This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/GPL/aggregate.pl
vsc 29d7bac9b7 a few extra portability fixes
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@2090 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2008-02-12 18:10:48 +00:00

549 lines
18 KiB
Prolog

/* $Id: aggregate.pl,v 1.2 2008-02-12 18:10:48 vsc Exp $
Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: wielemak@science.uva.nl
WWW: http://www.swi-prolog.org
Copyright (C): 2008, University of Amsterdam
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(aggretate,
[ foreach/2, % :Generator, :Goal
aggregate/3, % +Templ, :Goal, -Result
aggregate/4, % +Templ, +Discrim, :Goal, -Result
aggregate_all/3, % +Templ, :Goal, -Result
aggregate_all/4, % +Templ, +Discrim, :Goal, -Result
free_variables/4 % :Generator, :Template, +Vars0, -Vars
]).
:- use_module(library(ordsets)).
:- use_module(library(pairs)).
:- use_module(library(error)).
:- use_module(library(lists)).
:- if(current_prolog_flag(dialect, yap)).
:- use_module(library(maplist)).
:- endif.
:- module_transparent
foreach/2,
aggregate/3,
aggregate/4,
aggregate_all/3,
aggregate_all/4.
/** <module> Aggregation operators on backtrackable predicates
This library provides aggregating operators over the solutions of a
predicate. The operations are a generalisation of the bagof/3, setof/3
and findall/3 built-in predicates. The defined aggregation operations
are counting, computing the sum, minimum, maximum, a bag of solutions
and a set of solutions. We first give a simple example, computing the
country with the smallest area:
==
average_country_area(Name, Area) :-
aggregate(min(A, N), country(N, A), min(Area, Name)).
==
There are four aggregation predicates, distinguished on two properties.
$ aggregate vs. aggregate_all :
The aggregate predicates use setof/3 (aggregate/4) or bagof/3
(aggregate/3), dealing with existential qualified variables
(Var^Goal) and providing multiple solutions for the remaining free
variables in Goal. The aggregate_all/3 predicate uses findall/3,
implicitely qualifying all free variables and providing exactly one
solution, while aggregate_all/4 uses sort/2 over solutions and
Distinguish (see below) generated using findall/3.
$ The Distinguish argument :
The versions with 4 arguments provide a Distinguish argument that
allow for keeping duplicate bindings of a variable in the result.
For example, if we wish to compute the total population of all
countries we do not want to loose results because two countries
have the same population. Therefore we use:
==
aggregate(sum(P), Name, country(Name, P), Total)
==
All aggregation predicates support the following operator below in
Template. In addition, they allow for an arbitrary named compound term
where each of the arguments is a term from the list below. I.e. the term
r(min(X), max(X)) computes both the minimum and maximum binding for X.
* count
Count number of solutions. Same as sum(1).
* sum(Expr)
Sum of Expr for all solutions.
* min(Expr)
Minimum of Expr for all solutions.
* min(Expr, Witness)
A term min(Min, Witness), where Min is the minimal version
of Expr over all Solution and Witness is any other template
the applied to the solution that produced Min. If multiple
solutions provide the same minimum, Witness corresponds to
the first solution.
* max(Expr)
Maximum of Expr for all solutions.
* max(Expr, Witness)
As min(Expr, Witness), but producing the maximum result.
* set(X)
An ordered set with all solutions for X.
* bag(X)
A list of all solutions for X.
---+++ Acknowledgements
_|The development of this library was sponsored by SecuritEase,
http://www.securitease.com
|_
@compat Quintus, SICStus 4. The forall/2 is a SWI-Prolog built-in and
term_variables/3 is a SWI-Prolog with a *|different definition|*.
@tbd Analysing the aggregation template and compiling a predicate
for the list aggregation can be done at compile time.
@tbd aggregate_all/3 can be rewritten to run in constant space using
non-backtrackable assignment on a term.
*/
/*******************************
* AGGREGATE *
*******************************/
%% aggregate(+Template, :Goal, -Result) is nondet.
%
% Aggregate bindings in Goal according to Template. The aggregate/3
% version performs bagof/3 on Goal.
aggregate(Template, Goal0, Result) :-
template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
bagof(Pattern, Goal, List),
aggregate_list(Aggregate, List, Result).
%% aggregate(+Template, +Discriminator, :Goal, -Result) is nondet.
%
% Aggregate bindings in Goal according to Template. The aggregate/3
% version performs setof/3 on Goal.
aggregate(Template, Discriminator, Goal0, Result) :-
template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
setof(Discriminator-Pattern, Goal, Pairs),
pairs_values(Pairs, List),
aggregate_list(Aggregate, List, Result).
%% aggregate_all(+Template, :Goal, -Result) is semidet.
