1371 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			1371 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| /*  $Id$
 | |
| 
 | |
|     Part of SWI-Prolog
 | |
| 
 | |
|     Author:        Markus Triska
 | |
|     E-mail:        triska@gmx.at
 | |
|     WWW:           http://www.swi-prolog.org
 | |
|     Copyright (C): 2005-2009, Markus Triska
 | |
| 
 | |
|     This program is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU General Public License
 | |
|     as published by the Free Software Foundation; either version 2
 | |
|     of the License, or (at your option) any later version.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, write to the Free Software
 | |
|     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
| 
 | |
|     As a special exception, if you link this library with other files,
 | |
|     compiled with a Free Software compiler, to produce an executable, this
 | |
|     library does not by itself cause the resulting executable to be covered
 | |
|     by the GNU General Public License. This exception does not however
 | |
|     invalidate any other reasons why the executable file might be covered by
 | |
|     the GNU General Public License.
 | |
| */
 | |
| 
 | |
| 
 | |
| :- module(simplex,
 | |
|         [
 | |
|                 assignment/2,
 | |
|                 constraint/3,
 | |
|                 constraint/4,
 | |
|                 constraint_add/4,
 | |
|                 gen_state/1,
 | |
|                 gen_state_clpr/1,
 | |
|                 gen_state_clpr/2,
 | |
|                 maximize/3,
 | |
|                 minimize/3,
 | |
|                 objective/2,
 | |
|                 shadow_price/3,
 | |
|                 transportation/4,
 | |
|                 variable_value/3
 | |
|         ]).
 | |
| 
 | |
| :- use_module(library(clpr)).
 | |
| :- use_module(library(assoc)).
 | |
| :- use_module(library(pio)).
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    CLP(R) bindings
 | |
|    the (unsolved) state is stored as a structure of the form
 | |
|       clpr_state(Options, Cs, Is)
 | |
|    Options: list of Option=Value pairs, currently only eps=Eps
 | |
|    Cs: list of constraints, i.e., structures of the form
 | |
|       c(Name, Left, Op, Right)
 | |
|       anonymous constraints have Name == 0
 | |
|    Is: list of integral variables
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| gen_state_clpr(State) :- gen_state_clpr([], State).
 | |
| 
 | |
| gen_state_clpr(Options, State) :-
 | |
|         ( memberchk(eps=_, Options) -> Options1 = Options
 | |
|         ;   Options1 = [eps=1e-6|Options]
 | |
|         ),
 | |
|         State = clpr_state(Options1, [], []).
 | |
| 
 | |
| clpr_state_options(clpr_state(Os, _, _), Os).
 | |
| clpr_state_constraints(clpr_state(_, Cs, _), Cs).
 | |
| clpr_state_integrals(clpr_state(_, _, Is), Is).
 | |
| clpr_state_add_integral(I, clpr_state(Os, Cs, Is), clpr_state(Os, Cs, [I|Is])).
 | |
| clpr_state_add_constraint(C, clpr_state(Os, Cs, Is), clpr_state(Os, [C|Cs], Is)).
 | |
| clpr_state_set_constraints(Cs, clpr_state(Os,_,Is), clpr_state(Os, Cs, Is)).
 | |
| 
 | |
| clpr_constraint(Name, Constraint, S0, S) :-
 | |
|         (   Constraint = integral(Var) -> clpr_state_add_integral(Var, S0, S)
 | |
|         ;   Constraint =.. [Op,Left,Right],
 | |
|             coeff_one(Left, Left1),
 | |
|             clpr_state_add_constraint(c(Name, Left1, Op, Right), S0, S)
 | |
|         ).
 | |
| 
 | |
| clpr_constraint(Constraint, S0, S) :-
 | |
|         clpr_constraint(0, Constraint, S0, S).
 | |
| 
 | |
| clpr_shadow_price(clpr_solved(_,_,Duals,_), Name, Value) :-
 | |
|         memberchk(Name-Value0, Duals),
 | |
|         Value is Value0.
 | |
|         %( var(Value0) ->
 | |
|         %       Value = 0
 | |
|         %;
 | |
|         %       Value is Value0
 | |
|         %).
 | |
| 
 | |
| 
 | |
| 
 | |
| clpr_make_variables(Cs, Aliases) :-
 | |
|         clpr_constraints_variables(Cs, Variables0, []),
 | |
|         sort(Variables0, Variables1),
 | |
|         clpr_aliases(Variables1, Aliases).
 | |
| 
 | |
| clpr_constraints_variables([]) --> [].
 | |
| clpr_constraints_variables([c(_, Left, _, _)|Cs]) -->
 | |
|         variables(Left),
 | |
|         clpr_constraints_variables(Cs).
 | |
| 
 | |
| clpr_aliases([], []).
 | |
| clpr_aliases([Var|Vars], [Var-_|Rest]) :-
 | |
|         clpr_aliases(Vars, Rest).
 | |
| 
 | |
| clpr_set_up([], _).
 | |
| clpr_set_up([C|Cs], Aliases) :-
 | |
|         C = c(_Name, Left, Op, Right),
 | |
|         clpr_translate_linsum(Left, Aliases, LinSum),
 | |
|         CLPRConstraint =.. [Op, LinSum, Right],
 | |
|         clpr:{ CLPRConstraint },
 | |
|         clpr_set_up(Cs, Aliases).
 | |
| 
 | |
| clpr_set_up_noneg([], _).
 | |
| clpr_set_up_noneg([Var|Vs], Aliases) :-
 | |
|         memberchk(Var-CLPVar, Aliases),
 | |
|         { CLPVar >= 0 },
 | |
|         clpr_set_up_noneg(Vs, Aliases).
 | |
| 
 | |
| clpr_translate_linsum([], _, 0).
