362 lines
10 KiB
Prolog
362 lines
10 KiB
Prolog
/*************************************************************************
|
|
* *
|
|
* YAP Prolog *
|
|
* *
|
|
* Yap Prolog was developed at NCCUP - Universidade do Porto *
|
|
* *
|
|
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
|
|
* *
|
|
**************************************************************************
|
|
* *
|
|
* File: arith.yap *
|
|
* Last rev: *
|
|
* mods: *
|
|
* comments: arithmetical optimization *
|
|
* *
|
|
*************************************************************************/
|
|
|
|
% the default mode is on
|
|
|
|
:- system_module( '$_arith', [compile_expressions/0,
|
|
expand_exprs/2,
|
|
plus/3,
|
|
succ/2], ['$c_built_in'/3]).
|
|
|
|
:- private( [do_c_built_in/3,
|
|
do_c_built_metacall/3,
|
|
expand_expr/3,
|
|
expand_expr/5,
|
|
expand_expr/6] ).
|
|
|
|
:- use_system_module( '$_errors', ['$do_error'/2]).
|
|
|
|
:- use_system_module( '$_modules', ['$clean_cuts'/2]).
|
|
|
|
/** @defgroup CompilerAnalysis Internal Clause Rewriting
|
|
@ingroup YAPCompilerSettings
|
|
|
|
YAP supports several clause optimisation mechanisms, that
|
|
are designed to improve execution of arithmetic
|
|
and term construction built-ins. In other words, during the
|
|
compilation process a clause is rewritten twice:
|
|
|
|
1. first, perform user-defined goal_expansion as described
|
|
in the predicates goal_expansion/1 and goal_expansion/2.
|
|
|
|
2. Perform expansion of some built-ins like:
|
|
|
|
+ pruning operators, like ->/2 and *->/2
|
|
|
|
+ arithmetic, including early evaluation of constant expressions
|
|
|
|
+ specialise versions for some built-ins, if we are aware of the
|
|
run-time execution mode
|
|
|
|
The user has some control over this process, through some
|
|
built-ins and through execution flsgs.
|
|
|
|
*/
|
|
|
|
%% @{
|
|
|
|
/** @pred expand_exprs(- _O_,+ _N_)
|
|
Control term expansion during compilation.
|
|
|
|
Enables low-level optimizations. It reports the current state by
|
|
unifying _O_ with the previous state. It then puts YAP in state _N_
|
|
(`on` or `off`)/ _On_ is equivalent to compile_expressions/0 and `off`
|
|
is equivalent to do_not_compile_expressions/0.
|
|
|
|
This predicate is useful when debugging, to ensure execution close to the original source.
|
|
|
|
*/
|
|
expand_exprs(Old,New) :-
|
|
(get_value('$c_arith',true) ->
|
|
Old = on ;
|
|
Old = off ),
|
|
'$set_arith_expan'(New).
|
|
|
|
'$set_arith_expan'(on) :- set_value('$c_arith',true).
|
|
'$set_arith_expan'(off) :- set_value('$c_arith',[]).
|
|
|
|
/** @pred compile_expressions
|
|
|
|
After a call to this predicate, arithmetical expressions will be compiled.
|
|
(see example below). This is the default behavior.
|
|
*/
|
|
|
|
compile_expressions :- set_value('$c_arith',true).
|
|
|
|
/** @pred do_not_compile_expressions
|
|
|
|
|
|
After a call to this predicate, arithmetical expressions will not be compiled.
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
?- source, do_not_compile_expressions.
|
|
yes
|
|
?- [user].
|
|
| p(X) :- X is 2 * (3 + 8).
|
|
| :- end_of_file.
|
|
?- compile_expressions.
|
|
yes
|
|
?- [user].
|
|
| q(X) :- X is 2 * (3 + 8).
|
|
| :- end_of_file.
|
|
:- listing.
|
|
|
|
p(A):-
|
|
A is 2 * (3 + 8).
|
|
|
|
q(A):-
|
|
A is 22.
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
w*/
|
|
do_not_compile_expressions :- set_value('$c_arith',[]).
|
|
|
|
'$c_built_in'(IN, M, H, OUT) :-
|
|
get_value('$c_arith',true), !,
|
|
do_c_built_in(IN, M, H, OUT).
|
|
'$c_built_in'(IN, _, _H, IN).
|
|
|
|
|
|
do_c_built_in(G, M, H, OUT) :- var(G), !,
|
|
do_c_built_metacall(G, M, H, OUT).
|
|
do_c_built_in(Mod:G, _, H, OUT) :-
|
|
'$yap_strip_module'(Mod:G, M1, G1),
|
|
var(G1), !,
|
|
do_c_built_metacall(G1, M1, H, OUT).
|
|
do_c_built_in('C'(A,B,C), _, _, (A=[B|C])) :- !.
|
|
do_c_built_in('$do_error'( Error, Goal), M, Head,
|
|
(clause_location(Call, Caller),
|
|
strip_module(M:Goal,M1,NGoal),
|
|
throw(error(Error,
|
|
[[g|g(M1:NGoal)],[p|Call],[e|Caller],[h|g(Head)]]
|
|
)
|
|
)
|
|
)
|
|
) :- !.
