0ba4dd8efd
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@2042 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2238 lines
63 KiB
Prolog
2238 lines
63 KiB
Prolog
/*
|
|
LPAD and CP-Logic reasoning suite
|
|
File lpad.pl
|
|
Goal-oriented interpreter for LPADs based on SLG
|
|
Copyright (c) 2007, Fabrizio Riguzzi
|
|
Based on the SLG System, see below
|
|
*/
|
|
|
|
/***************************************************************************/
|
|
/* */
|
|
/* The SLG System */
|
|
/* Authors: Weidong Chen and David Scott Warren */
|
|
/* Copyright (C) 1993 Southern Methodist University */
|
|
/* 1993 SUNY at Stony Brook */
|
|
/* See file COPYRIGHT_SLG for copying policies and disclaimer. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
/*==========================================================================
|
|
File : slg.pl
|
|
Last Modification : November 1, 1993 by Weidong Chen
|
|
===========================================================================
|
|
File : lpad.pl
|
|
Last Modification : November 14, 2007 by Fabrizio Riguzzi
|
|
===========================================================================*/
|
|
|
|
/* ----------- beginning of system dependent features ---------------------
|
|
To run the SLG system under a version of Prolog other than Quintus,
|
|
comment out the following Quintus-specific code, and include the code
|
|
for the Prolog you are running.
|
|
*/
|
|
:- module(lpad, [s/2,
|
|
sc/3,
|
|
p/1,
|
|
slg/3,setting/2,set/2
|
|
]).
|
|
|
|
:- dynamic wfs_trace/0.
|
|
:-use_module(library(ugraphs)).
|
|
:-use_module(library(lists)).
|
|
:- use_module(library(charsio)).
|
|
%:-load_foreign_files(['cplint'],[],init_my_predicates).
|
|
|
|
|
|
:- op(1200,xfx,<--).
|
|
:- op(900,xfx,<-).
|
|
|
|
|
|
|
|
|
|
/* SLG tracing:
|
|
xtrace: turns SLG trace on, which prints out tables at various
|
|
points
|
|
xnotrace: turns off SLG trace
|
|
*/
|
|
xtrace :-
|
|
( wfs_trace ->
|
|
true
|
|
; assert(wfs_trace)
|
|
).
|
|
xnotrace :-
|
|
( wfs_trace ->
|
|
retractall(wfs_trace)
|
|
; true
|
|
).
|
|
|
|
/* isprolog(Call): Call is a Prolog subgoal */
|
|
isprolog(Call) :-
|
|
builtin(Call).
|
|
|
|
/* slg(Call):
|
|
It returns all true answers of Call under the well-founded semantics
|
|
one by one.
|
|
*/
|
|
slg(Call,C,D):-
|
|
slg(Call,[],C,[],D).
|
|
|
|
slg(Call,C0,C,D0,D):-
|
|
( isprolog(Call) ->
|
|
call(Call),
|
|
C=C0,
|
|
D=D0
|
|
; oldt(Call,Tab,C0,C1,D0,D1),
|
|
delete(D1,(goal(_),_),D),
|
|
ground(Call,Ggoal),
|
|
find(Tab,Ggoal,Ent),
|
|
ent_to_anss(Ent,Anss),
|
|
member_anss(d(Call,Delay),Anss),
|
|
(Delay=[]->
|
|
C=C1
|
|
;
|
|
write('Unsound program'),
|
|
nl,
|
|
C=unsound
|
|
)
|
|
).
|
|
|
|
get_new_atom(Atom):-
|
|
retract(new_number(N)),
|
|
N1 is N+1,
|
|
assert(new_number(N1)),
|
|
number_atom(N,NA),
|
|
atom_concat('$call',NA,Atom).
|
|
|
|
s(GoalsList,Prob):-
|
|
convert_to_goal(GoalsList,Goal),
|
|
solve(Goal,Prob).
|
|
|
|
convert_to_goal([Goal],Goal):-Goal \= (\+ _) ,!.
|
|
|
|
convert_to_goal(GoalsList,Head):-
|
|
get_new_atom(Atom),
|
|
extract_vars(GoalsList,[],V),
|
|
Head=..[Atom|V],
|
|
assertz(def_rule(goal(Atom),_,Head,GoalsList)).
|
|
|
|
|
|
solve(Goal,Prob):-
|
|
(setof(C,D^slg(Goal,C,D),LDup)->
|
|
(member(unsound,LDup)->
|
|
format("Unsound program ~n",[]),
|
|
Prob=unsound
|
|
;
|
|
rem_dup_lists(LDup,[],L),
|
|
(ground(L)->
|
|
build_formula(L,Formula,[],Var),
|
|
var2numbers(Var,0,NewVar),
|
|
(setting(save_dot,true)->
|
|
format("Variables: ~p~n",[Var]),
|
|
compute_prob1(NewVar,Formula,_Prob,1)
|
|
;
|
|
compute_prob1(NewVar,Formula,Prob,0)
|
|
)
|
|
;
|
|
format("It requires the choice of a head atom from a non ground head~n~p~n",[L]),
|
|
Prob=non_ground
|
|
)
|
|
)
|
|
;
|
|
Prob=0
|
|
).
|
|
|
|
compute_prob1(Var,For,Prob,_):-
|
|
compute_prob_term(Var,For,0,Prob).
|
|
|
|
compute_prob_term(_Var,[],Prob,Prob).
|
|
|
|
compute_prob_term(Var,[H|T],Prob0,Prob):-
|
|
compute_prob_factor(Var,H,1,PF),
|
|
Prob1 is Prob0 + PF,
|
|
compute_prob_term(Var,T,Prob1,Prob).
|
|
|
|
compute_prob_factor(_Var,[],PF,PF).
|
|
|
|
compute_prob_factor(Var,[[N,Value]|T],PF0,PF):-
|
|
nth0(N,Var,[_N,_NH,ListProb]),
|
|
nth0(Value,ListProb,P),
|
|
PF1 is PF0*P,
|
|
compute_prob_factor(Var,T,PF1,PF).
|
|
|
|
sc(Goals,Evidences,Prob):-
|
|
convert_to_goal(Goals,Goal),
|
|
convert_to_goal(Evidences,Evidence),
|
|
solve_cond(Goal,Evidence,Prob).
|
|
|
|
solve_cond(Goal,Evidence,Prob):-
|
|
(setof(DerivE,D^slg(Evidence,DerivE,D),LDupE)->
|
|
rem_dup_lists(LDupE,[],LE),
|
|
build_formula(LE,FormulaE,[],VarE),
|
|
var2numbers(VarE,0,NewVarE),
|
|
compute_prob1(NewVarE,FormulaE,ProbE,0),
|
|
solve_cond_goals(Goal,LE,ProbGE),
|
|
Prob is ProbGE/ProbE
|
|
;
|
|
format("P(Evidence)=0~n",[]),
|
|
Prob=undefined
|
|
).
|
|
|
|
solve_cond_goals(Goals,LE,ProbGE):-
|
|
(setof(DerivGE,find_deriv_GE(LE,Goals,DerivGE),LDupGE)->
|
|
rem_dup_lists(LDupGE,[],LGE),
|
|
build_formula(LGE,FormulaGE,[],VarGE),
|
|
var2numbers(VarGE,0,NewVarGE),
|
|
call_compute_prob(NewVarGE,FormulaGE,ProbGE)
|
|
;
|
|
ProbGE=0
|
|
).
|
|
|
|
solve_cond_goals(Goals,LE,0):-
|
|
\+ find_deriv_GE(LE,Goals,_DerivGE).
|
|
|
|
find_deriv_GE(LD,GoalsList,Deriv):-
|
|
member(D,LD),
|
|
slg(GoalsList,D,DerivDup,[],_Def),
|
|
remove_duplicates(DerivDup,Deriv).
|
|
|
|
call_compute_prob(NewVarGE,FormulaGE,ProbGE):-
|
|
(setting(save_dot,true)->
|
|
format("Variables: ~p~n",[NewVarGE]),
|
|
compute_prob1(NewVarGE,FormulaGE,ProbGE,1)
|
|
;
|
|
compute_prob1(NewVarGE,FormulaGE,ProbGE,0)
|
|
).
|
|
|
|
|
|
/* emptytable(EmptTab): creates an initial empty stable.
|
|
*/
|
|
emptytable(0:[]).
|
|
|
|
/* slgall(Call,Anss):
|
|
slgall(Call,Anss,N0-Tab0,N-Tab):
|
|
If Call is a prolog call, findall is used, and Tab = Tab0;
|
|
If Call is an atom of a tabled predicate, SLG evaluation
|
|
is carried out.
|
|
*/
|
|
slgall(Call,Anss) :-
|
|
slgall(Call,Anss,0:[],_).
|
|
slgall(Call,Anss,N0:Tab0,N:Tab) :-
|
|
( isprolog(Call) ->
|
|
findall(Call,Call,Anss),
|
|
N = N0, Tab = Tab0
|
|
; ground(Call,Ggoal),
|
|
( find(Tab0,Ggoal,Ent) ->
|
|
ent_to_anss(Ent,Answers),
|
|
Tab = Tab0
|
|
; new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1),
|
|
add_tab_ent(Ggoal,Ent,Tab0,Tab1),
|
|
oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP),
|
|
find(Tab,Ggoal,NewEnt),
|
|
ent_to_anss(NewEnt,Answers)
|
|
),
|
|
ansstree_to_list(Answers,Anss,[])
|
|
).
|
|
|
|
|
|
/* oldt(QueryAtom,Table,C0,C,D0,D): top level call for SLG resolution.
|
|
It returns a table consisting of answers for each relevant
|
|
subgoal. For stable predicates, it basically extract the
|
|
relevant set of ground clauses by solving Prolog predicates
|
|
and other well-founded predicates.
|
|
*/
|
|
oldt(Call,Tab,C0,C,D0,D) :-
|
|
new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1),
|
|
add_tab_ent(Ggoal,Ent,[],Tab1),
|
|
oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,0:[],_TP,C0,C1,D0,D,PC),
|
|
add_PC_to_C(PC,C1,C),
|
|
( wfs_trace ->
|
|
nl, write('Final '), display_table(Tab), nl
|
|
; true
|
|
).
|
|
|
|
/* oldt(Call,Ggoal,Tab0,Tab,Stack0,Stack,DFN0,DFN,Dep0,Dep,TP0,TP,C0,C,D0,D,PC)
|
|
explores the initial set of edges, i.e., all the
|
|
program clauses for Call. Ggoal is of the form
|
|
Gcall-Gdfn, where Gcall is numbervar of Call and Gdfn
|
|
is the depth-first number of Gcall. Tab0/Tab,Stack0/Stack,
|
|
DFN0/DFN, and Dep0/Dep are accumulators for the table,
|
|
the stack of subgoals, the DFN counter, and the dependencies.
|
|
TP0/TP is the accumulator for newly created clauses during
|
|
the processing of general clauss with universal disjunctions
|
|
in the body. These clauses are created in order to guarantee
|
|
polynomial data complexity in processing clauses with
|
|
universal disjuntions in the body of a clause. The newly
|
|
created propositions are represented by numbers.
|
|
C0/C are accumulators for disjunctive clauses used in the derivation of Call:
|
|
they are list of triples (N,R,S) where N is the number of the head atom used
|
|
(starting from 0), R is the number of the rule used (starting from 1) and
|
|
S is the substitution of the variables in the head atom used. S is a list
|
|
of elements of the form Varname=Term.
|
|
D0/D are accumulators for definite clauses: they are list of couples (R,S),
|
|
where R is a rule number and S is a substitution.
|
|
PC is a list of disjunctive rules selected but not used in the derivation,
|
|
they are added to the C set afterwards if they are consistent with C
|
|
(PC stands for Possible C, i.e., possible additions to the C set).