 | |
| clpr_translate_linsum([Coeff*Var|Ls], Aliases, LinSum) :-
 | |
|         memberchk(Var-CLPVar, Aliases),
 | |
|         LinSum = Coeff*CLPVar + LinRest,
 | |
|         clpr_translate_linsum(Ls, Aliases, LinRest).
 | |
| 
 | |
| clpr_dual(Objective0, S0, DualValues) :-
 | |
|         clpr_state_constraints(S0, Cs0),
 | |
|         clpr_constraints_variables(Cs0, Variables0, []),
 | |
|         sort(Variables0, Variables1),
 | |
|         clpr_standard_form(Cs0, Cs1),
 | |
|         clpr_include_all_vars(Cs1, Variables1, Cs2),
 | |
|         clpr_merge_into(Variables1, Objective0, Objective, []),
 | |
|         clpr_unique_names(Cs2, 0, Names),
 | |
|         clpr_constraints_coefficients(Cs2, Coefficients),
 | |
|         transpose(Coefficients, TCs),
 | |
|         clpr_dual_constraints(TCs, Objective, Names, DualConstraints),
 | |
|         clpr_nonneg_constraints(Cs2, Names, DualNonNeg, []),
 | |
|         append(DualConstraints, DualNonNeg, DualConstraints1),
 | |
|         clpr_dual_objective(Cs2, Names, DualObjective),
 | |
|         clpr_make_variables(DualConstraints1, Aliases),
 | |
|         clpr_set_up(DualConstraints1, Aliases),
 | |
|         clpr_translate_linsum(DualObjective, Aliases, LinExpr),
 | |
|         minimize(LinExpr),
 | |
|         Aliases = DualValues.
 | |
| 
 | |
| 
 | |
| 
 | |
| clpr_dual_objective([], _, []).
 | |
| clpr_dual_objective([C|Cs], [Name|Names], [Right*Name|Os]) :-
 | |
|         C = c(_, _, _, Right),
 | |
|         clpr_dual_objective(Cs, Names, Os).
 | |
| 
 | |
| clpr_nonneg_constraints([], _, Nons, Nons).
 | |
| clpr_nonneg_constraints([C|Cs], [Name|Names], Nons0, Nons) :-
 | |
|         C = c(_, _, Op, _),
 | |
|         (   Op == (=<) -> Nons0 = [c(0, [1*Name], (>=), 0)|Rest]
 | |
|         ;   Nons0 = Rest
 | |
|         ),
 | |
|         clpr_nonneg_constraints(Cs, Names, Rest, Nons).
 | |
| 
 | |
| 
 | |
| clpr_dual_constraints([], [], _, []).
 | |
| clpr_dual_constraints([Coeffs|Cs], [O*_|Os], Names, [Constraint|Constraints]) :-
 | |
|         clpr_dual_linsum(Coeffs, Names, Linsum),
 | |
|         Constraint = c(0, Linsum, (>=), O),
 | |
|         clpr_dual_constraints(Cs, Os, Names, Constraints).
 | |
| 
 | |
| 
 | |
| clpr_dual_linsum([], [], []).
 | |
| clpr_dual_linsum([Coeff|Coeffs], [Name|Names], [Coeff*Name|Rest]) :-
 | |
|         clpr_dual_linsum(Coeffs, Names, Rest).
 | |
| 
 | |
| 
 | |
| clpr_constraints_coefficients([], []).
 | |
| clpr_constraints_coefficients([C|Cs], [Coeff|Coeffs]) :-
 | |
|         C = c(_, Left, _, _),
 | |
|         all_coeffs(Left, Coeff),
 | |
|         clpr_constraints_coefficients(Cs, Coeffs).
 | |
| 
 | |
| all_coeffs([], []).
 | |
| all_coeffs([Coeff*_|Cs], [Coeff|Rest]) :-
 | |
|         all_coeffs(Cs, Rest).
 | |
| 
 | |
| 
 | |
| clpr_unique_names([], _, []).
 | |
| clpr_unique_names([C0|Cs0], Num, [N|Ns]) :-
 | |
|         C0 = c(Name, _, _, _),
 | |
|         (   Name == 0 -> N = Num, Num1 is Num + 1
 | |
|         ;   N = Name, Num1 = Num
 | |
|         ),
 | |
|         clpr_unique_names(Cs0, Num1, Ns).
 | |
| 
 | |
| clpr_include_all_vars([], _, []).
 | |
| clpr_include_all_vars([C0|Cs0], Variables, [C|Cs]) :-
 | |
|         C0 = c(Name, Left0, Op, Right),
 | |
|         clpr_merge_into(Variables, Left0, Left, []),
 | |
|         C = c(Name, Left, Op, Right),
 | |
|         clpr_include_all_vars(Cs0, Variables, Cs).
 | |
| 
 | |
| clpr_merge_into([], _, Ls, Ls).
 | |
| clpr_merge_into([V|Vs], Left, Ls0, Ls) :-
 | |
|         ( member(Coeff*V, Left) ->
 | |
|                 Ls0 = [Coeff*V|Rest]
 | |
|         ;
 | |
|                 Ls0 = [0*V|Rest]
 | |
|         ),
 | |
|         clpr_merge_into(Vs, Left, Rest, Ls).