|
|
do_c_built_in(X is Y, M, H, P) :-
|
|
primitive(X), !,
|
|
do_c_built_in(X =:= Y, M, H, P).
|
|
do_c_built_in(X is Y, M, H, (P,A=X)) :-
|
|
nonvar(X), !,
|
|
do_c_built_in(A is Y, M, H, P).
|
|
do_c_built_in(X is Y, _, _, P) :-
|
|
nonvar(Y), % Don't rewrite variables
|
|
!,
|
|
(
|
|
number(Y) ->
|
|
P = ( X = Y); % This case reduces to an unification
|
|
expand_expr(Y, P0, X0),
|
|
'$drop_is'(X0, X, P0, P)
|
|
).
|
|
do_c_built_in(phrase(NT,Xs), Mod, H, NTXsNil) :-
|
|
'$_arith':do_c_built_in(phrase(NT,Xs,[]), Mod, H, NTXsNil).
|
|
do_c_built_in(phrase(NT,Xs0,Xs), Mod, _, NewGoal) :-
|
|
'$c_built_in_phrase'(NT, Xs0, Xs, Mod, NewGoal ).
|
|
|
|
do_c_built_in(Comp0, _, _, R) :- % now, do it for comparisons
|
|
'$compop'(Comp0, Op, E, F),
|
|
!,
|
|
'$compop'(Comp, Op, U, V),
|
|
expand_expr(E, P, U),
|
|
expand_expr(F, Q, V),
|
|
'$do_and'(P, Q, R0),
|
|
'$do_and'(R0, Comp, R).
|
|
do_c_built_in(P, _M, _H, P).
|
|
|
|
do_c_built_metacall(G1, Mod, _, '$execute_wo_mod'(G1,Mod)) :-
|
|
var(Mod), !.
|
|
do_c_built_metacall(G1, Mod, _, '$execute_in_mod'(G1,Mod)) :-
|
|
atom(Mod), !.
|
|
do_c_built_metacall(G1, Mod, _, call(Mod:G1)).
|
|
|
|
'$do_and'(true, P, P) :- !.
|
|
'$do_and'(P, true, P) :- !.
|
|
'$do_and'(P, Q, (P,Q)).
|
|
|
|
% V is the result of the simplification,
|
|
% X the result of the initial expression
|
|
% and the last argument is how we are writing this result
|
|
'$drop_is'(V, V1, P0, G) :-
|
|
var(V),
|
|
!, % usual case
|
|
V = V1,
|
|
P0 = G.
|
|
'$drop_is'(V, X, P0, P) :- % atoms
|
|
'$do_and'(P0, X is V, P).
|
|
|
|
% Table of arithmetic comparisons
|
|
'$compop'(X < Y, < , X, Y).
|
|
'$compop'(X > Y, > , X, Y).
|
|
'$compop'(X=< Y,=< , X, Y).
|
|
'$compop'(X >=Y, >=, X, Y).
|
|
'$compop'(X=:=Y,=:=, X, Y).
|
|
'$compop'(X=\=Y,=\=, X, Y).
|
|
|
|
'$composed_built_in'(V) :- var(V), !,
|
|
fail.
|
|
'$composed_built_in'(('$current_choice_point'(_),NG,'$$cut_by'(_))) :- !,
|
|
'$composed_built_in'(NG).
|
|
'$composed_built_in'((_,_)).
|
|
'$composed_built_in'((_;_)).
|
|
'$composed_built_in'((_|_)).
|
|
'$composed_built_in'((_->_)).
|
|
'$composed_built_in'(_:G) :-
|
|
'$composed_built_in'(G).
|
|
'$composed_built_in'(\+G) :-
|
|
'$composed_built_in'(G).
|
|
'$composed_built_in'(not(G)) :-
|
|
'$composed_built_in'(G).
|
|
|
|
% expanding an expression:
|
|
% first argument is the expression not expanded,
|
|
% second argument the expanded expression
|
|
% third argument unifies with the result from the expression
|
|
expand_expr(V, true, V) :-
|
|
var(V), !.
|
|
expand_expr([T], E, V) :- !,
|
|
expand_expr(T, E, V).
|
|
expand_expr(String, _E, V) :-
|
|
string( String ), !,
|
|
string_codes(String, [V]).
|
|
expand_expr(A, true, A) :-
|
|
atomic(A), !.
|
|
expand_expr(T, E, V) :-
|
|
T =.. [O, A], !,
|
|
expand_expr(A, Q, X),
|
|
expand_expr(O, X, V, Q, E).
|
|
expand_expr(T, E, V) :-
|
|
T =.. [O, A, B], !,
|
|
expand_expr(A, Q, X),
|
|
expand_expr(B, R, Y),
|
|
expand_expr(O, X, Y, V, Q, S),
|
|
'$do_and'(R, S, E).