|
|
*/
|
|
oldt(Call,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D,PC) :-
|
|
( number(Call) ->
|
|
TP0 = (_ : Tcl),
|
|
find(Tcl,Call,Clause),
|
|
edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1,
|
|
C0,C,D0,D)
|
|
; find_rules(Call,Frames,C0,PC),
|
|
map_oldt(Frames,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1,
|
|
C0,C,D0,D)
|
|
),
|
|
comp_tab_ent(Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
|
|
|
|
/* find_rules(Call,Frames,C,PossC)
|
|
finds rules for Call. Frames is the list of clauses that resolve with Call. It
|
|
is a list of terms of the form
|
|
rule(d(Call,[]),Body,R,N,S)
|
|
C is the current set of disjunctive clauses together with the head selected
|
|
PossC is the list of possible disjunctive clauses together with the head
|
|
selected: they are the clauses with an head that does not unify with Call. It
|
|
is a list of terms of the form
|
|
rule(d(Call,[]),Body,R,N,S)
|
|
*/
|
|
find_rules(Call,Frames,C,PossC):-
|
|
findall(rule(d(Call,[]),Body,def(N),_,Subs,_),def_rule(N,Subs,Call,Body),Fr1),
|
|
find_disj_rules(Call,Fr2,C,PossC),
|
|
append(Fr1,Fr2,Frames).
|
|
|
|
/* find_disj_rules(Call,Fr,C,PossC):-
|
|
finds disjunctive rules for Call.
|
|
*/
|
|
find_disj_rules(Call,Fr,C,[]):-
|
|
findall(rule(d(Call,[]),Body,R,N,S,LH),
|
|
find_rule(Call,(R,S,N),Body,LH),Fr).
|
|
|
|
find_disj_rulesold(Call,Fr,C,PossC):-
|
|
findall(rule(d(Call,[]),Body,R,S,N,LH),
|
|
find_rule(Call,(R,S,N),Body,LH),LD),
|
|
(setof((R,LH),(Call,Body,S,N)^member(rule(d(Call,[]),Body,R,S,N,LH),LD),LR)->
|
|
choose_rules(LR,LD,[],Fr,C,[],PossC)
|
|
;
|
|
Fr=[],
|
|
PossC=[]
|
|
).
|
|
|
|
|
|
|
|
/* choose_rules(LR,LD,Fr0,Fr,C,PossC0,PossC)
|
|
LR is a list of couples (R,LH) where R is a disjunctive rule number and LH is
|
|
a list of head atoms numbers, from 0 to length(head)-1
|
|
LD is the list of disjunctive clauses resolving with Call. Its elements are
|
|
of the form
|
|
rule(d(Call,[]),Body,R,N,S)
|
|
Fr0/Fr are accumulators for the matching disjunctive clauses
|
|
PossC0/PossC are accumulators for the additional disjunctive clauses
|
|
|
|
*/
|
|
choose_rules([],Fr,Fr,_C,PC,PC).
|
|
|
|
choose_rules([rule(d(Call,[]),Body,R,S,N1,LH)|LD],Fr0,Fr,C,PC0,PC):-
|
|
member(N,LH),
|
|
(N=N1->
|
|
% the selected head resolves with Call
|
|
consistent(N,R,S,C),
|
|
Fr=[rule(d(Call,[]),Body,R,N,S)|Fr1],
|
|
PC=PC1
|
|
;
|
|
% the selected head does not resolve with Call
|
|
consistent(N,R,S,C),
|
|
Fr=[rule(d('$null',[]),Body,R,N,S)|Fr1],
|
|
PC=PC1
|
|
),
|
|
choose_rules(LD,Fr0,Fr1,C,PC0,PC1).
|
|
|
|
choose_rulesold([],_LD,Fr,Fr,_C,PC,PC).
|
|
|
|
choose_rulesold([(R,LH)|LR],LD,Fr0,Fr,C,PC0,PC):-
|
|
member(N,LH),
|
|
(member(rule(d(Call,[]),Body,R,S,N,LH),LD)->
|
|
% the selected head resolves with Call
|
|
consistent(N,R,S,C),
|
|
Fr=[rule(d(Call,[]),Body,R,N,S)|Fr1],
|
|
PC=PC1
|
|
;
|
|
% the selected head does not resolve with Call
|
|
findall(S,member(rule(d(Call,[]),Body,R,S,_N,LH),LD),LS),
|
|
% this is done to handle the case in which there are
|
|
% multiple instances of rule R with different substitutions
|
|
(merge_subs(LS,S)->
|
|
% all the substitutions are consistent, their merge is used
|
|
consistent(N,R,S,C),
|
|
Fr=Fr1,
|
|
PC=[rule(d(_Call,[]),Body,R,N,S)|PC1]
|
|
;
|
|
% the substitutions are inconsistent, the empty substitution is used
|
|
rule(R,S,_LH,_Head,_Body),
|
|
consistent(N,R,S,C),
|
|
Fr=Fr1,
|
|
PC=[rule(d(_Call,[]),Body,R,N,S)|PC1]
|
|
)
|
|
),
|
|
choose_rules(LR,LD,Fr0,Fr1,C,PC0,PC1).
|
|
|
|
merge_subs([],_S).
|
|
|
|
merge_subs([S|ST],S):-
|
|
merge_subs(ST,S).
|
|
|
|
merge_subs([],_Call,_S).
|
|
|
|
merge_subs([(S,Call)|ST],Call,S):-
|
|
merge_subs(ST,Call,S).
|
|
|
|
/* consistent(N,R,S,C)
|
|
head N of rule R with substitution S is consistent with C
|
|
*/
|
|
|
|
consistent(_N,_R,_S,[]):-!.
|
|
|
|
consistent(N,R,S,[(_N,R1,_S)|T]):-
|
|
% different rule
|
|
R\=R1,!,
|
|
consistent(N,R,S,T).
|
|
|
|
consistent(N,R,S,[(N,R,_S)|T]):-
|
|
% same rule, same head
|
|
consistent(N,R,S,T).
|
|
|
|
consistent(N,R,S,[(N1,R,S1)|T]):-
|
|
% same rule, different head
|
|
N\=N1,
|
|
% different substitutions
|
|
dif(S,S1),
|
|
consistent(N,R,S,T).
|
|
|
|
|
|
|
|
map_oldt([],_Ggoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP,C,C,D,D).
|
|
map_oldt([Clause|Frames],Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,
|
|
C0,C,D0,D) :-
|
|
edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1,
|
|
C0,C1,D0,D1),
|
|
map_oldt(Frames,Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP,C1,C,D1,D).
|
|
|
|
/* edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
Clause may be one of the following forms:
|
|
rule(d(H,Dlist),Blist)
|
|
rule(d(H,all(Dlist)),all(Blist))
|
|
where the second form is for general clauses with a universal
|
|
disjunction of literals in the body. Dlist is a list of delayed
|
|
literals, and Blist is the list of literals to be solved.
|
|
Clause represents a directed edge from Ggoal to the left most
|
|
subgoal in Blist.
|
|
*/
|
|
edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
Clause = rule(Ans,B,Rule,Number,Sub,LH),
|
|
( B == [] ->
|
|
ans_edge(rule(Ans,B,Rule,Number,Sub,LH),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D)
|
|
; B = [Lit|_] ->
|
|
( Lit = (\+N) ->
|
|
neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D)
|
|
; pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D)
|
|
)
|
|
; B = all(Bl) ->
|
|
( Bl == [] ->
|
|
ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
; Bl = [Lit|_],
|
|
( Lit = (\+N) ->
|
|
aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
; apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
)
|
|
)
|
|
).
|
|
/* add_ans_to_C(rule(Head,Body,R,N,S),C0,C,D0,D):-
|
|
adds rule rule(Head,Body,R,N,S) to the C set if it is disjunctive
|
|
or to the D set if it is definite. The rule is added only if it is consistent
|
|
with the current C set
|
|
*/
|
|
add_ans_to_C(rule(_,_,def(N),_,S,_),C,C,D,[(N,S)|D],true):-!.
|
|
|
|
add_ans_to_C(rule(_Ans,_B,R,N,S,LH),C0,C,D,D,HeadSelected):-
|
|
member(N1,LH),
|
|
(N1=N->
|
|
HeadSelected=true
|
|
;
|
|
HeadSelected=false
|
|
),
|
|
\+ already_present_with_a_different_head(N1,R,S,C0),
|
|
(already_present_with_the_same_head(N1,R,S,C0)->
|
|
C=C0
|
|
;
|
|
C=[(N1,R,S)|C0]
|
|
).
|
|
/* already_present_with_the_same_head(N,R,S,C)
|
|
succeeds if rule R is present in C with head N and substitution S
|
|
*/
|
|
already_present_with_the_same_head(N,R,S,[(N,R,S)|_T]):-!.
|
|
|
|
already_present_with_the_same_head(N,R,S,[(_N,_R,_S)|T]):-!,
|
|
already_present_with_the_same_head(N,R,S,T).
|
|
|
|
/* already_present_with_a_different_head(N,R,S,C)
|
|
succeeds if rule R is present in C with susbtitution S and a head different
|
|
from N
|
|
*/
|
|
|
|
already_present_with_a_different_head(N,R,S,[(N1,R,S1)|_T]):-
|
|
different_head(N,N1,S,S1),!.
|
|
|
|
already_present_with_a_different_head(N,R,S,[(_N1,_R1,_S1)|T]):-
|
|
already_present_with_a_different_head(N,R,S,T).
|
|
|
|
different_head(N,N1,S,S1):-
|
|
N\=N1,S=S1, !.
|
|
|
|
/* add_PC_to_C(PossC,C0,C)
|
|
adds the rules in PossC to C if they are consistent with it, otherwise it
|
|
fails
|
|
*/
|
|
add_PC_to_C([],C,C).
|
|
|
|
add_PC_to_C([rule(H,B,R,N,S)|T],C0,C):-
|
|
add_ans_to_C(rule(H,B,R,N,S),C0,C1,[],[]),
|
|
add_PC_to_C(T,C1,C).
|
|
|
|
ans_edge(rule(Ans,B,Rule,Number,Sub,LH),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
add_ans_to_C(rule(Ans,B,Rule,Number,Sub,LH),C0,C1,D0,D1,HeadSelected),
|
|
(HeadSelected=false->
|
|
Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0, C=C1, D=D1
|
|
;
|
|
(add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab1) ->
|
|
(Mode = new_head ->
|
|
returned_ans(Ans,Ggoal,RAns),
|
|
map_nodes(Nodes,RAns,Tab1,Tab,
|
|
S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C1,C,D1,D)
|
|
;
|
|
Mode = no_new_head ->
|
|
Tab = Tab1, S = S0, Dfn = Dfn0, Dep = Dep0,
|
|
TP = TP0, C=C1, D=D1
|
|
)
|
|
;
|
|
Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0, C=C1, D=D1
|
|
)
|
|
).
|
|
|
|
neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
Clause = rule(_,[\+N|_],_R,_N,_Sub,_LH),
|
|
( ground(N) -> true
|
|
; write('Flounder: '), write(\+N), nl, fail
|
|
),
|
|
Node = (Ggoal:Clause),
|
|
Ngoal = N, % N is already ground
|
|
( isprolog(N) -> % if N is a Prolog predicate
|
|
( call(N) -> % then just call
|
|
Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, C=C0, D=D0, TP = TP0
|
|
; apply_subst(Node,d(\+ N,[]),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C1,D0,D)
|
|
)
|
|
; ( find(Tab0,Ngoal,Nent) ->
|
|
Tab2 = Tab0, S2 = S0, Dfn2 = Dfn0, Dep2 = Dep0, TP2 = TP0, C2=C0, D2=D0
|
|
; new_init_call(N,Ngoal,Ent,S0,S1,Dfn0,Dfn1),
|
|
add_tab_ent(Ngoal,Ent,Tab0,Tab1),
|
|
oldt(N,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,maxint-maxint,Ndep,TP0,TP2,C0,C1,D0,D2,PC),
|
|
add_PC_to_C(PC,C1,C2),
|
|
compute_mins(Dep0,Ndep,pos,Dep2),
|
|
find(Tab2,Ngoal,Nent)
|
|
),
|
|
ent_to_comp(Nent,Ncomp),
|
|
ent_to_anss(Nent,Nanss),
|
|
( succeeded(Nanss) ->
|
|
Tab = Tab2, S = S2, Dfn = Dfn2, Dep = Dep2, TP = TP2, C =C2, D=D2
|
|
; failed(Nanss), Ncomp == true ->
|
|
apply_subst(Node,d(\+N,[]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep2,Dep,TP2,TP,C2,C,D2,D)
|
|
; apply_subst(Node,d(\+N,[\+N]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep2,Dep,TP2,TP,C2,C,D2,D)
|
|
)
|
|
).
