_pd((x)+i , XMM0); \
_mm_store_pd((x)+i+2, XMM0); \
_mm_store_pd((x)+i+4, XMM0); \
_mm_store_pd((x)+i+6, XMM0); \
} \
}
#define veccpy(y, x, n) \
{ \
int i; \
for (i = 0;i < (n);i += 8) { \
__m128d XMM0 = _mm_load_pd((x)+i ); \
__m128d XMM1 = _mm_load_pd((x)+i+2); \
__m128d XMM2 = _mm_load_pd((x)+i+4); \
__m128d XMM3 = _mm_load_pd((x)+i+6); \
_mm_store_pd((y)+i , XMM0); \
_mm_store_pd((y)+i+2, XMM1); \
_mm_store_pd((y)+i+4, XMM2); \
_mm_store_pd((y)+i+6, XMM3); \
} \
}
#define vecncpy(y, x, n) \
{ \
int i; \
for (i = 0;i < (n);i += 8) { \
__m128d XMM0 = _mm_setzero_pd(); \
__m128d XMM1 = _mm_setzero_pd(); \
__m128d XMM2 = _mm_setzero_pd(); \
__m128d XMM3 = _mm_setzero_pd(); \
__m128d XMM4 = _mm_load_pd((x)+i ); \
__m128d XMM5 = _mm_load_pd((x)+i+2); \
__m128d XMM6 = _mm_load_pd((x)+i+4); \
__m128d XMM7 = _mm_load_pd((x)+i+6); \
XMM0 = _mm_sub_pd(XMM0, XMM4); \
XMM1 = _mm_sub_pd(XMM1, XMM5); \
XMM2 = _mm_sub_pd(XMM2, XMM6); \
XMM3 = _mm_sub_pd(XMM3, XMM7); \
_mm_store_pd((y)+i , XMM0); \
_mm_store_pd((y)+i+2, XMM1); \
_mm_store_pd((y)+i+4, XMM2); \
_mm_store_pd((y)+i+6, XMM3); \
} \
}
#define vecadd(y, x, c, n) \
{ \
int i; \
__m128d XMM7 = _mm_set1_pd(c); \
for (i = 0;i < (n);i += 4) { \
__m128d XMM0 = _mm_load_pd((x)+i ); \
__m128d XMM1 = _mm_load_pd((x)+i+2); \
__m128d XMM2 = _mm_load_pd((y)+i ); \
__m128d XMM3 = _mm_load_pd((y)+i+2); \
XMM0 = _mm_mul_pd(XMM0, XMM7); \
XMM1 = _mm_mul_pd(XMM1, XMM7); \
XMM2 = _mm_add_pd(XMM2, XMM0); \
XMM3 = _mm_add_pd(XMM3, XMM1); \
_mm_store_pd((y)+i , XMM2); \
_mm_store_pd((y)+i+2, XMM3); \
} \
}
#define vecdiff(z, x, y, n) \
{ \
int i; \
for (i = 0;i < (n);i += 8) { \
__m128d XMM0 = _mm_load_pd((x)+i ); \
__m128d XMM1 = _mm_load_pd((x)+i+2); \
__m128d XMM2 = _mm_load_pd((x)+i+4); \
__m128d XMM3 = _mm_load_pd((x)+i+6); \
__m128d XMM4 = _mm_load_pd((y)+i ); \
__m128d XMM5 = _mm_load_pd((y)+i+2); \
__m128d XMM6 = _mm_load_pd((y)+i+4); \
__m128d XMM7 = _mm_load_pd((y)+i+6); \
XMM0 = _mm_sub_pd(XMM0, XMM4); \
XMM1 = _mm_sub_pd(XMM1, XMM5); \
XMM2 = _mm_sub_pd(XMM2, XMM6); \
XMM3 = _mm_sub_pd(XMM3, XMM7); \
_mm_store_pd((z)+i , XMM0); \
_mm_store_pd((z)+i+2, XMM1); \
_mm_store_pd((z)+i+4, XMM2); \
_mm_store_pd((z)+i+6, XMM3); \
} \
}
#define vecscale(y, c, n) \
{ \
int i; \
__m128d XMM7 = _mm_set1_pd(c); \
for (i = 0;i < (n);i += 4) { \
__m128d XMM0 = _mm_load_pd((y)+i ); \
__m128d XMM1 = _mm_load_pd((y)+i+2); \
XMM0 = _mm_mul_pd(XMM0, XMM7); \
XMM1 = _mm_mul_pd(XMM1, XMM7); \
_mm_store_pd((y)+i , XMM0); \
_mm_store_pd((y)+i+2, XMM1); \
} \
}
#define vecmul(y, x, n) \
{ \
int i; \
for (i = 0;i < (n);i += 8) { \
__m128d XMM0 = _mm_load_pd((x)+i ); \
__m128d XMM1 = _mm_load_pd((x)+i+2); \
__m128d XMM2 = _mm_load_pd((x)+i+4); \
__m128d XMM3 = _mm_load_pd((x)+i+6); \
__m128d XMM4 = _mm_load_pd((y)+i ); \
__m128d XMM5 = _mm_load_pd((y)+i+2); \
__m128d XMM6 = _mm_load_pd((y)+i+4); \
__m128d XMM7 = _mm_load_pd((y)+i+6); \
XMM4 = _mm_mul_pd(XMM4, XMM0); \
XMM5 = _mm_mul_pd(XMM5, XMM1); \
XMM6 = _mm_mul_pd(XMM6, XMM2); \
XMM7 = _mm_mul_pd(XMM7, XMM3); \
_mm_store_pd((y)+i , XMM4); \
_mm_store_pd((y)+i+2, XMM5); \
_mm_store_pd((y)+i+4, XMM6); \
_mm_store_pd((y)+i+6, XMM7); \
} \
}
#if 3 <= __SSE__ || defined(__SSE3__)
/*
Horizontal add with haddps SSE3 instruction. The work register (rw)
is unused.