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| clpr_maximize(Expr0, S0, S) :-
 | |
|         coeff_one(Expr0, Expr),
 | |
|         clpr_state_constraints(S0, Cs),
 | |
|         clpr_make_variables(Cs, Aliases),
 | |
|         clpr_set_up(Cs, Aliases),
 | |
|         clpr_constraints_variables(Cs, Variables0, []),
 | |
|         sort(Variables0, Variables1),
 | |
|         clpr_set_up_noneg(Variables1, Aliases),
 | |
|         clpr_translate_linsum(Expr, Aliases, LinExpr),
 | |
|         clpr_state_integrals(S0, Is),
 | |
|         ( Is == [] ->
 | |
|                 maximize(LinExpr),
 | |
|                 Sup is LinExpr,
 | |
|                 clpr_dual(Expr, S0, DualValues),
 | |
|                 S = clpr_solved(Sup, Aliases, DualValues, S0)
 | |
|         ;
 | |
|                 clpr_state_options(S0, Options),
 | |
|                 memberchk(eps=Eps, Options),
 | |
|                 clpr_fetch_vars(Is, Aliases, Vars),
 | |
|                 bb_inf(Vars, -LinExpr, Sup, Vertex, Eps),
 | |
|                 clpr_merge_vars(Is, Vertex, Values),
 | |
|                 % what about the dual in MIPs?
 | |
|                 Sup1 is -Sup,
 | |
|                 S = clpr_solved(Sup1, Values, [], S0)
 | |
|         ).
 | |
| 
 | |
| clpr_minimize(Expr0, S0, S) :-
 | |
|         coeff_one(Expr0, Expr1),
 | |
|         clpr_all_negate(Expr1, Expr2),
 | |
|         clpr_maximize(Expr2, S0, S1),
 | |
|         S1 = clpr_solved(Sup, Values, Duals, S0),
 | |
|         Inf is -Sup,
 | |
|         S = clpr_solved(Inf, Values, Duals, S0).
 | |
| 
 | |
| clpr_merge_vars([], [], []).
 | |
| clpr_merge_vars([I|Is], [V|Vs], [I-V|Rest]) :-
 | |
|         clpr_merge_vars(Is, Vs, Rest).
 | |
| 
 | |
| clpr_fetch_vars([], _, []).
 | |
| clpr_fetch_vars([Var|Vars], Aliases, [X|Xs]) :-
 | |
|         memberchk(Var-X, Aliases),
 | |
|         clpr_fetch_vars(Vars, Aliases, Xs).
 | |
| 
 | |
| clpr_variable_value(clpr_solved(_, Aliases, _, _), Variable, Value) :-
 | |
|         memberchk(Variable-Value0, Aliases),
 | |
|         Value is Value0.
 | |
|         %( var(Value0) ->
 | |
|         %       Value = 0
 | |
|         %;
 | |
|         %       Value is Value0
 | |
|         %).
 | |
| 
 | |
| clpr_objective(clpr_solved(Obj, _, _, _), Obj).
 | |
| 
 | |
| clpr_standard_form([], []).
 | |
| clpr_standard_form([c(Name, Left, Op, Right)|Cs], [S|Ss]) :-
 | |
|         clpr_standard_form_(Op, Name, Left, Right, S),
 | |
|         clpr_standard_form(Cs, Ss).
 | |
| 
 | |
| clpr_standard_form_((=), Name, Left, Right, c(Name, Left, (=), Right)).
 | |
| clpr_standard_form_((>=), Name, Left, Right, c(Name, Left1, (=<), Right1)) :-
 | |
|         Right1 is -Right,
 | |
|         clpr_all_negate(Left, Left1).
 | |
| clpr_standard_form_((=<), Name, Left, Right, c(Name, Left, (=<), Right)).
 | |
| 
 | |
| clpr_all_negate([], []).
 | |
| clpr_all_negate([Coeff0*Var|As], [Coeff1*Var|Ns]) :-
 | |
|         Coeff1 is -Coeff0,
 | |
|         clpr_all_negate(As, Ns).
 | |
| 
 | |
| 
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    General Simplex Algorithm
 | |
|    Structures used:
 | |
| 
 | |
|    tableau(Objective, Variables, Indicators, Constraints)
 | |
|      *) objective function, represented as row
 | |
|      *) list of variables corresponding to columns
 | |
|      *) indicators denoting which variables are still active
 | |
|      *) constraints as rows
 | |
| 
 | |
|    row(Var, Left, Right)
 | |
|      *) the basic variable corresponding to this row
 | |
|      *) coefficients of the left-hand side of the constraint
 | |
|      *) right-hand side of the constraint
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| 
 | |
| find_row(Variable, [Row|Rows], R) :-
 | |
|         Row = row(V, _, _),
 | |
|         (   V == Variable -> R = Row
 | |
|         ;   find_row(Variable, Rows, R)
 | |
|         ).
 | |
| 
 | |
| 
 | |
| variable_value(State, Variable, Value) :-
 | |
|         functor(State, F, _),
 | |
|         (   F == solved ->
 | |
|             solved_tableau(State, Tableau),
 | |
|             tableau_rows(Tableau, Rows),
 | |
|             (   find_row(Variable, Rows, Row) -> Row = row(_, _, Value)
 | |
|             ;   Value = 0
 | |
|             )
 | |
|         ;   F == clpr_solved -> clpr_variable_value(State, Variable, Value)
 | |
|         ).
 | |
| 
 | |
| all_vars_zero([], _).
 | |
| all_vars_zero([_Coeff*Var|Vars], State) :-
 | |
|         variable_value(State, Var, 0),
 | |
|         all_vars_zero(Vars, State).
 | |
| 
 | |
| list_first(Ls, F, Index) :- once(nth0(Index, Ls, F)).
 | |
| 
 | |
| shadow_price(State, Name, Value) :-
 | |
|         functor(State, F, _),
 | |
|         (   F == solved ->
 | |
|             solved_tableau(State, Tableau),
 | |
|             tableau_objective(Tableau, row(_,Left,_)),
 | |
|             tableau_variables(Tableau, Variables),
 | |
|             solved_names(State, Names),
 | |
|             memberchk(user(Name)-Var, Names),
 | |
|             list_first(Variables, Var, Nth0),
 | |
|             nth0(Nth0, Left, Value)
 | |
|         ;   F == clpr_solved -> clpr_shadow_price(State, Name, Value)
 | |
|         ).