|
|
|
|
pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
Clause = rule(_H,[N|_B],_R,_N,_Sub,_LH),
|
|
Node = (Ggoal:Clause),
|
|
ground(N,Ngoal),
|
|
( isprolog(N) ->
|
|
findall(d(N,[]),call(N),Nanss),
|
|
map_anss_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D)
|
|
; ( find(Tab0,Ngoal,Nent) ->
|
|
ent_to_comp(Nent,Ncomp),
|
|
ent_to_anss(Nent,Nanss),
|
|
( Ncomp \== true ->
|
|
update_lookup_mins(Ggoal,Node,Ngoal,pos,Tab0,Tab1,Dep0,Dep1),
|
|
map_anss(Nanss,Node,Ngoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep1,Dep,TP0,TP,C0,C,D0,D)
|
|
; % N is completed.
|
|
map_anss(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D)
|
|
)
|
|
; % otherwise N is new
|
|
new_pos_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1),
|
|
add_tab_ent(Ngoal,Ent,Tab0,Tab1),
|
|
oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP,C0,C1,D0,D,PC),
|
|
add_PC_to_C(PC,C1,C),
|
|
update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep)
|
|
)
|
|
).
|
|
|
|
aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
Clause = rule(_H,all([\+N|_B])),
|
|
Node = (Ggoal:Clause),
|
|
ground(N,Ngoal),
|
|
( isprolog(N) ->
|
|
findall(d(N,[]),call(N),Nanss),
|
|
return_to_disj_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
; ( find(Tab0,Ngoal,Nent) ->
|
|
ent_to_comp(Nent,Ncomp),
|
|
ent_to_anss(Nent,Nanss),
|
|
( Ncomp \== true ->
|
|
update_lookup_mins(Ggoal,Node,Ngoal,aneg,Tab0,Tab,Dep0,Dep),
|
|
S = S0, Dfn = Dfn0, TP = TP0
|
|
; % N is completed.
|
|
return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
)
|
|
; % otherwise N is new
|
|
new_aneg_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1),
|
|
add_tab_ent(Ngoal,Ent,Tab0,Tab1),
|
|
oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP),
|
|
update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep)
|
|
)
|
|
).
|
|
|
|
apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
Clause = rule(d(H,D),all([N|B])),
|
|
( ground(N) -> true
|
|
; write('Flounder in a universal disjunction: '),
|
|
write(N),
|
|
nl,
|
|
fail
|
|
),
|
|
pos_edge(rule(d(H,[]),[N]),Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
|
|
edge_oldt(rule(d(H,D),all(B)),Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
|
|
|
|
apply_subst(Ggoal:Cl,d(An,Vr),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
copy_term(Cl,rule(d(Ac,Vc),Body,R,N,Sub,LH)),
|
|
( Body = [Call|NBody] ->
|
|
Call = An,
|
|
append(Vr,Vc,Vn)
|
|
; Body = all([Call|Calls]),
|
|
% Call = An, % An is the numbervar-ed version of Call.
|
|
( Vc == [] ->
|
|
Vn = all(Vr)
|
|
; Vc = all(Vc0),
|
|
append(Vr,Vc0,Vn0),
|
|
Vn = all(Vn0)
|
|
),
|
|
NBody = all(Calls)
|
|
),
|
|
edge_oldt(rule(d(Ac,Vn),NBody,R,N,Sub,LH),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D).
|
|
|
|
/* map_nodes(Nodes,Ans,....):
|
|
return Ans to each of the waiting nodes in Nodes, where a node
|
|
is of the form Ggoal:Clause.
|
|
*/
|
|
map_nodes([],_Ans,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP,C,C,D,D).
|
|
map_nodes([Node|Nodes],Ans,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1,C0,C1,D0,D1),
|
|
map_nodes(Nodes,Ans,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP,C1,C,D1,D).
|
|
|
|
map_anss([],_Node,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP,C,C,D,D).
|
|
map_anss(l(_GH,Lanss),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
( Lanss == [] ->
|
|
Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0, C=C0, D=D0
|
|
; Lanss = [Ans|_],
|
|
returned_ans(Ans,Ngoal,RAns),
|
|
apply_subst(Node,RAns,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D)
|
|
).
|
|
map_anss(n2(T1,_,T2),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1,C0,C1,D0,D1),
|
|
map_anss(T2,Node,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP,C1,C,D1,D).
|
|
map_anss(n3(T1,_,T2,_,T3),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1,C0,C1,D0,D1),
|
|
map_anss(T2,Node,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,Dep1,Dep2,TP1,TP2,C1,C2,D1,D2),
|
|
map_anss(T3,Node,Ngoal,Tab2,Tab,S2,S,Dfn2,Dfn,Dep2,Dep,TP2,TP,C2,C,D2,D).
|
|
|
|
map_anss_list([],_Node,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP,C,C,D,D).
|
|
map_anss_list([Ans|Lanss],Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP,C0,C,D0,D) :-
|
|
apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1,C0,C1,D0,D1),
|
|
map_anss_list(Lanss,Node,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP,C1,C,D1,D).
|
|
|
|
/* return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
Nanss: an answer table for Ngoal
|
|
Node: is of the form (Ggoal:Clause), where Clause is of the form
|
|
rule(d(H,D),all([\+N|B]))
|
|
It carries out resolution of each answer with Clause, and constructs
|
|
a new clause rule(Head,NBody), where the body is basically a
|
|
conjunction of all the resolvents. If a resolvent is a disjunction
|
|
or a non-ground literal, a new proposition is created (which is
|
|
actually represented by a number), which has a clause whose body
|
|
is the resolvent.
|
|
*/
|
|
return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
Node = (Ggoal : Clause),
|
|
Clause = rule(Head,all(Body)),
|
|
TP0 = (N0 : Tcl0),
|
|
negative_return_all(Nanss,Body,Ngoal,NBody,[],N0,N,Tcl0,Tcl),
|
|
TP1 = (N : Tcl),
|
|
edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP).
|
|
|
|
negative_return_all([],_Body,_Ngoal,NBody,NBody,N,N,Tcl,Tcl).
|
|
negative_return_all(l(_GH,Lanss),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
|
|
( Lanss == [] ->
|
|
NBody0 = NBody, N = N0, Tcl = Tcl0
|
|
; Lanss = [Ans|_],
|
|
negative_return_one(Ans,Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl)
|
|
).
|
|
negative_return_all(n2(T1,_,T2),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
|
|
negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1),
|
|
negative_return_all(T2,Body,Ngoal,NBody1,NBody,N1,N,Tcl1,Tcl).
|
|
negative_return_all(n3(T1,_,T2,_,T3),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
|
|
negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1),
|
|
negative_return_all(T2,Body,Ngoal,NBody1,NBody2,N1,N2,Tcl1,Tcl2),
|
|
negative_return_all(T3,Body,Ngoal,NBody2,NBody,N2,N,Tcl2,Tcl).
|
|
|
|
negative_return_one(d(H,Tv),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
|
|
copy_term(Body,[\+Call|Bs]),
|
|
H = Call,
|
|
( Tv == [] -> % no delay
|
|
( (Bs = [Lit], ground(Lit)) -> % resovlent is a ground literal
|
|
NBody0 = [Lit|NBody],
|
|
N = N0, Tcl = Tcl0
|
|
; Lit = N0, % otherwise, replace it with a number
|
|
N is N0+1,
|
|
NBody0 = [Lit|NBody],
|
|
Clause = rule(d(Lit,[]),all(Bs)),
|
|
add_tab_ent(Lit,Clause,Tcl0,Tcl)
|
|
)
|
|
; ( ground(H) -> % if there is delay, always replace with number
|
|
NewTv = [\+H]
|
|
; ground(H,GH),
|
|
NewTv = [Ngoal - (\+GH)]
|
|
),
|
|
Lit = N0,
|
|
N is N0+1,
|
|
NBody0 = [Lit|NBody],
|
|
Clause = rule(d(Lit,all(NewTv)),all(Bs)),
|
|
add_tab_ent(Lit,Clause,Tcl0,Tcl)
|
|
).
|
|
|
|
return_to_disj_list(Lanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
Node = (Ggoal : Clause),
|
|
Clause = rule(Head,all(Body)),
|
|
TP0 = (N0 : Tcl0),
|
|
negative_return_list(Lanss,Body,NBody,[],N0,N,Tcl0,Tcl),
|
|
TP1 = (N : Tcl),
|
|
edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP).
|
|
|
|
negative_return_list([],_Body,NBody,NBody,N,N,Tcl,Tcl).
|
|
negative_return_list([d(H,[])|Lanss],Body,NBody0,NBody,N0,N,Tcl0,Tcl) :-
|
|
copy_term(Body,[\+Call|Bs]),
|
|
H = Call,
|
|
( Bs = [Lit], ground(Lit) ->
|
|
NBody0 = [Lit|NBody1],
|
|
N1 = N0, Tcl1 = Tcl0
|
|
; Lit = N0,
|
|
N1 is N0+1,
|
|
NBody0 = [Lit|NBody1],
|
|
Clause = rule(d(Lit,[]),all(Bs)),
|
|
add_tab_ent(Lit,Clause,Tcl0,Tcl1)
|
|
),
|
|
negative_return_list(Lanss,Body,NBody1,NBody,N1,N,Tcl1,Tcl).
|
|
|
|
/* comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
|
|
check if Ggoal and subgoals on top of it on the stack are
|
|
completely evaluated.
|
|
*/
|
|
comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
( Dep0 == maxint-maxint ->
|
|
process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
|
|
; update_mins(Ggoal,Dep0,pos,Tab0,Tab1,Gdfn,Gdep),
|
|
Gdep = Gpmin-Gnmin,
|
|
( Gdfn @=< Gpmin, Gnmin == maxint ->
|
|
process_pos_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
|
|
; Gdfn @=< Gpmin, Gdfn @=< Gnmin ->
|
|
process_neg_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
|
|
; Tab = Tab1, S0 = S, Dfn = Dfn0, Dep = Gdep, TP = TP0
|
|
)
|
|
).
|
|
|
|
process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :-
|
|
( wfs_trace ->
|
|
write('Stack: '), nl, display_stack(S0,Tab0),
|
|
write('Completed call found: '), write(Ggoal), nl,
|
|
display_table(Tab0),
|
|
write('Completing calls ......'), nl, nl
|
|
; true
|
|
),
|
|
pop_subgoals(Ggoal,S0,S1,[],Scc),
|
|
complete_comp(Scc,Tab0,Tab1,Alist,[]),
|
|
return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn0,Dfn,maxint-maxint,Dep,TP0,TP).
|
|
|
|
/* pop_subgoals(Ggoal,S0,S,Scc0,Scc)
|
|
pop off the stack subgoals up to and including Ggoal
|
|
*/
|
|
pop_subgoals(Ggoal,S0,S,Scc0,Scc) :-
|
|
S0 = [Sent|S1],
|
|
( Ggoal == Sent ->
|
|
S = S1,
|
|
Scc = [Sent|Scc0]
|
|
; pop_subgoals(Ggoal,S1,S,[Sent|Scc0],Scc)
|
|
).
|
|
|
|
/* complete_comp(Scc,Tab0,Tab,Alist0,Alist):
|
|
process the list Scc of subgoals that are
|
|
completely evaluated.
|
|
*/
|
|
complete_comp([],Tab,Tab,Alist,Alist).
|
|
complete_comp([Ggoal|Scc],Tab0,Tab,Alist0,Alist) :-
|
|
complete_one(Ggoal,Tab0,Tab1,Alist0,Alist1),
|
|
complete_comp(Scc,Tab1,Tab,Alist1,Alist).
|
|
|
|
/* complete_one(Ggoal,Tab0,Tab,Alist0,Alist)
|
|
process one subgoal that has been completely
|
|
evaluated:
|
|
1. set its Nodes and Negs to [] and Comp to true;
|
|
2. simplify its answers and set up links
|
|
for further simplification later;
|
|
3. use the truth value of Ggoal to simplify
|
|
answers of other complete subgoals (possibly
|
|
including itself).
|
|
4. set Alist0/Alist: a list of negation nodes with
|
|
universal disjunctions with associated answers
|
|
for the selected negative literal.