%
% Aggregate bindings in Goal according to Template. The aggregate_all/3
% version performs findall/3 on Goal.
aggregate_all(Template, Goal0, Result) :-
template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
findall(Pattern, Goal, List),
aggregate_list(Aggregate, List, Result).
%% aggregate_all(+Template, +Discriminator, :Goal, -Result) is semidet.
%
% Aggregate bindings in Goal according to Template. The aggregate_all/3
% version performs findall/3 followed by sort/2 on Goal.
aggregate_all(Template, Discriminator, Goal0, Result) :-
template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
findall(Discriminator-Pattern, Goal, Pairs0),
sort(Pairs0, Pairs),
pairs_values(Pairs, List),
aggregate_list(Aggregate, List, Result).
template_to_pattern(_All, Template, Pattern, Goal0, Goal, Aggregate) :-
template_to_pattern(Template, Pattern, Post, Vars, Aggregate),
existential_vars(Goal0, Goal1, AllVars, Vars),
clean_body((Goal1, Post), Goal2),
add_existential_vars(AllVars, Goal2, Goal).
existential_vars(Var, Var) -->
{ var(Var) }, !.
existential_vars(Var^G0, G) --> !,
[Var],
existential_vars(G0, G).
existential_vars(G, G) -->
[].
add_existential_vars([], G, G).
add_existential_vars([H|T], G0, H^G1) :-
add_existential_vars(T, G0, G1).
%% clean_body(+Goal0, -Goal) is det.
%
% Remove redundant =true= from Goal0.
clean_body((Goal0,Goal1), Goal) :- !,
clean_body(Goal0, GoalA),
clean_body(Goal1, GoalB),
( GoalA == true
-> Goal = GoalB
; GoalB == true
-> Goal = GoalA
; Goal = (GoalA,GoalB)
).
clean_body(Goal, Goal).
%% template_to_pattern(+Template, -Pattern, -Post, -Vars, -Agregate)
%
% Determine which parts of the goal we must remember in the
% findall/3 pattern.
%
% @param Post is a body-term that evaluates expressions to reduce
% storage requirements.
% @param Vars is a list of intermediate variables that must be
% added to the existential variables for bagof/3.
% @param Agregate defines the aggregation operation to execute.
template_to_pattern(sum(X), X, true, [], sum) :- var(X), !.
template_to_pattern(sum(X0), X, X is X0, [X0], sum) :- !.
template_to_pattern(count, 1, true, [], count) :- !.
template_to_pattern(min(X), X, true, [], min) :- var(X), !.
template_to_pattern(min(X0), X, X is X0, [X0], min) :- !.
template_to_pattern(min(X0, Witness), X-Witness, X is X0, [X0], min_witness) :- !.
template_to_pattern(max(X0), X, X is X0, [X0], max) :- !.
template_to_pattern(max(X0, Witness), X-Witness, X is X0, [X0], max_witness) :- !.
template_to_pattern(set(X), X, true, [], set) :- !.
template_to_pattern(bag(X), X, true, [], bag) :- !.
template_to_pattern(Term, Pattern, Goal, Vars, term(MinNeeded, Functor, AggregateArgs)) :-
compound(Term), !,
Term =.. [Functor|Args0],
templates_to_patterns(Args0, Args, Goal, Vars, AggregateArgs),
needs_one(AggregateArgs, MinNeeded),
Pattern =.. [Functor|Args].
template_to_pattern(Term, _, _, _, _) :-
type_error(aggregate_template, Term).
templates_to_patterns([], [], true, [], []).
templates_to_patterns([H0], [H], G, Vars, [A]) :- !,
template_to_pattern(H0, H, G, Vars, A).
templates_to_patterns([H0|T0], [H|T], (G0,G), Vars, [A0|A]) :-
template_to_pattern(H0, H, G0, V0, A0),
append(V0, RV, Vars),
templates_to_patterns(T0, T, G, RV, A).
%% needs_one(+Ops, -OneOrZero)
%
% If one of the operations in Ops needs at least one answer,
% unify OneOrZero to 1. Else 0.
needs_one(Ops, 1) :-
member(Op, Ops),
needs_one(Op), !.
needs_one(_, 0).
needs_one(min).
needs_one(min_witness).
needs_one(max).
needs_one(max_witness).
%% aggregate_list(+Op, +List, -Answer) is semidet.
%
% Aggregate the answer from the list produced by findall/3,
% bagof/3 or setof/3. The latter two cases deal with compound
% answers.