 | |
| 
 | |
| objective(State, Obj) :-
 | |
|         functor(State, F, _),
 | |
|         (   F == solved ->
 | |
|             solved_tableau(State, Tableau),
 | |
|             tableau_objective(Tableau, Objective),
 | |
|             Objective = row(_, _, Obj)
 | |
|         ;   clpr_objective(State, Obj)
 | |
|         ).
 | |
| 
 | |
|    % interface functions that access tableau components
 | |
| 
 | |
| tableau_objective(tableau(Obj, _, _, _), Obj).
 | |
| tableau_rows(tableau(_, _, _, Rows), Rows).
 | |
| tableau_indicators(tableau(_, _, Inds, _), Inds).
 | |
| tableau_variables(tableau(_, Vars, _, _), Vars).
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    interface functions that access and modify state components
 | |
| 
 | |
|    state is a structure of the form
 | |
|        state(Num, Names, Cs, Is)
 | |
|    Num: used to obtain new unique names for slack variables in a side-effect
 | |
|         free way (increased by one and threaded through)
 | |
|    Names: list of Name-Var, correspondence between constraint-names and
 | |
|         names of slack/artificial variables to obtain shadow prices later
 | |
|    Cs: list of constraints
 | |
|    Is: list of integer variables
 | |
| 
 | |
|    constraints are initially represented as c(Name, Left, Op, Right),
 | |
|    and after normalizing as c(Var, Left, Right). Name of unnamed constraints
 | |
|    is 0. The distinction is important for merging constraints (mainly in
 | |
|    branch and bound) with existing ones.
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| 
 | |
| constraint_name(c(Name, _, _, _), Name).
 | |
| constraint_op(c(_, _, Op, _), Op).
 | |
| constraint_left(c(_, Left, _, _), Left).
 | |
| constraint_right(c(_, _, _, Right), Right).
 | |
| 
 | |
| gen_state(state(0,[],[],[])).
 | |
| 
 | |
| state_add_constraint(C, S0, S) :-
 | |
|         (   constraint_name(C, 0), constraint_left(C, [_Coeff*_Var]) ->
 | |
|             state_merge_constraint(C, S0, S)
 | |
|         ;   state_add_constraint_(C, S0, S)
 | |
|         ).
 | |
| 
 | |
| state_add_constraint_(C, state(VID,Ns,Cs,Is), state(VID,Ns,[C|Cs],Is)).
 | |
| 
 | |
| state_merge_constraint(C, S0, S) :-
 | |
|         constraint_left(C, [Coeff0*Var0]),
 | |
|         constraint_right(C, Right0),
 | |
|         constraint_op(C, Op),
 | |
|         (   Coeff0 =:= 0 ->
 | |
|             (   Op == (=) -> Right0 =:= 0, S0 = S
 | |
|             ;   Op == (=<) -> S0 = S
 | |
|             ;   Op == (>=) -> Right0 =:= 0, S0 = S
 | |
|             )
 | |
|         ;   Coeff0 < 0 -> state_add_constraint_(C, S0, S)
 | |
|         ;   Right is Right0 rdiv Coeff0,
 | |
|             state_constraints(S0, Cs),
 | |
|             (   select(c(0, [1*Var0], Op, CRight), Cs, RestCs) ->
 | |
|                 (   Op == (=) -> CRight =:= Right, S0 = S
 | |
|                 ;   Op == (=<) ->
 | |
|                     NewRight is min(Right, CRight),
 | |
|                     NewCs = [c(0, [1*Var0], Op, NewRight)|RestCs],
 | |
|                     state_set_constraints(NewCs, S0, S)
 | |
|                 ;   Op == (>=) ->
 | |
|                     NewRight is max(Right, CRight),
 | |
|                     NewCs = [c(0, [1*Var0], Op, NewRight)|RestCs],
 | |
|                     state_set_constraints(NewCs, S0, S)
 | |
|                 )
 | |
|             ;   state_add_constraint_(c(0, [1*Var0], Op, Right), S0, S)
 | |
|             )
 | |
|         ).
 | |
| 
 | |
| 
 | |
| state_add_name(Name, Var), [state(VID,[Name-Var|Ns],Cs,Is)] -->
 | |
|         [state(VID,Ns,Cs,Is)].
 | |
| 
 | |
| state_add_integral(Var, state(VID,Ns,Cs,Is), state(VID,Ns,Cs,[Var|Is])).
 | |
| 
 | |
| state_constraints(state(_, _, Cs, _), Cs).
 | |
| state_names(state(_,Names,_,_), Names).
 | |
| state_integrals(state(_,_,_,Is), Is).
 | |
| state_set_constraints(Cs, state(VID,Ns,_,Is), state(VID,Ns,Cs,Is)).
 | |
| state_set_integrals(Is, state(VID,Ns,Cs,_), state(VID,Ns,Cs,Is)).
 | |
| 
 | |
| 
 | |
| state_next_var(VarID0), [state(VarID1,Names,Cs,Is)] -->
 | |
|         [state(VarID0,Names,Cs,Is)],
 | |
|         { VarID1 is VarID0 + 1 }.
 | |
| 
 | |
| solved_tableau(solved(Tableau, _, _), Tableau).
 | |
| solved_names(solved(_, Names,_), Names).
 | |
| solved_integrals(solved(_,_,Is), Is).
 | |
| 
 | |
| % User-named constraints are wrapped with user/1 to also allow "0" in
 | |
| % constraint names.
 | |
| 
 | |
| constraint(C, S0, S) :-
 | |
|         functor(S0, F, _),
 | |
|         (   F == state ->
 | |
|             (   C = integral(Var) -> state_add_integral(Var, S0, S)
 | |
|             ;   constraint_(0, C, S0, S)
 | |
|             )
 | |
|         ;   F == clpr_state -> clpr_constraint(C, S0, S)
 | |
|         ).