|
|
*/
|
|
complete_one(Ggoal,Tab0,Tab,Alist0,Alist) :-
|
|
updatevs(Tab0,Ggoal,Ent0,Ent,Tab1),
|
|
Ent0 = e(_Nodes,ANegs,Anss0,Delay,_Comp,Gdfn,Slist0),
|
|
Ent = e([],[],Anss,Delay,true,Gdfn,Slist),
|
|
( Delay == true ->
|
|
reduce_ans(Anss0,Anss,Tab0),
|
|
setup_simp_links(Anss,Ggoal,Slist0,Slist1,Tab1,Tab2)
|
|
; % Delay == false
|
|
Anss = Anss0,
|
|
Tab2 = Tab1,
|
|
Slist1 = Slist0
|
|
),
|
|
extract_known(Ggoal,Anss,Slist1,Slist,Klist),
|
|
simplify(Klist,Tab2,Tab,[]),
|
|
( ANegs == [] ->
|
|
Alist0 = Alist
|
|
; Alist0 = [(Anss,Ggoal)-ANegs|Alist]
|
|
).
|
|
|
|
setup_simp_links([],_,Slist,Slist,Tab,Tab).
|
|
setup_simp_links(l(GH,Lanss),Ggoal,Slist0,Slist,Tab0,Tab) :-
|
|
setup_simp_links_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab).
|
|
setup_simp_links(n2(T1,_,T2),Ggoal,Slist0,Slist,Tab0,Tab) :-
|
|
setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1),
|
|
setup_simp_links(T2,Ggoal,Slist1,Slist,Tab1,Tab).
|
|
setup_simp_links(n3(T1,_,T2,_,T3),Ggoal,Slist0,Slist,Tab0,Tab) :-
|
|
setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1),
|
|
setup_simp_links(T2,Ggoal,Slist1,Slist2,Tab1,Tab2),
|
|
setup_simp_links(T3,Ggoal,Slist2,Slist,Tab2,Tab).
|
|
|
|
/* setup_simp_link_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab)
|
|
Ggoal-GH is to tell what portion of answers of Ggoal can be
|
|
simplified.
|
|
*/
|
|
setup_simp_links_list([],_,_,Slist,Slist,Tab,Tab).
|
|
setup_simp_links_list([d(_,D)|Anss],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :-
|
|
( D = all(Ds) ->
|
|
true
|
|
; Ds = D
|
|
),
|
|
links_from_one_delay(Ds,GHead,Ggoal,Slist0,Slist1,Tab0,Tab1),
|
|
setup_simp_links_list(Anss,GHead,Ggoal,Slist1,Slist,Tab1,Tab).
|
|
|
|
/* A link ((Ggoal-GH):Lit) in an entry for Ngoal means that
|
|
the literal Lit in an answer with head GH in Ggoal can
|
|
be potentially simplified if we know answers for Ngoal.
|
|
*/
|
|
links_from_one_delay([],_,_,Slist,Slist,Tab,Tab).
|
|
links_from_one_delay([D|Ds],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :-
|
|
( D = (\+ Ngoal) ->
|
|
( Ggoal == Ngoal ->
|
|
Tab1 = Tab0,
|
|
Slist1 = [GHead:D|Slist0]
|
|
; add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1),
|
|
Slist1 = Slist0
|
|
)
|
|
; D = (Ngoal-_) ->
|
|
( Ggoal == Ngoal ->
|
|
Slist1 = [GHead:D|Slist0],
|
|
Tab1 = Tab0
|
|
; Slist1 = Slist0,
|
|
add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1)
|
|
)
|
|
),
|
|
links_from_one_delay(Ds,GHead,Ggoal,Slist1,Slist,Tab1,Tab).
|
|
|
|
/* extract_known(Ggoal,Anss,Links,Slist,Klist):
|
|
Given Ggoal and its answers Anss, and its
|
|
simplification Links, it partitioned Links
|
|
into Slist and Klist of links, where Klist
|
|
is a list of links that are known to be either
|
|
true or false.
|
|
|
|
Klist is either of the form Val-Links, or a
|
|
list of the form Val-Link. In case of non-ground
|
|
calls, the corresponding portion of Anss has to
|
|
be searched.
|
|
*/
|
|
extract_known(Ggoal,Anss,Links,Slist,Klist) :-
|
|
( failed(Anss) ->
|
|
Klist = fail-Links,
|
|
Slist = []
|
|
; Anss = l(GH,Lanss) ->
|
|
( Ggoal == GH -> % Ground or most general call
|
|
( memberchk(d(_,[]),Lanss) ->
|
|
Klist = succ-Links,
|
|
Slist = []
|
|
; Klist = [],
|
|
Slist = Links
|
|
)
|
|
; % non-ground call
|
|
extract_known_anss(Links,Anss,[],Slist,[],Klist)
|
|
)
|
|
; % non-ground call
|
|
extract_known_anss(Links,Anss,[],Slist,[],Klist)
|
|
).
|
|
|
|
extract_known_anss([],_,Slist,Slist,Klist,Klist).
|
|
extract_known_anss([Link|Links],Anss,Slist0,Slist,Klist0,Klist) :-
|
|
Link = (_:Lit),
|
|
extract_lit_val(Lit,Anss,true,Val),
|
|
( Val == undefined ->
|
|
Slist1 = [Link|Slist0],
|
|
Klist1 = Klist0
|
|
; Slist1 = Slist0,
|
|
Klist1 = [Val-Link|Klist0]
|
|
),
|
|
extract_known_anss(Links,Anss,Slist1,Slist,Klist1,Klist).
|
|
|
|
/* extract_lit_val(Lit,Anss,Comp,Val):
|
|
extract the truth value of Lit according to Anss and Comp.
|
|
In case of a non-ground calls, the corresponding portion
|
|
of Anss has to be searched.
|
|
*/
|
|
extract_lit_val(Lit,Anss,Comp,Val) :-
|
|
( Lit = (\+ _) ->
|
|
( succeeded(Anss) ->
|
|
Val = fail
|
|
; failed(Anss), Comp == true ->
|
|
Val = succ
|
|
; Val = undefined
|
|
)
|
|
; Lit = (_ - (\+GH)) ->
|
|
( find(Anss,GH,Lanss) ->
|
|
( (\+ \+ memberchk(d(GH,[]),Lanss)) ->
|
|
Val = fail
|
|
; Lanss == [], Comp == true ->
|
|
Val = succ
|
|
; Val = undefined
|
|
)
|
|
; ( Comp == true ->
|
|
Val = succ
|
|
; Val = undefined
|
|
)
|
|
)
|
|
; Lit = (_-GH) ->
|
|
( find(Anss,GH,Lanss) ->
|
|
( (\+ \+ memberchk(d(GH,[]),Lanss)) ->
|
|
Val = succ
|
|
; Lanss == [], Comp == true ->
|
|
Val = fail
|
|
; Val = undefined
|
|
)
|
|
; ( Comp == true ->
|
|
Val = fail
|
|
; Val = undefined
|
|
)
|
|
)
|
|
).
|
|
|
|
/* simplify(KnownLinks,Tab0,Tab,Abd):
|
|
Given a list of KnownLinks, Tab0 and Abd,
|
|
it tries to simplify answers according to
|
|
KnownLinks. When a subgoal is found to be
|
|
true or false according to answers,
|
|
consistency with assumed truth values in Abd
|
|
is checked.
|
|
*/
|
|
simplify([],Tab,Tab,_Abd).
|
|
simplify([Val-Link|Klist],Tab0,Tab,Abd) :-
|
|
simplify_one(Val,Link,Tab0,Tab1,Abd),
|
|
simplify(Klist,Tab1,Tab,Abd).
|
|
simplify(Val-Links,Tab0,Tab,Abd) :-
|
|
simplify_list(Links,Val,Tab0,Tab,Abd).
|
|
|
|
simplify_list([],_,Tab,Tab,_Abd).
|
|
simplify_list([Link|Links],Val,Tab0,Tab,Abd) :-
|
|
Link = (_ : Lit),
|
|
( ( Lit = (\+_); Lit = (_ - (\+_)) ) ->
|
|
( Val = fail -> LVal = succ; LVal = fail )
|
|
; LVal = Val
|
|
),
|
|
simplify_one(LVal,Link,Tab0,Tab1,Abd),
|
|
simplify_list(Links,Val,Tab1,Tab,Abd).
|
|
|
|
simplify_one(Val,Link,Tab0,Tab,Abd) :-
|
|
Link = ((Ngoal - GH) : Lit),
|
|
updatevs(Tab0,Ngoal,Ent0,Ent,Tab1),
|
|
Ent0 = e(Nodes,ANegs,Anss0,Delay,Comp,Dfn,Slist0),
|
|
Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
|
|
( updatevs(Anss0,GH,Lanss0,Lanss,Anss) ->
|
|
simplify_anss(Lanss0,Val,Lit,[],Lanss,C),
|
|
( C == true ->
|
|
( find(Abd,GH,Aval) ->
|
|
( Aval == true, Lanss == [] -> % deduced result inconsistent with assumption
|
|
fail
|
|
; Aval == false, memberchk( d(_ , []), Lanss) ->
|
|
fail
|
|
; true
|
|
)
|
|
; true
|
|
),
|
|
extract_known(Ngoal,Anss,Slist0,Slist,Klist),
|
|
simplify(Klist,Tab1,Tab,Abd)
|
|
; Tab = Tab0
|
|
)
|
|
; Tab = Tab0
|
|
).
|
|
|
|
/* simplify_anss(List,Val,Lit,Lanss0,Lanss,C):
|
|
Given a List of answers, Val of Lit, it
|
|
simplifies the List and construct a new list
|
|
Lanss0/Lanss of answers. C is unified with true
|
|
if some simplification is carried out.
|
|
|
|
As soon as a true answer is detected, all
|
|
other answers with the same head are deleted.
|
|
*/
|
|
simplify_anss([],_,_,Anss,Anss,_).
|
|
simplify_anss([Ans|Rest],Val,Lit,Anss0,Anss,C) :-
|
|
( simplified_ans(Ans,Val,Lit,NewAns,C) ->
|
|
( NewAns = d(_,[]) ->
|
|
Anss = [NewAns]
|
|
; Anss1 = [NewAns|Anss0],
|
|
simplify_anss(Rest,Val,Lit,Anss1,Anss,C)
|
|
)
|
|
; C = true,
|
|
simplify_anss(Rest,Val,Lit,Anss0,Anss,C)
|
|
).
|
|
|
|
simplified_ans(Ans,Val,Lit,NewAns,C) :-
|
|
Ans = d(H,Ds),
|
|
( Ds == [] ->
|
|
NewAns = Ans
|
|
; Ds = all(Dlist) ->
|
|
( Val == fail ->
|
|
delete_lit(Dlist,Lit,NewDlist,[],C),
|
|
( NewDlist == [] ->
|
|
fail
|
|
; NewAns = d(H,all(NewDlist))
|
|
)
|
|
; % Val == succ ->
|
|
( memberchk(Lit,Dlist) ->
|
|
NewAns = d(H,[]),
|
|
C = true
|
|
; NewAns = Ans
|
|
)
|
|
)
|
|
; % Ds is a conjunction
|
|
( Val == fail ->
|
|
( memberchk(Lit,Ds) ->
|
|
fail
|
|
; NewAns = Ans
|
|
)
|
|
; % Val == succ ->
|
|
delete_lit(Ds,Lit,NewDs,[],C),
|
|
NewAns = d(H,NewDs)
|
|
)
|
|
).
|
|
|
|
/* delete_lit(Delays,Lit,Ds0,Ds,C):
|
|
deletes Lit from Delays. Delays is
|
|
a list of delayed literals and it
|
|
is guaranteed to have no duplicates.
|
|
*/
|
|
delete_lit([],_,Ds,Ds,_).
|
|
delete_lit([D|Rest],Lit,Ds0,Ds,C) :-
|
|
( D == Lit ->
|
|
Ds0 = Rest,
|
|
C = true
|
|
; Ds0 = [D|Ds1],
|
|
delete_lit(Rest,Lit,Ds1,Ds,C)
|
|
).
|
|
|
|
% return answers to negative nodes within universal disjunctions
|
|
return_aneg_nodes([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
|
|
return_aneg_nodes([(Anss,Ngoal)-ANegs|Alist],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
map_anegs(ANegs,Anss,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
|
|
return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
|
|
|
|
map_anegs([],_Anss,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
|
|
map_anegs([Node|ANegs],Anss,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
return_to_disj(Anss,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
|
|
map_anegs(ANegs,Anss,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
|
|
|
|
/* process a component of subgoals that may be involved in
|
|
negative loops.