%
% @tbd Compile code for incremental state update, which we will use
% for aggregate_all/3 as well. We should be using goal_expansion
% to generate these clauses.
aggregate_list(bag, List0, List) :- !,
List = List0.
aggregate_list(set, List, Set) :- !,
sort(List, Set).
aggregate_list(sum, List, Sum) :-
sumlist(List, Sum).
aggregate_list(count, List, Count) :-
length(List, Count).
aggregate_list(max, List, Sum) :-
max_list(List, Sum).
aggregate_list(max_witness, List, max(Max, Witness)) :-
max_pair(List, Max, Witness).
aggregate_list(min, List, Sum) :-
min_list(List, Sum).
aggregate_list(min_witness, List, min(Min, Witness)) :-
min_pair(List, Min, Witness).
aggregate_list(term(0, Functor, Ops), List, Result) :- !,
maplist(state0, Ops, StateArgs, FinishArgs),
State0 =.. [Functor|StateArgs],
aggregate_term_list(List, Ops, State0, Result0),
finish_result(Ops, FinishArgs, Result0, Result).
aggregate_list(term(1, Functor, Ops), [H|List], Result) :-
H =.. [Functor|Args],
maplist(state1, Ops, Args, StateArgs, FinishArgs),
State0 =.. [Functor|StateArgs],
aggregate_term_list(List, Ops, State0, Result0),
finish_result(Ops, FinishArgs, Result0, Result).
aggregate_term_list([], _, State, State).
aggregate_term_list([H|T], Ops, State0, State) :-
step_term(Ops, H, State0, State1),
aggregate_term_list(T, Ops, State1, State).
%% min_pair(+Pairs, -Key, -Value) is det.
%% max_pair(+Pairs, -Key, -Value) is det.
%
% True if Key-Value has the smallest/largest key in Pairs. If
% multiple pairs share the smallest/largest key, the first pair is
% returned.
min_pair([M0-W0|T], M, W) :-
min_pair(T, M0, W0, M, W).
min_pair([], M, W, M, W).
min_pair([M0-W0|T], M1, W1, M, W) :-
( M0 > M1
-> min_pair(T, M0, W0, M, W)
; min_pair(T, M1, W1, M, W)
).
max_pair([M0-W0|T], M, W) :-
max_pair(T, M0, W0, M, W).
max_pair([], M, W, M, W).
max_pair([M0-W0|T], M1, W1, M, W) :-
( M0 > M1
-> max_pair(T, M0, W0, M, W)
; max_pair(T, M1, W1, M, W)
).
%% step(+AggregateAction, +New, +State0, -State1).
step(bag, X, [X|L], L).
step(set, X, [X|L], L).
step(count, _, X0, X1) :-
succ(X0, X1).
step(sum, X, X0, X1) :-
X1 is X0+X.
step(max, X, X0, X1) :-
X1 is max(X0, X).
step(min, X, X0, X1) :-
X1 is min(X0, X).
step(max_witness, X-W, X0-W0, X1-W1) :-
( X > X0
-> X1 = X, W1 = W
; X1 = X0, W1 = W0
).
step(min_witness, X-W, X0-W0, X1-W1) :-
( X < X0
-> X1 = X, W1 = W
; X1 = X0, W1 = W0
).
step(term(Ops), Row, Row0, Row1) :-
step_term(Ops, Row, Row0, Row1).
step_term(Ops, Row, Row0, Row1) :-
functor(Row, Name, Arity),
functor(Row1, Name, Arity),
step_list(Ops, 1, Row, Row0, Row1).
step_list([], _, _, _, _).
step_list([Op|OpT], Arg, Row, Row0, Row1) :-
arg(Arg, Row, X),
arg(Arg, Row0, X0),
arg(Arg, Row1, X1),
step(Op, X, X0, X1),
succ(Arg, Arg1),
step_list(OpT, Arg1, Row, Row0, Row1).
finish_result(Ops, Finish, R0, R) :-
functor(R0, Functor, Arity),
functor(R, Functor, Arity),
finish_result(Ops, Finish, 1, R0, R).
finish_result([], _, _, _, _).
finish_result([Op|OpT], [F|FT], I, R0, R) :-
arg(I, R0, A0),
arg(I, R, A),
finish_result1(Op, F, A0, A),
succ(I, I2),
finish_result(OpT, FT, I2, R0, R).
finish_result1(bag, Bag0, [], Bag) :- !,
Bag = Bag0.
finish_result1(set, Bag, [], Set) :- !,
sort(Bag, Set).
finish_result1(max_witness, _, M-W, R) :- !,
R = max(M,W).
finish_result1(min_witness, _, M-W, R) :- !,
R = min(M,W).
finish_result1(_, _, A, A).
%% state0(+Op, -State, -Finish)
state0(bag, L, L).
state0(set, L, L).
state0(count, 0, _).
state0(sum, 0, _).
%% state1(+Op, +First, -State, -Finish)
state1(bag, X, [X|L], L).
state1(set, X, [X|L], L).
state1(_, X, X, _).