|
|
|
|
% expanding an expression of the form:
|
|
% O is Op(X),
|
|
% after having expanded into Q
|
|
% and giving as result P (the last argument)
|
|
expand_expr(Op, X, O, Q, Q) :-
|
|
number(X),
|
|
catch(is( O, Op, X),_,fail), !. % do not do error handling at compile time
|
|
expand_expr(Op, X, O, Q, P) :-
|
|
'$unary_op_as_integer'(Op,IOp),
|
|
'$do_and'(Q, is( O, IOp, X), P).
|
|
|
|
% expanding an expression of the form:
|
|
% O is Op(X,Y),
|
|
% after having expanded into Q
|
|
% and giving as result P (the last argument)
|
|
% included is some optimization for:
|
|
% incrementing and decrementing,
|
|
% the elementar arithmetic operations [+,-,*,//]
|
|
expand_expr(Op, X, Y, O, Q, Q) :-
|
|
number(X), number(Y),
|
|
catch(is( O, Op, X, Y),_,fail), !.
|
|
expand_expr(+, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$plus'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(-, X, Y, O, Q, P) :-
|
|
var(X), number(Y),
|
|
Z is -Y, !,
|
|
expand_expr(+, Z, X, O, Q, P).
|
|
expand_expr(-, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$minus'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(*, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$times'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(//, X, Y, O, Q, P) :-
|
|
nonvar(Y), Y == 0, !,
|
|
'$binary_op_as_integer'(//,IOp),
|
|
'$do_and'(Q, is(O,IOp,X,Y), P).
|
|
expand_expr(//, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$div'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(/\, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$and'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(\/, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$or'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(<<, X, Y, O, Q, P) :-
|
|
var(X), number(Y), Y < 0,
|
|
Z is -Y, !,
|
|
expand_expr(>>, X, Z, O, Q, P).
|
|
expand_expr(<<, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$sll'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(>>, X, Y, O, Q, P) :-
|
|
var(X), number(Y), Y < 0,
|
|
Z is -Y, !,
|
|
expand_expr(<<, X, Z, O, Q, P).
|
|
expand_expr(>>, X, Y, O, Q, P) :- !,
|
|
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
|
|
'$do_and'(E, '$slr'(X1,Y1,O), F),
|
|
'$do_and'(Q, F, P).
|
|
expand_expr(Op, X, Y, O, Q, P) :-
|
|
'$binary_op_as_integer'(Op,IOp),
|
|
'$do_and'(Q, is(O,IOp,X,Y), P).
|
|
|
|
'$preprocess_args_for_commutative'(X, Y, X, Y, true) :-
|
|
var(X), var(Y), !.
|
|
'$preprocess_args_for_commutative'(X, Y, X, Y, true) :-
|
|
var(X), integer(Y), \+ '$bignum'(Y), !.
|
|
'$preprocess_args_for_commutative'(X, Y, X, Z, Z = Y) :-
|
|
var(X), !.
|
|
'$preprocess_args_for_commutative'(X, Y, Y, X, true) :-
|
|
integer(X), \+ '$bignum'(X), var(Y), !.
|
|
'$preprocess_args_for_commutative'(X, Y, Z, X, Z = Y) :-
|
|
integer(X), \+ '$bignum'(X), !.
|
|
'$preprocess_args_for_commutative'(X, Y, Z, W, E) :-
|
|
'$do_and'(Z = X, Y = W, E).
|
|
|
|
'$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :-
|
|
var(X), var(Y), !.
|
|
'$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :-
|
|
var(X), integer(Y), \+ '$bignum'(Y), !.
|
|
'$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :-
|
|
var(X), !.
|
|
'$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :-
|
|
integer(X), \+ '$bignum'(X), var(Y), !.
|
|
'$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :-
|
|
integer(X), \+ '$bignum'(X), !.
|
|
'$preprocess_args_for_non_commutative'(X, Y, Z, W, E) :-
|
|
'$do_and'(Z = X, Y = W, E).
|
|
|
|
|
|
'$goal_expansion_allowed'(phrase(NT,_Xs0,_Xs), Mod).
|
|
|
|
%% contains_illegal_dcgnt(+Term) is semidet.
|
|
%
|
|
% True if Term contains a non-terminal we cannot deal with using
|
|
% goal-expansion. The test is too general approximation, but safe.
|
|
|
|
'$contains_illegal_dcgnt'(NT) :-
|
|
functor(NT, _, A),
|
|
between(1, A, I),
|
|
arg(I, NT, AI),
|
|
nonvar(AI),
|
|
( AI = ! ; AI = phrase(_,_,_) ), !.
|
|
% write(contains_illegal_nt(NT)), % JW: we do not want to write
|
|
% nl.
|
|
|
|
'$harmless_dcgexception'(instantiation_error). % ex: phrase(([1],x:X,[3]),L)
|
|
'$harmless_dcgexception'(type_error(callable,_)). % ex: phrase(27,L)
|
|
|
|
|
|
:- set_value('$c_arith',true).
|
|
/**
|
|
@}
|
|
*/
|