|
|
*/
|
|
process_neg_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :-
|
|
( wfs_trace ->
|
|
write('Stack: '), nl, display_stack(S0,Tab0),
|
|
write('Possible negative loop: '), write(Ggoal), nl,
|
|
display_table(Tab0)
|
|
; true
|
|
),
|
|
extract_subgoals(Ggoal,S0,Scc,[]),
|
|
reset_nmin(Scc,Tab0,Tab1,Ds,[]),
|
|
( wfs_trace ->
|
|
write('Delaying: '), display_dlist(Ds)
|
|
; true
|
|
),
|
|
delay_and_cont(Ds,Tab1,Tab2,S0,S1,Dfn0,Dfn1,maxint-maxint,Dep1,TP0,TP1),
|
|
recomp_scc(Scc,Tab2,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
|
|
|
|
/* extract_subgoals(Ggoal,S0,Scc0,Scc)
|
|
extract subgoals that may be involved in negative loops,
|
|
but leave the stack of subgoals intact.
|
|
*/
|
|
extract_subgoals(Ggoal,[Sent|S],[Sent|Scc0],Scc) :-
|
|
( Ggoal == Sent ->
|
|
Scc0 = Scc
|
|
; extract_subgoals(Ggoal,S,Scc0,Scc)
|
|
).
|
|
|
|
/* reset_nmin(Scc,Tab0,Tab,Dnodes0,Dnodes)
|
|
reset NegLink and collect all waiting nodes that need to be
|
|
delayed. Dnodes0/Dnodes is a difference list.
|
|
*/
|
|
reset_nmin([],Tab,Tab,Ds,Ds).
|
|
reset_nmin([Ggoal|Scc],Tab0,Tab,Ds0,Ds) :-
|
|
get_and_reset_negs(Tab0,Ggoal,ANegs,Tab1),
|
|
( ANegs == [] ->
|
|
Ds0 = Ds1
|
|
; Ds0 = [Ggoal-ANegs|Ds1]
|
|
),
|
|
reset_nmin(Scc,Tab1,Tab,Ds1,Ds).
|
|
|
|
delay_and_cont([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
|
|
delay_and_cont([Ggoal-Negs|Dnodes],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
map_nodes(Negs,d(\+Ggoal,[\+Ggoal]),Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
|
|
delay_and_cont(Dnodes,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
|
|
|
|
recomp_scc([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
|
|
recomp_scc([Ggoal|Scc],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
|
|
comp_tab_ent(Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
|
|
recomp_scc(Scc,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
|
|
|
|
/* routines for incremental update of dependency information
|
|
*/
|
|
|
|
/* update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep)
|
|
update the PosLink and NegLink of Ggoal according to
|
|
Dep and Sign
|
|
*/
|
|
update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep) :-
|
|
Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep0,Slist),
|
|
Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep,Slist),
|
|
updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
|
|
compute_mins(Gdep0,Dep,Sign,Gdep).
|
|
|
|
/* update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep)
|
|
There is a lookup edge (Node) from Ggoal to Ngoal
|
|
with Sign. It adds Node to the corresponding waiting list
|
|
in Ngoal and then update the dependencies of Ggoal.
|
|
*/
|
|
update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep) :-
|
|
updatevs(Tab0,Ngoal,Ent0,Ent,Tab1),
|
|
( Sign == pos ->
|
|
pos_to_newent(Ent0,Ent,Node)
|
|
; Sign == aneg ->
|
|
aneg_to_newent(Ent0,Ent,Node)
|
|
),
|
|
Ent0 = e(_,_,_,_,_,_Ndfn:Ndep,_),
|
|
compute_mins(Dep0,Ndep,Sign,Dep),
|
|
update_mins(Ggoal,Ndep,Sign,Tab1,Tab,_,_).
|
|
|
|
/* update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep)
|
|
There is an edge with Sign from Ggoal to Ngoal, where Ngoal is
|
|
a new subgoal. Ndep is the final dependency information of
|
|
Ngoal. Dep0/Dep is for the most recent enclosing new call.
|
|
This predicate is called after Ngoal is solved.
|
|
*/
|
|
update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep) :-
|
|
find(Tab0,Ngoal,Nent),
|
|
ent_to_comp(Nent,Ncomp),
|
|
( Ncomp == true ->
|
|
( Ndep == maxint-maxint ->
|
|
Tab = Tab0, Dep = Dep0
|
|
; update_mins(Ggoal,Ndep,pos,Tab0,Tab,_,_),
|
|
compute_mins(Dep0,Ndep,pos,Dep)
|
|
)
|
|
; update_mins(Ggoal,Ndep,Sign,Tab0,Tab,_,_),
|
|
compute_mins(Dep0,Ndep,Sign,Dep)
|
|
).
|
|
|
|
compute_mins(Gpmin-Gnmin,Npmin-Nnmin,Sign,Newpmin-Newnmin) :-
|
|
( Sign == pos ->
|
|
min(Gpmin,Npmin,Newpmin),
|
|
min(Gnmin,Nnmin,Newnmin)
|
|
; % (Sign == neg; Sign == aneg) ->
|
|
Newpmin=Gpmin,
|
|
min(Gnmin,Npmin,Imin),
|
|
min(Imin,Nnmin,Newnmin)
|
|
).
|
|
|
|
min(X,Y,M) :- ( X @< Y -> M=X; M=Y ).
|
|
|
|
%%%%%%%%%%%%%%% Local table manipulation predicates %%%%%%%%%%
|
|
|
|
/* Table Entry Structure:
|
|
For each Call, its table entry is identified with its number-vared
|
|
version -- Ggoal. Its value is a term of the form
|
|
|
|
e(Nodes,ANegs,Anss,Delay,Comp,Dfn:Dep,Slist)
|
|
|
|
where
|
|
Nodes: positive suspension list
|
|
ANegs: negative suspension list (for universal disjunction clauss)
|
|
Anss: another table.
|
|
Delay: whether Anss contains any answer with delay
|
|
Comp: whether Call is completely evaluated or not
|
|
Dfn: depth-first number of Gcall
|
|
Dep: (PosLink-NegLink) --- dependency information
|
|
Slist: a list of nodes whose answers may be simplified
|
|
if the truth value of Ggoal is known. Each element of Slist
|
|
is of the form (Ngoal-GH):Literal.
|
|
Stack Entry Structure:
|
|
Ggoal
|
|
*/
|
|
|
|
/* routines for accessing individual fields of an entry
|
|
*/
|
|
ent_to_nodes(e(Nodes,_,_,_,_,_,_),Nodes).
|
|
ent_to_anegs(e(_,ANegs,_,_,_,_,_),ANegs).
|
|
ent_to_anss(e(_,_,Anss,_,_,_,_),Anss).
|
|
ent_to_delay(e(_,_,_,Delay,_,_,_),Delay).
|
|
ent_to_comp(e(_,_,_,_,Comp,_,_),Comp).
|
|
ent_to_dfn(e(_,_,_,_,_,Dfn,_),Dfn).
|
|
ent_to_slist(e(_,_,_,_,_,_,Slist),Slist).
|
|
|
|
get_and_reset_negs(Tab0,Ggoal,ANegs,Tab) :-
|
|
Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn: (Gpmin - _),Slist),
|
|
Ent = e(Nodes,[],Anss,Delay,Comp,Gdfn:Gpmin-maxint,Slist),
|
|
updatevs(Tab0,Ggoal,Ent0,Ent,Tab).
|
|
|
|
/* adding a new table entry
|
|
*/
|
|
add_tab_ent(Ggoal,Ent,Tab0,Tab) :-
|
|
addkey(Tab0,Ggoal,Ent,Tab).
|
|
|
|
/* The following three routines are for creating
|
|
new calls
|
|
*/
|
|
/* a new call with empty suspensions
|
|
*/
|
|
new_init_call(Call,Ggoal,Ent,S0,S,Dfn0,Dfn) :-
|
|
ground(Call,Ggoal),
|
|
S = [Ggoal|S0],
|
|
Dfn is Dfn0+1,
|
|
Ent = e([],[],[],false,false,Dfn0:Dfn0-maxint,[]).
|
|
|
|
/* a new call with an initial negative suspension from
|
|
inside a universal disjunction
|
|
*/
|
|
new_aneg_call(Ngoal,Neg,Ent,S0,S,Dfn0,Dfn) :-
|
|
S = [Ngoal|S0],
|
|
Dfn is Dfn0+1,
|
|
Ent = e([],[Neg],[],false,false,Dfn0:Dfn0-maxint,[]).
|
|
|
|
/* a new call with an initial positive suspension
|
|
*/
|
|
new_pos_call(Ngoal,Node,Ent,S0,S,Dfn0,Dfn) :-
|
|
S = [Ngoal|S0],
|
|
Dfn is Dfn0+1,
|
|
Ent = e([Node],[],[],false,false,Dfn0:Dfn0-maxint,[]).
|
|
|
|
/* routines for adding more information to a
|
|
table entry.
|
|
*/
|
|
aneg_to_newent(Ent0,Ent,ANeg) :-
|
|
Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
|
|
Ent = e(Nodes,[ANeg|ANegs],Anss,Delay,Comp,Dfn,Slist).
|
|
|
|
pos_to_newent(Ent0,Ent,Node) :-
|
|
Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
|
|
Ent = e([Node|Nodes],ANegs,Anss,Delay,Comp,Dfn,Slist).
|
|
|
|
add_link_to_ent(Tab0,Ggoal,Link,Tab) :-
|
|
updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
|
|
link_to_newent(Ent0,Ent,Link).
|
|
|
|
link_to_newent(Ent0,Ent,Link) :-
|
|
Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
|
|
Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,[Link|Slist]).
|
|
|
|
/* routines for manipulating answers */
|
|
ansstree_to_list([],L,L).
|
|
ansstree_to_list(l(_GH,Lanss),L0,L) :-
|
|
attach(Lanss,L0,L).
|
|
ansstree_to_list(n2(T1,_M,T2),L0,L) :-
|
|
ansstree_to_list(T1,L0,L1),
|
|
ansstree_to_list(T2,L1,L).
|
|
ansstree_to_list(n3(T1,_M2,T2,_M3,T3),L0,L) :-
|
|
ansstree_to_list(T1,L0,L1),
|
|
ansstree_to_list(T2,L1,L2),
|
|
ansstree_to_list(T3,L2,L).
|
|
|
|
attach([],L,L).
|
|
attach([d(H,B)|R],[X|L0],L) :-
|
|
( B == [] ->
|
|
X = H
|
|
; X = (H <- B)
|
|
),
|
|
attach(R,L0,L).
|
|
|
|
member_anss(Ans,Anss) :-
|
|
member_anss_1(Anss,Ans).
|
|
|
|
member_anss_1(l(_,Lanss),Ans) :-
|
|
member(Ans,Lanss).
|
|
member_anss_1(n2(T1,_,T2),Ans) :-
|
|
( member_anss_1(T1,Ans)
|
|
; member_anss_1(T2,Ans)
|
|
).
|
|
member_anss_1(n3(T1,_,T2,_,T3),Ans) :-
|
|
( member_anss_1(T1,Ans)
|
|
; member_anss_1(T2,Ans)
|
|
; member_anss_1(T3,Ans)
|
|
).
|
|
|
|
/* failed(Anss): Anss is empty */
|
|
failed([]).
|
|
failed(l(_,[])).
|
|
|
|
/* succeeded(Anss): Anss contains a single definite answer */
|
|
succeeded(l(_,Lanss)) :-
|
|
memberchk(d(_,[]),Lanss).
|
|
|
|
/* add_ans(Tab0,Goal,Ans,Nodes,Mode,Tab):
|
|
If Ans is not subsumed by any existing answer then
|
|
Ans is added to Anss(Goal);
|
|
If some existing answer also has head H then
|
|
Mode = no_new_head
|
|
else
|
|
Mode = new_head
|
|
else
|
|
fail.
|
|
*/
|
|
add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab) :-
|
|
updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
|
|
Ans = d(H,Ds),
|
|
( Ds == [] ->
|
|
new_ans_ent(Ent0,Ent,Ans,Nodes,Mode)
|
|
; setof(X,member(X,Ds),NewDs),
|
|
new_ans_ent(Ent0,Ent,d(H,NewDs),Nodes,Mode)
|
|
).