/*******************************
* FOREACH *
*******************************/
%% foreach(:Generator, :Goal)
%
% True if the conjunction of instances of Goal using the bindings
% from Generator is true. Unlike forall/2, which runs a
% failure-driven loop that proves Goal for each solution of
% Generator, foreach creates a conjunction. Each member of the
% conjunction is a copy of Goal, where the variables it shares
% with Generator are filled with the values from the corresponding
% solution.
%
% The implementation executes forall/2 if Goal does not contain
% any variables that are not shared with Generator.
%
% Here is an example:
%
% ==
% ?- foreach(between(1,4,X), dif(X,Y)), Y = 5.
% Y = 5
% ?- foreach(between(1,4,X), dif(X,Y)), Y = 3.
% No
% ==
%
% @bug Goal is copied repeatetly, which may cause problems if
% attributed variables are involved.
foreach(Generator, Goal0) :-
strip_module(Goal0, M, G),
Goal = M:G,
term_variables(Generator, GenVars0), sort(GenVars0, GenVars),
term_variables(Goal, GoalVars0), sort(GoalVars0, GoalVars),
ord_subtract(GoalVars, GenVars, SharedGoalVars),
( SharedGoalVars == []
-> \+ (Generator, \+Goal) % = forall(Generator, Goal)
; ord_intersection(GenVars, GoalVars, SharedVars),
Templ =.. [v|SharedVars],
SharedTempl =.. [v|SharedGoalVars],
findall(Templ, Generator, List),
prove_list(List, Templ, SharedTempl, Goal)
).
prove_list([], _, _, _).
prove_list([H|T], Templ, SharedTempl, Goal) :-
copy_term(Templ+SharedTempl+Goal,
H+SharedTempl+Copy),
Copy,
prove_list(T, Templ, SharedTempl, Goal).
%% free_variables(:Generator, +Template, +VarList0, -VarList) is det.
%
% In order to handle variables properly, we have to find all the
% universally quantified variables in the Generator. All variables
% as yet unbound are universally quantified, unless
%
% 1. they occur in the template
% 2. they are bound by X^P, setof, or bagof
%
% free_variables(Generator, Template, OldList, NewList) finds this
% set, using OldList as an accumulator.
%
% @author Richard O'Keefe
% @author Jan Wielemaker (made some SWI-Prolog enhancements)
% @license Public domain (from DEC10 library).
% @tbd Distinguish between control-structures and data terms.
% @tbd Exploit our built-in term_variables/2 at some places?
free_variables(Term, Bound, VarList, [Term|VarList]) :-
var(Term),
term_is_free_of(Bound, Term),
list_is_free_of(VarList, Term), !.
free_variables(Term, _Bound, VarList, VarList) :-
var(Term), !.
free_variables(Term, Bound, OldList, NewList) :-
explicit_binding(Term, Bound, NewTerm, NewBound), !,
free_variables(NewTerm, NewBound, OldList, NewList).
free_variables(Term, Bound, OldList, NewList) :-
functor(Term, _, N),
free_variables(N, Term, Bound, OldList, NewList).
free_variables(0, _, _, VarList, VarList) :- !.
free_variables(N, Term, Bound, OldList, NewList) :-
arg(N, Term, Argument),
free_variables(Argument, Bound, OldList, MidList),
M is N-1, !,
free_variables(M, Term, Bound, MidList, NewList).
% explicit_binding checks for goals known to existentially quantify
% one or more variables. In particular \+ is quite common.
explicit_binding(\+ _Goal, Bound, fail, Bound ) :- !.
explicit_binding(not(_Goal), Bound, fail, Bound ) :- !.
explicit_binding(Var^Goal, Bound, Goal, Bound+Var) :- !.
explicit_binding(setof(Var,Goal,Set), Bound, Goal-Set, Bound+Var) :- !.
explicit_binding(bagof(Var,Goal,Bag), Bound, Goal-Bag, Bound+Var) :- !.
%% term_is_free_of(+Term, +Var) is semidet.
%
% True if Var does not appear in Term. This has been rewritten
% from the DEC10 library source to exploit our non-deterministic
% arg/3.
term_is_free_of(Term, Var) :-
\+ var_in_term(Term, Var).
var_in_term(Term, Var) :-
Var == Term, !.
var_in_term(Term, Var) :-
compound(Term),
arg(_, Term, Arg),
var_in_term(Arg, Var), !.
%% list_is_free_of(+List, +Var) is semidet.
%
% True if Var is not in List.
list_is_free_of([Head|Tail], Var) :-
Head \== Var, !,
list_is_free_of(Tail, Var).
list_is_free_of([], _).
% term_variables(+Term, +Vars0, -Vars) is det.
%
% True if Vars is the union of variables in Term and Vars0.
% We cannot have this as term_variables/3 is already defined
% as a difference-list version of term_variables/2.
%term_variables(Term, Vars0, Vars) :-
% term_variables(Term+Vars0, Vars).