 | |
| 
 | |
| constraint(Name, C, S0, S) :- constraint_(user(Name), C, S0, S).
 | |
| 
 | |
| constraint_(Name, C, S0, S) :-
 | |
|         functor(S0, F, _),
 | |
|         (   F == state ->
 | |
|             (   C = integral(Var) -> state_add_integral(Var, S0, S)
 | |
|             ;   C =.. [Op, Left0, Right0],
 | |
|                 coeff_one(Left0, Left),
 | |
|                 Right0 >= 0,
 | |
|                 Right is rationalize(Right0),
 | |
|                 state_add_constraint(c(Name, Left, Op, Right), S0, S)
 | |
|             )
 | |
|         ;   F == clpr_state -> clpr_constraint(Name, C, S0, S)
 | |
|         ).
 | |
| 
 | |
| constraint_add(Name, A, S0, S) :-
 | |
|         functor(S0, F, _),
 | |
|         (   F == state ->
 | |
|             state_constraints(S0, Cs),
 | |
|             add_left(Cs, user(Name), A, Cs1),
 | |
|             state_set_constraints(Cs1, S0, S)
 | |
|         ;   F == clpr_state ->
 | |
|             clpr_state_constraints(S0, Cs),
 | |
|             add_left(Cs, Name, A, Cs1),
 | |
|             clpr_state_set_constraints(Cs1, S0, S)
 | |
|         ).
 | |
| 
 | |
| 
 | |
| add_left([c(Name,Left0,Op,Right)|Cs], V, A, [c(Name,Left,Op,Right)|Rest]) :-
 | |
|         (   Name == V -> append(A, Left0, Left), Rest = Cs
 | |
|         ;   Left0 = Left, add_left(Cs, V, A, Rest)
 | |
|         ).
 | |
| 
 | |
| branching_variable(State, Variable) :-
 | |
|         solved_integrals(State, Integrals),
 | |
|         member(Variable, Integrals),
 | |
|         variable_value(State, Variable, Value),
 | |
|         \+ integer(Value).
 | |
| 
 | |
| 
 | |
| worth_investigating(ZStar0, _, _) :- var(ZStar0).
 | |
| worth_investigating(ZStar0, AllInt, Z) :-
 | |
|         nonvar(ZStar0),
 | |
|         (   AllInt =:= 1 -> Z1 is floor(Z)
 | |
|         ;   Z1 = Z
 | |
|         ),
 | |
|         Z1 > ZStar0.
 | |
| 
 | |
| 
 | |
| branch_and_bound(Objective, Solved, AllInt, ZStar0, ZStar, S0, S, Found) :-
 | |
|         objective(Solved, Z),
 | |
|         (   worth_investigating(ZStar0, AllInt, Z) ->
 | |
|             (   branching_variable(Solved, BrVar) ->
 | |
|                 variable_value(Solved, BrVar, Value),
 | |
|                 Value1 is floor(Value),
 | |
|                 Value2 is Value1 + 1,
 | |
|                 constraint([BrVar] =< Value1, S0, SubProb1),
 | |
|                 (   maximize_(Objective, SubProb1, SubSolved1) ->
 | |
|                     Sub1Feasible = 1,
 | |
|                     objective(SubSolved1, Obj1)
 | |
|                 ;   Sub1Feasible = 0
 | |
|                 ),
 | |
|                 constraint([BrVar] >= Value2, S0, SubProb2),
 | |
|                 (   maximize_(Objective, SubProb2, SubSolved2) ->
 | |
|                     Sub2Feasible = 1,
 | |
|                     objective(SubSolved2, Obj2)
 | |
|                 ;   Sub2Feasible = 0
 | |
|                 ),
 | |
|                 (   Sub1Feasible =:= 1, Sub2Feasible =:= 1 ->
 | |
|                     (   Obj1 >= Obj2 ->
 | |
|                         First = SubProb1,
 | |
|                         Second = SubProb2,
 | |
|                         FirstSolved = SubSolved1,
 | |
|                         SecondSolved = SubSolved2
 | |
|                     ;   First = SubProb2,
 | |
|                         Second = SubProb1,
 | |
|                         FirstSolved = SubSolved2,
 | |
|                         SecondSolved = SubSolved1
 | |
|                     ),
 | |
|                     branch_and_bound(Objective, FirstSolved, AllInt, ZStar0, ZStar1, First, Solved1, Found1),
 | |
|                     branch_and_bound(Objective, SecondSolved, AllInt, ZStar1, ZStar2, Second, Solved2, Found2)
 | |
|                 ;   Sub1Feasible =:= 1 ->
 | |
|                     branch_and_bound(Objective, SubSolved1, AllInt, ZStar0, ZStar1, SubProb1, Solved1, Found1),
 | |
|                     Found2 = 0
 | |
|                 ;   Sub2Feasible =:= 1 ->
 | |
|                     Found1 = 0,
 | |
|                     branch_and_bound(Objective, SubSolved2, AllInt, ZStar0, ZStar2, SubProb2, Solved2, Found2)
 | |
|                 ;   Found1 = 0, Found2 = 0
 | |
|                 ),
 | |
|                 (   Found1 =:= 1, Found2 =:= 1 -> S = Solved2, ZStar = ZStar2
 | |
|                 ;   Found1 =:= 1 -> S = Solved1, ZStar = ZStar1
 | |
|                 ;   Found2 =:= 1 -> S = Solved2, ZStar = ZStar2
 | |
|                 ;   S = S0, ZStar = ZStar0
 | |
|                 ),
 | |
|                 Found is max(Found1, Found2)
 | |
|             ;   S = Solved, ZStar = Z, Found = 1
 | |
|             )
 | |
|         ;   ZStar = ZStar0, S = S0, Found = 0
 | |
|         ).