|
|
|
|
new_ans_ent(Ent0,Ent,Ans,Nodes,Mode) :-
|
|
Ent0 = e(Nodes,ANegs,Anss0,Delay0,Comp,Dfn,Slist),
|
|
Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
|
|
Ans = d(H,D),
|
|
ground(H,GH),
|
|
( updatevs(Anss0,GH,Lanss0,Lanss,Anss) ->
|
|
( D == [] ->
|
|
\+(memberchk(d(_,[]),Lanss0)),
|
|
Lanss = [Ans]
|
|
; not_subsumed_ans(Ans,Lanss0),
|
|
Lanss = [Ans|Lanss0]
|
|
),
|
|
Mode = no_new_head
|
|
; addkey(Anss0,GH,[Ans],Anss),
|
|
Mode = new_head
|
|
),
|
|
( D == [] ->
|
|
Delay = Delay0
|
|
; Delay = true
|
|
).
|
|
|
|
/* returned_ans(Ans,Ggoal,RAns):
|
|
determines whether SLG resolution or SLG factoring should
|
|
be applied.
|
|
*/
|
|
returned_ans(d(H,Tv),Ggoal,d(H,NewTv)) :-
|
|
( Tv = [] ->
|
|
NewTv = []
|
|
; ground(H,GH),
|
|
NewTv = [Ggoal-GH]
|
|
).
|
|
|
|
% reduce a list of answers, by reducing delay list, and by subsumption
|
|
reduce_ans(Anss0,Anss,Tab) :-
|
|
reduce_completed_ans(Anss0,Anss,Tab).
|
|
|
|
% simplify all the delay lists in a list of answers.
|
|
reduce_completed_ans([],[],_Tab).
|
|
reduce_completed_ans(l(GH,Lanss0),l(GH,Lanss),Tab) :-
|
|
reduce_completed_anslist(Lanss0,[],Lanss,Tab).
|
|
reduce_completed_ans(n2(T1,M,T2),n2(NT1,M,NT2),Tab) :-
|
|
reduce_completed_ans(T1,NT1,Tab),
|
|
reduce_completed_ans(T2,NT2,Tab).
|
|
reduce_completed_ans(n3(T1,M2,T2,M3,T3),n3(NT1,M2,NT2,M3,NT3),Tab) :-
|
|
reduce_completed_ans(T1,NT1,Tab),
|
|
reduce_completed_ans(T2,NT2,Tab),
|
|
reduce_completed_ans(T3,NT3,Tab).
|
|
|
|
reduce_completed_anslist([],Lanss,Lanss,_Tab).
|
|
reduce_completed_anslist([d(G,D0)|List],Lanss0,Lanss,Tab) :-
|
|
( D0 = all(Dlist1) ->
|
|
( filter_delays(Dlist1,[],Dlist,disj,V,Tab) ->
|
|
( V == true -> % true answer
|
|
Lanss = [d(G,[])]
|
|
; Dlist == [] -> % false answer, ignore
|
|
reduce_completed_anslist(List,Lanss0,Lanss,Tab)
|
|
; reduce_completed_anslist(List,[d(G,all(Dlist))|Lanss0],Lanss,Tab)
|
|
)
|
|
; reduce_completed_anslist(List,Lanss0,Lanss,Tab)
|
|
)
|
|
; ( filter_delays(D0,[],D,conj,_V,Tab) ->
|
|
( D == [] ->
|
|
Lanss = [d(G,[])]
|
|
; reduce_completed_anslist(List,[d(G,D)|Lanss0],Lanss,Tab)
|
|
)
|
|
; reduce_completed_anslist(List,Lanss0,Lanss,Tab)
|
|
)
|
|
).
|
|
|
|
% simplify a delay list by the completed table: delete true negations,
|
|
% fail if a false one.
|
|
filter_delays([],Fds,Fds,_DC,_V,_Tab).
|
|
filter_delays([Lit|Ds],Fds0,Fds,DC,V,Tab) :-
|
|
lit_to_call(Lit,Gcall),
|
|
find(Tab,Gcall,Gent),
|
|
ent_to_comp(Gent,Gcomp),
|
|
ent_to_anss(Gent,Ganss),
|
|
extract_lit_val(Lit,Ganss,Gcomp,Val),
|
|
( Val == succ ->
|
|
( DC == conj ->
|
|
filter_delays(Ds,Fds0,Fds,DC,V,Tab)
|
|
; DC == disj ->
|
|
V = true
|
|
)
|
|
; Val == fail ->
|
|
( DC == conj ->
|
|
fail
|
|
; DC == disj ->
|
|
filter_delays(Ds,Fds0,Fds,DC,V,Tab)
|
|
)
|
|
; % Val == undefined
|
|
filter_delays(Ds,[Lit|Fds0],Fds,DC,V,Tab)
|
|
).
|
|
|
|
lit_to_call(\+G,G).
|
|
lit_to_call(Gcall-_,Gcall).
|
|
|
|
not_subsumed_ans(Ans,Lanss0) :-
|
|
\+
|
|
( numbervars(Ans,0,_),
|
|
subsumed_ans1(Ans,Lanss0)
|
|
).
|
|
|
|
% succeed if answer is subsumed by any in list1 or 2.
|
|
subsumed_ans(Tv,List1,List2) :-
|
|
\+
|
|
(numbervars(Tv,0,_),
|
|
\+ subsumed_ans1(Tv,List1),
|
|
\+ subsumed_ans1(Tv,List2)
|
|
).
|
|
|
|
% check if a delay is subsumed one of the element in the list
|
|
subsumed_ans1(d(T,V),List) :-
|
|
member(d(T,V1),List),
|
|
( V1 == []
|
|
; V = all(LV), V1 = all(LV1) ->
|
|
subset(LV,LV1)
|
|
; subset(V1,V)
|
|
).
|
|
|
|
/****************** auxiliary routines *******************/
|
|
% variantchk/2 finds a variant in a list of atoms.
|
|
variantchk(G,[G1|_]) :- variant(G,G1), !.
|
|
variantchk(G,[_|L]) :- variantchk(G,L).
|
|
|
|
variant(A, B) :-
|
|
A == B
|
|
-> true
|
|
; subsumes_chk(A, B),
|
|
subsumes_chk(B, A),
|
|
A = B.
|
|
/*
|
|
subsumes_chk(General, Specific) :-
|
|
\+ ( numbervars(Specific, 0, _),
|
|
\+ General = Specific
|
|
).
|
|
*/
|
|
ground(O,C) :- ground(O) -> C = O ; copy_term(O,C), numbervars(C,0,_).
|
|
|
|
subset([],_).
|
|
subset([E|L1],L2) :- memberchk(E,L2), subset(L1,L2).
|
|
|
|
reverse([],R,R).
|
|
reverse([Goal|Scc],R0,R) :- reverse(Scc,[Goal|R0],R).
|
|
|
|
/***************** routines for debugging *******************/
|
|
|
|
% Debugging help: pretty-prints strongly connected components and local table.
|
|
display_stack(Stack,Tab) :-
|
|
reverse(Stack,[],Rstack),
|
|
display_st(Rstack,Tab).
|
|
display_st([],_Tab).
|
|
display_st([Ggoal|Scc],Tab) :-
|
|
find(Tab,Ggoal,Ent),
|
|
ent_to_dfn(Ent,Dfn:Pmin-Nmin),
|
|
tab(2),
|
|
write(Ggoal-Dfn),
|
|
write(': '),
|
|
write('Pmin='),
|
|
write(Pmin),
|
|
write('; '),
|
|
write('Nmin='),
|
|
write(Nmin),
|
|
write('; '),
|
|
nl,
|
|
display_st(Scc,Tab).
|
|
|
|
display_dlist([]) :- nl,nl.
|
|
display_dlist([Ngoal-_|Dlist]) :-
|
|
write(\+ Ngoal),
|
|
write('; '),
|
|
display_dlist(Dlist).
|
|
|
|
display_table(Tab) :-
|
|
write('Table: '),
|
|
nl,
|
|
write_tab(Tab).
|
|
|
|
display_final(Tab) :-
|
|
write(' Final Set of Answers: '),
|
|
nl,
|
|
display_final1(Tab).
|
|
display_final1([]).
|
|
display_final1(l(_,e(_,_,Anss,_,_,_,_))) :-
|
|
write_anss(Anss).
|
|
display_final1(n2(X,_,Y)) :-
|
|
display_final1(X),
|
|
display_final1(Y).
|
|
display_final1(n3(X,_,Y,_,Z)) :-
|
|
display_final1(X),
|
|
display_final1(Y),
|
|
display_final1(Z).
|
|
|
|
write_tab([]).
|
|
write_tab(l(G,e(Nodes,ANegs,Anss,_,Comp,Dfn:_,_))) :-
|
|
write(' Entry: '),
|
|
write(G-Dfn),
|
|
write(': '),
|
|
( Comp == true ->
|
|
write('Complete!')
|
|
; write('Incomplete!')
|
|
),
|
|
nl,
|
|
( Anss == [] ->
|
|
true
|
|
; write(' Anss: '),
|
|
nl,
|
|
write_anss(Anss)
|
|
),
|
|
( ( Comp == true; Nodes == []) ->
|
|
true
|
|
; write(' Nodes: '),
|
|
write(Nodes),
|
|
nl
|
|
),
|
|
( ( Comp == true; ANegs == []) ->
|
|
true
|
|
; write(' ANegs: '),
|
|
write(ANegs),
|
|
nl
|
|
).
|
|
write_tab(n2(X,_,Y)) :-
|
|
write_tab(X),
|
|
write_tab(Y).
|
|
write_tab(n3(X,_,Y,_,Z)) :-
|
|
write_tab(X),
|
|
write_tab(Y),
|
|
write_tab(Z).
|
|
|
|
write_anss([]).
|
|
write_anss(l(_,Lanss)) :-
|
|
write_anss_list(Lanss).
|
|
write_anss(n2(T1,_,T2)) :-
|
|
write_anss(T1),
|
|
write_anss(T2).
|
|
write_anss(n3(T1,_,T2,_,T3)) :-
|
|
write_anss(T1),
|
|
write_anss(T2),
|
|
write_anss(T3).
|
|
|
|
write_anss_list([]).
|
|
write_anss_list([Ans|Anss]) :-
|
|
write_ans(Ans),
|
|
write_anss_list(Anss).
|
|
|
|
write_ans(d(H,Ds)) :-
|
|
write(' '),
|
|
write(H),
|
|
( Ds == [] ->
|
|
true
|
|
; write(' :- '),
|
|
( Ds = all([D|Ds1]) ->
|
|
( D = (_-GH) ->
|
|
write(GH)
|
|
; write(D)
|
|
),
|
|
write_delay(Ds1,'; ')
|
|
; Ds = [D|Ds1],
|
|
( D = (_-GH) ->
|
|
write(GH)
|
|
; write(D)
|
|
),
|
|
write_delay(Ds1,', ')
|
|
)
|
|
),
|
|
write('.'),
|
|
nl.
|
|
write_delay([],_).
|
|
write_delay([D|Ds1],Sep) :-
|
|
write(Sep),
|
|
( D = (_Gcall-GH) ->
|
|
write(GH)
|
|
; write(D)
|
|
),
|
|
write_delay(Ds1,Sep).