*/
#define __horizontal_sum(r, rw) \
r = _mm_hadd_ps(r, r); \
r = _mm_hadd_ps(r, r);
#else
/*
Horizontal add with SSE instruction. The work register (rw) is used.
*/
#define __horizontal_sum(r, rw) \
rw = r; \
r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(1, 0, 3, 2)); \
r = _mm_add_ps(r, rw); \
rw = r; \
r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(2, 3, 0, 1)); \
r = _mm_add_ps(r, rw);
#endif
#define vecdot(s, x, y, n) \
{ \
int i; \
__m128d XMM0 = _mm_setzero_pd(); \
__m128d XMM1 = _mm_setzero_pd(); \
__m128d XMM2, XMM3, XMM4, XMM5; \
for (i = 0;i < (n);i += 4) { \
XMM2 = _mm_load_pd((x)+i ); \
XMM3 = _mm_load_pd((x)+i+2); \
XMM4 = _mm_load_pd((y)+i ); \
XMM5 = _mm_load_pd((y)+i+2); \
XMM2 = _mm_mul_pd(XMM2, XMM4); \
XMM3 = _mm_mul_pd(XMM3, XMM5); \
XMM0 = _mm_add_pd(XMM0, XMM2); \
XMM1 = _mm_add_pd(XMM1, XMM3); \
} \
XMM0 = _mm_add_pd(XMM0, XMM1); \
XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \
XMM0 = _mm_add_pd(XMM0, XMM1); \
_mm_store_sd((s), XMM0); \
}
#define vec2norm(s, x, n) \
{ \
int i; \
__m128d XMM0 = _mm_setzero_pd(); \
__m128d XMM1 = _mm_setzero_pd(); \
__m128d XMM2, XMM3, XMM4, XMM5; \
for (i = 0;i < (n);i += 4) { \
XMM2 = _mm_load_pd((x)+i ); \
XMM3 = _mm_load_pd((x)+i+2); \
XMM4 = XMM2; \
XMM5 = XMM3; \
XMM2 = _mm_mul_pd(XMM2, XMM4); \
XMM3 = _mm_mul_pd(XMM3, XMM5); \
XMM0 = _mm_add_pd(XMM0, XMM2); \
XMM1 = _mm_add_pd(XMM1, XMM3); \
} \
XMM0 = _mm_add_pd(XMM0, XMM1); \
XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \
XMM0 = _mm_add_pd(XMM0, XMM1); \
XMM0 = _mm_sqrt_pd(XMM0); \
_mm_store_sd((s), XMM0); \
}
#define vec2norminv(s, x, n) \
{ \
int i; \
__m128d XMM0 = _mm_setzero_pd(); \
__m128d XMM1 = _mm_setzero_pd(); \
__m128d XMM2, XMM3, XMM4, XMM5; \
for (i = 0;i < (n);i += 4) { \
XMM2 = _mm_load_pd((x)+i ); \
XMM3 = _mm_load_pd((x)+i+2); \
XMM4 = XMM2; \
XMM5 = XMM3; \
XMM2 = _mm_mul_pd(XMM2, XMM4); \
XMM3 = _mm_mul_pd(XMM3, XMM5); \
XMM0 = _mm_add_pd(XMM0, XMM2); \
XMM1 = _mm_add_pd(XMM1, XMM3); \
} \
XMM2 = _mm_set1_pd(1.0); \
XMM0 = _mm_add_pd(XMM0, XMM1); \
XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \
XMM0 = _mm_add_pd(XMM0, XMM1); \
XMM0 = _mm_sqrt_pd(XMM0); \
XMM2 = _mm_div_pd(XMM2, XMM0); \
_mm_store_sd((s), XMM2); \
}