 | |
| 
 | |
| maximize(Z0, S0, S) :-
 | |
|         coeff_one(Z0, Z1),
 | |
|         functor(S0, F, _),
 | |
|         (   F == state -> maximize_mip(Z1, S0, S)
 | |
|         ;   F == clpr_state -> clpr_maximize(Z1, S0, S)
 | |
|         ).
 | |
| 
 | |
| maximize_mip(Z, S0, S) :-
 | |
|         maximize_(Z, S0, Solved),
 | |
|         state_integrals(S0, Is),
 | |
|         (   Is == [] -> S = Solved
 | |
|         ;   % arrange it so that branch and bound branches on variables
 | |
|             % in the same order the integrality constraints were stated in
 | |
|             reverse(Is, Is1),
 | |
|             state_set_integrals(Is1, S0, S1),
 | |
|             (   all_integers(Z, Is1) -> AllInt = 1
 | |
|             ;   AllInt = 0
 | |
|             ),
 | |
|             branch_and_bound(Z, Solved, AllInt, _, _, S1, S, 1)
 | |
|         ).
 | |
| 
 | |
| all_integers([], _).
 | |
| all_integers([Coeff*V|Rest], Is) :-
 | |
|         integer(Coeff),
 | |
|         memberchk(V, Is),
 | |
|         all_integers(Rest, Is).
 | |
| 
 | |
| 
 | |
| minimize(Z0, S0, S) :-
 | |
|         coeff_one(Z0, Z1),
 | |
|         functor(S0, F, _),
 | |
|         (   F == state ->
 | |
|             linsum_negate(Z1, Z2),
 | |
|             maximize_mip(Z2, S0, S1),
 | |
|             solved_tableau(S1, tableau(Obj, Vars, Inds, Rows)),
 | |
|             solved_names(S1, Names),
 | |
|             Obj = row(z, Left0, Right0),
 | |
|             all_times(Left0, -1, Left),
 | |
|             Right is -Right0,
 | |
|             Obj1 = row(z, Left, Right),
 | |
|             state_integrals(S0, Is),
 | |
|             S = solved(tableau(Obj1, Vars, Inds, Rows), Names, Is)
 | |
|         ;   F == clpr_state -> clpr_minimize(Z1, S0, S)
 | |
|         ).
 | |
| 
 | |
| op_pendant(>=, =<).
 | |
| op_pendant(=<, >=).
 | |
| 
 | |
| constraints_collapse([], []).
 | |
| constraints_collapse([C|Cs], Colls) :-
 | |
|         C = c(Name, Left, Op, Right),
 | |
|         (   Name == 0, Left = [1*Var], op_pendant(Op, P) ->
 | |
|             Pendant = c(0, [1*Var], P, Right),
 | |
|             (   select(Pendant, Cs, Rest) ->
 | |
|                 Colls = [c(0, Left, (=), Right)|CollRest],
 | |
|                 CsLeft = Rest
 | |
|             ;   Colls = [C|CollRest],
 | |
|                 CsLeft = Cs
 | |
|             )
 | |
|         ;   Colls = [C|CollRest],
 | |
|             CsLeft = Cs
 | |
|         ),
 | |
|         constraints_collapse(CsLeft, CollRest).
 | |
| 
 | |
| % solve a (relaxed) LP in standard form
 | |
| 
 | |
| maximize_(Z, S0, S) :-
 | |
|         state_constraints(S0, Cs0),
 | |
|         constraints_collapse(Cs0, Cs1),
 | |
|         phrase(constraints_normalize(Cs1, Cs, As0), [S0], [S1]),
 | |
|         flatten(As0, As1),
 | |
|         (   As1 == [] ->
 | |
|             make_tableau(Z, Cs, Tableau0),
 | |
|             simplex(Tableau0, Tableau),
 | |
|             state_names(S1, Names),
 | |
|             state_integrals(S1, Is),
 | |
|             S = solved(Tableau, Names, Is)
 | |
|         ;   state_names(S1, Names),
 | |
|             state_integrals(S1, Is),
 | |
|             two_phase_simplex(Z, Cs, As1, Names, Is, S)
 | |
|         ).
 | |
| 
 | |
| make_tableau(Z, Cs, Tableau) :-
 | |
|         ZC = c(_, Z, _),
 | |
|         phrase(constraints_variables([ZC|Cs]), Variables0),
 | |
|         sort(Variables0, Variables),
 | |
|         constraints_rows(Cs, Variables, Rows),
 | |
|         linsum_row(Variables, Z, Objective1),
 | |
|         all_times(Objective1, -1, Obj),
 | |
|         length(Variables, LVs),
 | |
|         length(Ones, LVs),
 | |
|         all_one(Ones),
 | |
|         Tableau = tableau(row(z, Obj, 0), Variables, Ones, Rows).
 | |
| 
 | |
| all_one([]).
 | |
| all_one([1|Os]) :- all_one(Os).
 | |
| 
 | |
| proper_form([], _, _, Obj, Obj).
 | |
| proper_form([_Coeff*A|As], Variables, Rows, Obj0, Obj) :-
 | |
|         (   find_row(A, Rows, PivotRow) ->
 | |
|             list_first(Variables, A, Col),
 | |
|             row_eliminate(Obj0, PivotRow, Col, Obj1)
 | |
|         ;   Obj1 = Obj0
 | |
|         ),
 | |
|         proper_form(As, Variables, Rows, Obj1, Obj).