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
/*
|
|
This is a set of routines that supports indexed tables. Tables
|
|
are sets of key-value_list pairs. With each key is associated a list
|
|
of values. It uses 2-3 trees for the index (modified by D.S. Warren
|
|
from Ivan Bratko: ``Prolog Programming for Artificial
|
|
Intelligence'', Addison Wesley, 1986). Operations are:
|
|
|
|
Keys must be ground! (so numbervar them)
|
|
|
|
addkey(Tree,Key,V,Tree1) adds a new Key with value V, returning
|
|
new Tree1. Fails if the key is already there.
|
|
|
|
find(Tree,Key,V) finds the entry with Key and returns associated
|
|
values in V.
|
|
|
|
updatevs(Tree,Key,OldV,NewV,Tree1) replaces value of entry with key
|
|
Key and value OldV with NewV.
|
|
*/
|
|
|
|
|
|
addkey([],X,V,l(X,V)):-!.
|
|
addkey(Tree,X,V,Tree1) :-
|
|
ins2(Tree,X,V,Trees),
|
|
cmb0(Trees,Tree1).
|
|
|
|
|
|
find(l(X,V),Xs,V) :- X == Xs.
|
|
find(n2(T1,M,T2),X,V) :-
|
|
M @=< X
|
|
-> find(T2,X,V)
|
|
; find(T1,X,V).
|
|
find(n3(T1,M2,T2,M3,T3),X,V) :-
|
|
M2 @=< X
|
|
-> (M3 @=< X
|
|
-> find(T3,X,V)
|
|
; find(T2,X,V)
|
|
)
|
|
; find(T1,X,V).
|
|
|
|
|
|
% updatevs(Tab0,X,Ov,Nv,Tab) updates Tab0 to Tab, by replacing
|
|
% Ov of entry with key X by Nv.
|
|
/*
|
|
updatevs(Tab0,X,Ov,Nv,Tab) :-
|
|
updatevs(Tab0,X,Ov,Nv),
|
|
Tab = Tab0.
|
|
|
|
updatevs(Tab,X,Ov,Nv) :-
|
|
( Tab = l(Xs,Ov), Xs == X ->
|
|
setarg(2,Tab,Nv)
|
|
; Tab = n2(T1,M,T2) ->
|
|
( M @=< X ->
|
|
updatevs(T2,X,Ov,Nv)
|
|
; updatevs(T1,X,Ov,Nv)
|
|
)
|
|
; Tab = n3(T1,M2,T2,M3,T3) ->
|
|
( M2 @=< X ->
|
|
( M3 @=< X ->
|
|
updatevs(T3,X,Ov,Nv)
|
|
; updatevs(T2,X,Ov,Nv)
|
|
)
|
|
; updatevs(T1,X,Ov,Nv)
|
|
)
|
|
).
|
|
*/
|
|
|
|
updatevs(l(X,Ov),Xs,Ov,Nv,l(X,Nv)) :- X == Xs.
|
|
updatevs(n2(T1,M,T2),X,Ov,Nv,n2(NT1,M,NT2)) :-
|
|
M @=< X
|
|
-> NT1=T1, updatevs(T2,X,Ov,Nv,NT2)
|
|
; NT2=T2, updatevs(T1,X,Ov,Nv,NT1).
|
|
updatevs(n3(T1,M2,T2,M3,T3),X,Ov,Nv,n3(NT1,M2,NT2,M3,NT3)) :-
|
|
M2 @=< X
|
|
-> (M3 @=< X
|
|
-> NT2=T2, NT1=T1, updatevs(T3,X,Ov,Nv,NT3)
|
|
; NT1=T1, NT3=T3, updatevs(T2,X,Ov,Nv,NT2)
|
|
)
|
|
; NT2=T2, NT3=T3, updatevs(T1,X,Ov,Nv,NT1).
|
|
|
|
ins2(n2(T1,M,T2),X,V,Tree) :-
|
|
M @=< X
|
|
-> ins2(T2,X,V,Tree1),
|
|
cmb2(Tree1,T1,M,Tree)
|
|
; ins2(T1,X,V,Tree1),
|
|
cmb1(Tree1,M,T2,Tree).
|
|
ins2(n3(T1,M2,T2,M3,T3),X,V,Tree) :-
|
|
M2 @=< X
|
|
-> (M3 @=< X
|
|
-> ins2(T3,X,V,Tree1),
|
|
cmb4(Tree1,T1,M2,T2,M3,Tree)
|
|
; ins2(T2,X,V,Tree1),
|
|
cmb5(Tree1,T1,M2,M3,T3,Tree)
|
|
)
|
|
; ins2(T1,X,V,Tree1),
|
|
cmb3(Tree1,M2,T2,M3,T3,Tree).
|
|
ins2(l(A,V),X,Vn,Tree) :-
|
|
A @=< X
|
|
-> (X @=< A
|
|
-> fail
|
|
; Tree = t(l(A,V),X,l(X,Vn))
|
|
)
|
|
; Tree = t(l(X,Vn),A,l(A,V)).
|
|
|
|
cmb0(t(Tree),Tree).
|
|
cmb0(t(T1,M,T2),n2(T1,M,T2)).
|
|
|
|
cmb1(t(NT1),M,T2,t(n2(NT1,M,T2))).
|
|
cmb1(t(NT1a,Mb,NT1b),M,T2,t(n3(NT1a,Mb,NT1b,M,T2))).
|
|
|
|
cmb2(t(NT2),T1,M,t(n2(T1,M,NT2))).
|
|
cmb2(t(NT2a,Mb,NT2b),T1,M,t(n3(T1,M,NT2a,Mb,NT2b))).
|
|
|
|
cmb3(t(NT1),M2,T2,M3,T3,t(n3(NT1,M2,T2,M3,T3))).
|
|
cmb3(t(NT1a,Mb,NT1b),M2,T2,M3,T3,t(n2(NT1a,Mb,NT1b),M2,n2(T2,M3,T3))).
|
|
|
|
cmb4(t(NT3),T1,M2,T2,M3,t(n3(T1,M2,T2,M3,NT3))).
|
|
cmb4(t(NT3a,Mb,NT3b),T1,M2,T2,M3,t(n2(T1,M2,T2),M3,n2(NT3a,Mb,NT3b))).
|
|
|
|
cmb5(t(NT2),T1,M2,M3,T3,t(n3(T1,M2,NT2,M3,T3))).
|
|
cmb5(t(NT2a,Mb,NT2b),T1,M2,M3,T3,t(n2(T1,M2,NT2a),Mb,n2(NT2b,M3,T3))).
|
|
|
|
|
|
|
|
|
|
:-dynamic rule/5,def_rule/4,setting/2.
|
|
|
|
/* start of list of parameters that can be set by the user with
|
|
set(Parameter,Value) */
|
|
setting(epsilon_parsing,0.00001).
|
|
setting(save_dot,false).
|
|
setting(ground_body,false).
|
|
|
|
/* find_rule(G,(R,S,N),Body,C) takes a goal G and the current C set and
|
|
returns the index R of a disjunctive rule resolving with G together with
|
|
the index N of the resolving head, the substitution S and the Body of the
|
|
rule */
|
|
find_rule(H,(R,S,N),Body,LH):-
|
|
rule(R,S,_,Head,Body),
|
|
member_head(H,Head,0,N),
|
|
length(Head,NH),
|
|
listN(0,NH,LH).
|
|
|
|
find_rule(H,(R,S,Number),Body,C):-
|
|
rule(R,S,_,uniform(H:1/_Num,_P,Number),Body),
|
|
not_already_present_with_a_different_head(Number,R,S,C).
|
|
|
|
|
|
not_already_present_with_a_different_head(_N,_R,_S,[]).
|
|
|
|
not_already_present_with_a_different_head(N,R,S,[(N1,R,S1)|T]):-
|
|
not_different(N,N1,S,S1),!,
|
|
not_already_present_with_a_different_head(N,R,S,T).
|
|
|
|
not_already_present_with_a_different_head(N,R,S,[(_N1,R1,_S1)|T]):-
|
|
R\==R1,
|
|
not_already_present_with_a_different_head(N,R,S,T).
|
|
|
|
|
|
not_different(N,N,S,S).
|
|
|
|
not_different(_N,_N1,S,S1):-
|
|
S\=S1,!.
|
|
|
|
not_different(N,N1,S,S1):-
|
|
N\=N1,!,
|
|
dif(S,S1).
|
|
|
|
not_different(N,N,S,S).
|
|
|
|
|
|
member_head(H,[(H:_P)|_T],N,N).
|
|
|
|
member_head(H,[(_H:_P)|T],NIn,NOut):-
|
|
N1 is NIn+1,
|
|
member_head(H,T,N1,NOut).
|
|
|
|
/* rem_dup_lists removes the C sets that are a superset of
|
|
another C sets further on in the list of C sets */
|
|
rem_dup_lists([],L,L).
|
|
|
|
rem_dup_lists([H|T],L0,L):-
|
|
(member_subset(H,T);member_subset(H,L0)),!,
|
|
rem_dup_lists(T,L0,L).
|
|
|
|
rem_dup_lists([H|T],L0,L):-
|
|
rem_dup_lists(T,[H|L0],L).
|
|
|
|
member_subset(E,[H|_T]):-
|
|
subset_my(H,E),!.
|
|
|
|
member_subset(E,[_H|T]):-
|
|
member_subset(E,T).
|
|
|
|
|
|
rem_dup_lists_tab([],L,L).
|
|
|
|
rem_dup_lists_tab([(H,_Tab)|T],L0,L):-
|
|
(member_subset_tab(H,T);member_subset_tab(H,L0)),!,
|
|
rem_dup_lists_tab(T,L0,L).
|
|
|
|
rem_dup_lists_tab([(H,Tab)|T],L0,L):-
|
|
rem_dup_lists_tab(T,[(H,Tab)|L0],L).
|
|
|
|
|
|
member_subset_tab(E,[(H,_Tab)|_T]):-
|
|
subset_my(H,E),!.
|
|
|
|
member_subset_tab(E,[_H|T]):-
|
|
member_subset_tab(E,T).
|
|
|
|
/* predicates for building the formula to be converted into a BDD */
|
|
|
|
/* build_formula(LC,Formula,VarIn,VarOut) takes as input a set of C sets
|
|
LC and a list of Variables VarIn and returns the formula and a new list
|
|
of variables VarOut
|
|
Formula is of the form [Term1,...,Termn]
|
|
Termi is of the form [Factor1,...,Factorm]
|
|
Factorj is of the form (Var,Value) where Var is the index of
|
|
the multivalued variable Var and Value is the index of the value
|
|
*/
|
|
build_formula([],[],Var,Var).
|
|
|
|
build_formula([D|TD],[F|TF],VarIn,VarOut):-
|
|
build_term(D,F,VarIn,Var1),
|
|
build_formula(TD,TF,Var1,VarOut).
|
|
|
|
build_term([],[],Var,Var).
|
|
|
|
build_term([(N,R,S)|TC],[[NVar,N]|TF],VarIn,VarOut):-
|
|
(nth0_eq(0,NVar,VarIn,(R,S))->
|
|
Var1=VarIn
|
|
;
|
|
append(VarIn,[(R,S)],Var1),
|
|
length(VarIn,NVar)
|
|
),
|
|
build_term(TC,TF,Var1,VarOut).
|
|
|
|
/* nth0_eq(PosIn,PosOut,List,El) takes as input a List,
|
|
an element El and an initial position PosIn and returns in PosOut
|
|
the position in the List that contains an element exactly equal to El
|
|
*/
|
|
nth0_eq(N,N,[H|_T],El):-
|
|
H==El,!.
|
|
|
|
nth0_eq(NIn,NOut,[_H|T],El):-
|
|
N1 is NIn+1,
|
|
nth0_eq(N1,NOut,T,El).
|
|
|
|
/* var2numbers converts a list of couples (Rule,Substitution) into a list
|
|
of triples (N,NumberOfHeadsAtoms,ListOfProbabilities), where N is an integer
|
|
starting from 0 */
|
|
var2numbers([],_N,[]).
|
|
|
|
var2numbers([(R,S)|T],N,[[N,ValNumber,Probs]|TNV]):-
|
|
find_probs(R,S,Probs),
|
|
length(Probs,ValNumber),
|
|
N1 is N+1,
|
|
var2numbers(T,N1,TNV).
|
|
|
|
find_probs(R,S,Probs):-
|
|
rule(R,S,_N,Head,_Body),
|
|
get_probs(Head,Probs).
|
|
|
|
get_probs(uniform(_A:1/Num,_P,_Number),ListP):-
|
|
Prob is 1/Num,
|
|
list_el(Num,Prob,ListP).
|
|
|
|
get_probs([],[]).
|
|
|
|
get_probs([_H:P|T],[P1|T1]):-
|
|
P1 is P,
|
|
get_probs(T,T1).
|
|
|
|
list_el(0,_P,[]):-!.
|
|
|
|
list_el(N,P,[P|T]):-
|
|
N1 is N-1,
|
|
list_el(N1,P,T).
|
|
|
|
/* end of predicates for building the formula to be converted into a BDD */list_el(0,_P,[]):-!.
|
|
|
|
/* p(File) parses the file File.cpl. It can be called more than once without
|
|
exiting yap */
|
|
p(File):-
|
|
parse(File).
|
|
|
|
parse(File):-
|
|
atom_concat(File,'.cpl',FilePl),
|
|
open(FilePl,read,S),
|
|
read_clauses(S,C),
|
|
close(S),
|
|
retractall(rule(_,_,_,_,_)),
|
|
retractall(def_rule(_,_,_,_)),
|
|
retractall(new_number(_)),
|
|
assert(new_number(0)),
|
|
process_clauses(C,1),!.
|
|
|
|
process_clauses([(end_of_file,[])],_N).
|
|
|
|
process_clauses([((H:-B),V)|T],N):-
|
|
H=uniform(A,P,L),!,
|
|
list2and(BL,B),
|
|
process_body(BL,V,V1),
|
|
remove_vars([P],V1,V2),
|
|
append(BL,[length(L,Tot),nth0(Number,L,P)],BL1),
|
|
append(V2,['Tot'=Tot],V3),
|
|
assertz(rule(N,V3,_NH,uniform(A:1/Tot,L,Number),BL1)),
|
|
N1 is N+1,
|
|
process_clauses(T,N1).
|
|
|
|
process_clauses([((H:-B),V)|T],N):-
|
|
H=(_;_),!,
|
|
list2or(HL1,H),
|
|
process_head(HL1,HL),
|
|
list2and(BL,B),
|
|
process_body(BL,V,V1),
|
|
length(HL,LH),
|
|
listN(0,LH,NH),
|
|
assertz(rule(N,V1,NH,HL,BL)),
|
|
N1 is N+1,
|
|
process_clauses(T,N1).
|
|
|
|
process_clauses([((H:-B),V)|T],N):-
|
|
H=(_:_),!,
|
|
list2or(HL1,H),
|
|
process_head(HL1,HL),
|
|
list2and(BL,B),
|
|
process_body(BL,V,V1),
|
|
length(HL,LH),
|
|
listN(0,LH,NH),
|
|
assertz(rule(N,V1,NH,HL,BL)),
|
|
N1 is N+1,
|
|
process_clauses(T,N1).
|
|
|
|
process_clauses([((H:-B),V)|T],N):-!,
|
|
list2and(BL,B),
|
|
assert(def_rule(N,V,H,BL)),
|
|
N1 is N+1,
|
|
process_clauses(T,N1).
|
|
|
|
process_clauses([(H,V)|T],N):-
|
|
H=(_;_),!,
|
|
list2or(HL1,H),
|
|
process_head(HL1,HL),
|
|
length(HL,LH),
|
|
listN(0,LH,NH),
|
|
assertz(rule(N,V,NH,HL,[])),
|
|
N1 is N+1,
|
|
process_clauses(T,N1).
|
|
|
|
process_clauses([(H,V)|T],N):-
|
|
H=(_:_),!,
|
|
list2or(HL1,H),
|
|
process_head(HL1,HL),
|
|
length(HL,LH),
|
|
listN(0,LH,NH),
|
|
assertz(rule(N,V,NH,HL,[])),
|
|
N1 is N+1,
|
|
process_clauses(T,N1).
|
|
|
|
process_clauses([(H,V)|T],N):-
|
|
assert(def_rule(N,V,H,[])),
|
|
N1 is N+1,
|
|
process_clauses(T,N1).
|
|
|
|
/* if the annotation in the head are not ground, the null atom is not added
|
|
and the eventual formulas are not evaluated */
|
|
|
|
process_head(HL,NHL):-
|
|
(ground_prob(HL)->
|
|
process_head_ground(HL,0,NHL)
|
|
;
|
|
NHL=HL
|
|
).
|
|
|
|
ground_prob([]).
|
|
|
|
ground_prob([_H:PH|T]):-
|
|
ground(PH),
|
|
ground_prob(T).
|
|
|
|
process_head_ground([H:PH],P,[H:PH1|Null]):-
|
|
PH1 is PH,
|
|
PNull is 1-P-PH1,
|
|
setting(epsilon_parsing,Eps),
|
|
EpsNeg is - Eps,
|
|
PNull > EpsNeg,
|
|
(PNull>Eps->
|
|
Null=['':PNull]
|
|
;
|
|
Null=[]
|
|
).
|
|
|
|
process_head_ground([H:PH|T],P,[H:PH1|NT]):-
|
|
PH1 is PH,
|
|
P1 is P+PH1,
|
|
process_head_ground(T,P1,NT).
|
|
|
|
/* setof must have a goal of the form B^G where B is a term containing the existential variables */
|
|
process_body([],V,V).
|
|
|
|
process_body([setof(A,B^_G,_L)|T],VIn,VOut):-!,
|
|
get_var(A,VA),
|
|
get_var(B,VB),
|
|
remove_vars(VA,VIn,V1),
|
|
remove_vars(VB,V1,V2),
|
|
process_body(T,V2,VOut).
|
|
|
|
process_body([setof(A,_G,_L)|T],VIn,VOut):-!,
|
|
get_var(A,VA),
|
|
remove_vars(VA,VIn,V1),
|
|
process_body(T,V1,VOut).
|
|
|
|
process_body([bagof(A,B^_G,_L)|T],VIn,VOut):-!,
|
|
get_var(A,VA),
|
|
get_var(B,VB),
|
|
remove_vars(VA,VIn,V1),
|
|
remove_vars(VB,V1,V2),
|
|
process_body(T,V2,VOut).
|
|
|
|
process_body([bagof(A,_G,_L)|T],VIn,VOut):-!,
|
|
get_var(A,VA),
|
|
remove_vars(VA,VIn,V1),
|
|
process_body(T,V1,VOut).
|
|
|
|
process_body([_H|T],VIn,VOut):-!,
|
|
process_body(T,VIn,VOut).
|
|
|
|
get_var_list([],[]).
|
|
|
|
get_var_list([H|T],[H|T1]):-
|
|
var(H),!,
|
|
get_var_list(T,T1).
|
|
|
|
get_var_list([H|T],VarOut):-!,
|
|
get_var(H,Var),
|
|
append(Var,T1,VarOut),
|
|
get_var_list(T,T1).
|
|
|
|
get_var(A,[A]):-
|
|
var(A),!.
|
|
|
|
get_var(A,V):-
|
|
A=..[_F|Args],
|
|
get_var_list(Args,V).
|
|
|
|
remove_vars([],V,V).
|
|
|
|
remove_vars([H|T],VIn,VOut):-
|
|
delete_var(H,VIn,V1),
|
|
remove_vars(T,V1,VOut).
|
|
|
|
delete_var(_H,[],[]).
|
|
|
|
delete_var(V,[VN=Var|T],[VN=Var|T1]):-
|
|
V\==Var,!,
|
|
delete_var(V,T,T1).
|
|
|
|
delete_var(_V,[_H|T],T).
|
|
|
|
read_clauses(S,Clauses):-
|
|
(setting(ground_body,true)->
|
|
read_clauses_ground_body(S,Clauses)
|
|
;
|
|
read_clauses_exist_body(S,Clauses)
|
|
).
|
|
|
|
read_clauses_ground_body(S,[(Cl,V)|Out]):-
|
|
read_term(S,Cl,[variable_names(V)]),
|
|
(Cl=end_of_file->
|
|
Out=[]
|
|
;
|
|
read_clauses_ground_body(S,Out)
|
|
).
|
|
|
|
|
|
read_clauses_exist_body(S,[(Cl,V)|Out]):-
|
|
read_term(S,Cl,[variable_names(VN)]),
|
|
extract_vars_cl(Cl,VN,V),
|
|
(Cl=end_of_file->
|
|
Out=[]
|
|
;
|
|
read_clauses_exist_body(S,Out)
|
|
).
|
|
|
|
extract_vars_cl(end_of_file,[]).
|
|
|
|
extract_vars_cl(Cl,VN,Couples):-
|
|
(Cl=(H:-_B)->
|
|
true
|
|
;
|
|
H=Cl
|
|
),
|
|
extract_vars(H,[],V),
|
|
pair(VN,V,Couples).
|
|
|
|
pair(_VN,[],[]).
|
|
|
|
pair([VN= _V|TVN],[V|TV],[VN=V|T]):-
|
|
pair(TVN,TV,T).
|
|
|
|
extract_vars(Var,V0,V):-
|
|
var(Var),!,
|
|
(member_eq(Var,V0)->
|
|
V=V0
|
|
;
|
|
append(V0,[Var],V)
|
|
).
|
|
|
|
extract_vars(Term,V0,V):-
|
|
Term=..[_F|Args],
|
|
extract_vars_list(Args,V0,V).
|
|
|
|
extract_vars_list([],V,V).
|
|
|
|
extract_vars_list([Term|T],V0,V):-
|
|
extract_vars(Term,V0,V1),
|
|
extract_vars_list(T,V1,V).
|
|
|
|
|
|
listN(N,N,[]):-!.
|
|
|
|
listN(NIn,N,[NIn|T]):-
|
|
N1 is NIn+1,
|
|
listN(N1,N,T).
|
|
/* end of predicates for parsing an input file containing a program */
|
|
|
|
/* start of utility predicates */
|
|
list2or([X],X):-
|
|
X\=;(_,_),!.
|
|
|
|
list2or([H|T],(H ; Ta)):-!,
|
|
list2or(T,Ta).
|
|
|
|
list2and([X],X):-
|
|
X\=(_,_),!.
|
|
|
|
list2and([H|T],(H,Ta)):-!,
|
|
list2and(T,Ta).
|
|
|
|
member_eq(A,[H|_T]):-
|
|
A==H.
|
|
|
|
member_eq(A,[_H|T]):-
|
|
member_eq(A,T).
|
|
|
|
subset_my([],_).
|
|
|
|
subset_my([H|T],L):-
|
|
member_eq(H,L),
|
|
subset_my(T,L).
|
|
|
|
remove_duplicates_eq([],[]).
|
|
|
|
remove_duplicates_eq([H|T],T1):-
|
|
member_eq(H,T),!,
|
|
remove_duplicates_eq(T,T1).
|
|
|
|
remove_duplicates_eq([H|T],[H|T1]):-
|
|
remove_duplicates_eq(T,T1).
|
|
|
|
builtin(_A is _B).
|
|
builtin(_A > _B).
|
|
builtin(_A < _B).
|
|
builtin(_A >= _B).
|
|
builtin(_A =< _B).
|
|
builtin(_A =:= _B).
|
|
builtin(_A =\= _B).
|
|
builtin(true).
|
|
builtin(false).
|
|
builtin(_A = _B).
|
|
builtin(_A==_B).
|
|
builtin(_A\=_B).
|
|
builtin(_A\==_B).
|
|
builtin(length(_L,_N)).
|
|
builtin(member(_El,_L)).
|
|
builtin(average(_L,_Av)).
|
|
builtin(max_list(_L,_Max)).
|
|
builtin(min_list(_L,_Max)).
|
|
builtin(nth0(_,_,_)).
|
|
builtin(nth(_,_,_)).
|
|
average(L,Av):-
|
|
sum_list(L,Sum),
|
|
length(L,N),
|
|
Av is Sum/N.
|
|
|
|
clique([],[]):-!.
|
|
|
|
clique(Graph,Clique):-
|
|
vertices(Graph,Candidates),
|
|
extend_cycle(Graph,Candidates,[],[],Clique).
|
|
|
|
extend_cycle(G,[H|T],Not,CS,CSOut):-
|
|
neighbours(H, G, Neigh),
|
|
intersection(Neigh,T,NewCand),
|
|
intersection(Neigh,Not,NewNot),
|
|
extend(G,NewCand,NewNot,[H|CS],CSOut).
|
|
|
|
extend_cycle(G,[H|T],Not,CS,CSOut):-
|
|
extend_cycle(G,T,[H|Not],CS,CSOut).
|
|
|
|
extend(_G,[],[],CompSub,CompSub):-!.
|
|
|
|
extend(G,Cand,Not,CS,CSOut):-
|
|
extend_cycle(G,Cand,Not,CS,CSOut).
|
|
|
|
intersection([],_Y,[]).
|
|
|
|
intersection([H|T],Y,[H|Z]):-
|
|
member(H,Y),!,
|
|
intersection(T,Y,Z).
|
|
|
|
intersection([_H|T],Y,Z):-
|
|
intersection(T,Y,Z).
|
|
|
|
/* set(Par,Value) can be used to set the value of a parameter */
|
|
set(Parameter,Value):-
|
|
retract(setting(Parameter,_)),
|
|
assert(setting(Parameter,Value)).
|
|
|
|
/* end of utility predicates */
|
|
|