 | |
| 
 | |
| 
 | |
| two_phase_simplex(Z, Cs, As, Names, Is, S) :-
 | |
|         % phase 1: minimize sum of articifial variables
 | |
|         make_tableau(As, Cs, Tableau0),
 | |
|         Tableau0 = tableau(Obj0, Variables, Inds, Rows),
 | |
|         proper_form(As, Variables, Rows, Obj0, Obj),
 | |
|         simplex(tableau(Obj, Variables, Inds, Rows), Tableau1),
 | |
|         all_vars_zero(As, solved(Tableau1, _, _)),
 | |
|         % phase 2: remove artificial variables and solve actual LP.
 | |
|         tableau_rows(Tableau1, Rows2),
 | |
|         eliminate_artificial(As, As, Variables, Rows2, Rows3),
 | |
|         list_nths(As, Variables, Nths0),
 | |
|         nths_to_zero(Nths0, Inds, Inds1),
 | |
|         linsum_row(Variables, Z, Objective),
 | |
|         all_times(Objective, -1, Objective1),
 | |
|         proper_form(Z, Variables, Rows3, row(z, Objective1, 0), ObjRow),
 | |
|         simplex(tableau(ObjRow, Variables, Inds1, Rows3), Tableau),
 | |
|         S = solved(Tableau, Names, Is).
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    If artificial variables are still in the basis, replace them with
 | |
|    non-artificial variables if possible. If that is not possible, the
 | |
|    constraint is ignored because it is redundant.
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| eliminate_artificial([], _, _, Rows, Rows).
 | |
| eliminate_artificial([_Coeff*A|Rest], As, Variables, Rows0, Rows) :-
 | |
|         (   select(row(A, Left, 0), Rows0, Others) ->
 | |
|             (   nth0(Col, Left, Coeff),
 | |
|                 Coeff =\= 0,
 | |
|                 nth0(Col, Variables, Var),
 | |
|                 \+ memberchk(_*Var, As) ->
 | |
|                 row_divide(row(A, Left, 0), Coeff, Row),
 | |
|                 gauss_elimination(Rows0, Row, Col, Rows1),
 | |
|                 swap_basic(Rows1, A, Var, Rows2)
 | |
|             ;   Rows2 = Others
 | |
|             )
 | |
|         ;   Rows2 = Rows0
 | |
|         ),
 | |
|         eliminate_artificial(Rest, As, Variables, Rows2, Rows).
 | |
| 
 | |
| nths_to_zero([], Inds, Inds).
 | |
| nths_to_zero([Nth|Nths], Inds0, Inds) :-
 | |
|         nth_to_zero(Inds0, 0, Nth, Inds1),
 | |
|         nths_to_zero(Nths, Inds1, Inds).
 | |
| 
 | |
| nth_to_zero([], _, _, []).
 | |
| nth_to_zero([I|Is], Curr, Nth, [Z|Zs]) :-
 | |
|         (   Curr =:= Nth -> [Z|Zs] = [0|Is]
 | |
|         ;   Z = I,
 | |
|             Next is Curr + 1,
 | |
|             nth_to_zero(Is, Next, Nth, Zs)
 | |
|         ).
 | |
| 
 | |
| 
 | |
| list_nths([], _, []).
 | |
| list_nths([_Coeff*A|As], Variables, [Nth|Nths]) :-
 | |
|         list_first(Variables, A, Nth),
 | |
|         list_nths(As, Variables, Nths).
 | |
| 
 | |
| 
 | |
| linsum_negate([], []).
 | |
| linsum_negate([Coeff0*Var|Ls], [Coeff*Var|Ns]) :-
 | |
|         Coeff is Coeff0 * (-1),
 | |
|         linsum_negate(Ls, Ns).
 | |
| 
 | |
| 
 | |
| linsum_row([], _, []).
 | |
| linsum_row([V|Vs], Ls, [C|Cs]) :-
 | |
|         (   member(Coeff*V, Ls) -> C is rationalize(Coeff)
 | |
|         ;   C = 0
 | |
|         ),
 | |
|         linsum_row(Vs, Ls, Cs).
 | |
| 
 | |
| constraints_rows([], _, []).
 | |
| constraints_rows([C|Cs], Vars, [R|Rs]) :-
 | |
|         C = c(Var, Left0, Right),
 | |
|         linsum_row(Vars, Left0, Left),
 | |
|         R = row(Var, Left, Right),
 | |
|         constraints_rows(Cs, Vars, Rs).
 | |
| 
 | |
| constraints_normalize([], [], []) --> [].
 | |
| constraints_normalize([C0|Cs0], [C|Cs], [A|As]) -->
 | |
|         { constraint_op(C0, Op),
 | |
|           constraint_left(C0, Left),
 | |
|           constraint_right(C0, Right),
 | |
|           constraint_name(C0, Name),
 | |
|           Con =.. [Op, Left, Right] },
 | |
|         constraint_normalize(Con, Name, C, A),
 | |
|         constraints_normalize(Cs0, Cs, As).
 | |
| 
 | |
| constraint_normalize(As0 =< B0, Name, c(Slack, [1*Slack|As0], B0), []) -->
 | |
|         state_next_var(Slack),
 | |
|         state_add_name(Name, Slack).
 | |
| constraint_normalize(As0 = B0, Name, c(AID, [1*AID|As0], B0), [-1*AID]) -->
 | |
|         state_next_var(AID),
 | |
|         state_add_name(Name, AID).
 | |
| constraint_normalize(As0 >= B0, Name, c(AID, [-1*Slack,1*AID|As0], B0), [-1*AID]) -->
 | |
|         state_next_var(Slack),
 | |
|         state_next_var(AID),
 | |
|         state_add_name(Name, AID).
 | |
| 
 | |
| coeff_one([], []).
 | |
| coeff_one([L|Ls], [Coeff*Var|Rest]) :-
 | |
|         (   L = A*B -> Coeff = A, Var = B
 | |
|         ;   Coeff = 1, Var = L
 | |
|         ),
 | |
|         coeff_one(Ls, Rest).
 | |
| 
 | |
| 
 | |
| tableau_optimal(Tableau) :-
 | |
|         tableau_objective(Tableau, Objective),
 | |
|         tableau_indicators(Tableau, Indicators),
 | |
|         Objective = row(_, Left, _),
 | |
|         all_nonnegative(Left, Indicators).
 | |
| 
 | |
| all_nonnegative([], []).
 | |
| all_nonnegative([Coeff|As], [I|Is]) :-
 | |
|         (   I =:= 0 -> true
 | |
|         ;   Coeff >= 0
 | |
|         ),
 | |
|         all_nonnegative(As, Is).
 | |
| 
 | |
| pivot_column(Tableau, PCol) :-
 | |
|         tableau_objective(Tableau, row(_, Left, _)),
 | |
|         tableau_indicators(Tableau, Indicators),
 | |
|         first_negative(Left, Indicators, 0, Index0, Val, RestL, RestI),
 | |
|         Index1 is Index0 + 1,
 | |
|         pivot_column(RestL, RestI, Val, Index1, Index0, PCol).
 | |
| 
 | |
| first_negative([L|Ls], [I|Is], Index0, N, Val, RestL, RestI) :-
 | |
|         Index1 is Index0 + 1,
 | |
|         (   I =:= 0 -> first_negative(Ls, Is, Index1, N, Val, RestL, RestI)
 | |
|         ;   (   L < 0 -> N = Index0, Val = L, RestL = Ls, RestI = Is
 | |
|             ;   first_negative(Ls, Is, Index1, N, Val, RestL, RestI)
 | |
|             )
 | |
|         ).
 | |
| 
 | |
| 
 | |
| pivot_column([], _, _, _, N, N).
 | |
| pivot_column([L|Ls], [I|Is], Coeff0, Index0, N0, N) :-
 | |
|         (   I =:= 0 -> Coeff1 = Coeff0, N1 = N0
 | |
|         ;   (   L < Coeff0 -> Coeff1 = L, N1 = Index0
 | |
|             ;   Coeff1 = Coeff0, N1 = N0
 | |
|             )
 | |
|         ),
 | |
|         Index1 is Index0 + 1,
 | |
|         pivot_column(Ls, Is, Coeff1, Index1, N1, N).
 | |
| 
 | |
| 
 | |
| pivot_row(Tableau, PCol, PRow) :-
 | |
|         tableau_rows(Tableau, Rows),
 | |
|         pivot_row(Rows, PCol, false, _, 0, 0, PRow).
 | |
| 
 | |
| pivot_row([], _, Bounded, _, _, Row, Row) :- Bounded.
 | |
| pivot_row([Row|Rows], PCol, Bounded0, Min0, Index0, PRow0, PRow) :-
 | |
|         Row = row(_Var, Left, B),
 | |
|         nth0(PCol, Left, Ae),
 | |
|         (   Ae > 0 ->
 | |
|             Bounded1 = true,
 | |
|             Bound is B rdiv Ae,
 | |
|             (   Bounded0 ->
 | |
|                 (   Bound < Min0 -> Min1 = Bound, PRow1 = Index0
 | |
|                 ;   Min1 = Min0, PRow1 = PRow0
 | |
|                 )
 | |
|             ;   Min1 = Bound, PRow1 = Index0
 | |
|             )
 | |
|         ;   Bounded1 = Bounded0, Min1 = Min0, PRow1 = PRow0
 | |
|         ),
 | |
|         Index1 is Index0 + 1,
 | |
|         pivot_row(Rows, PCol, Bounded1, Min1, Index1, PRow1, PRow).
 | |
| 
 | |
| 
 | |
| row_divide(row(Var, Left0, Right0), Div, row(Var, Left, Right)) :-
 | |
|         all_divide(Left0, Div, Left),
 | |
|         Right is Right0 rdiv Div.
 | |
| 
 | |
| 
 | |
| all_divide([], _, []).
 | |
| all_divide([R|Rs], Div, [DR|DRs]) :-
 | |
|         DR is R rdiv Div,
 | |
|         all_divide(Rs, Div, DRs).
 | |
| 
 | |
| gauss_elimination([], _, _, []).
 | |
| gauss_elimination([Row0|Rows0], PivotRow, Col, [Row|Rows]) :-
 | |
|         PivotRow = row(PVar, _, _),
 | |
|         Row0 = row(Var, _, _),
 | |
|         (   PVar == Var -> Row = PivotRow
 | |
|         ;   row_eliminate(Row0, PivotRow, Col, Row)
 | |
|         ),
 | |
|         gauss_elimination(Rows0, PivotRow, Col, Rows).
 | |
| 
 | |
| row_eliminate(row(Var, Ls0, R0), row(_, PLs, PR), Col, row(Var, Ls, R)) :-
 | |
|         nth0(Col, Ls0, Coeff),
 | |
|         (   Coeff =:= 0 -> Ls = Ls0, R = R0
 | |
|         ;   MCoeff is -Coeff,
 | |
|             all_times_plus([PR|PLs], MCoeff, [R0|Ls0], [R|Ls])
 | |
|         ).
 | |
| 
 | |
| all_times_plus([], _, _, []).
 | |
| all_times_plus([A|As], T, [B|Bs], [AT|ATs]) :-
 | |
|         AT is A * T + B,
 | |
|         all_times_plus(As, T, Bs, ATs).
 | |
| 
 | |
| all_times([], _, []).
 | |
| all_times([A|As], T, [AT|ATs]) :-
 | |
|         AT is A * T,
 | |
|         all_times(As, T, ATs).
 | |
| 
 | |
| simplex(Tableau0, Tableau) :-
 | |
|         (   tableau_optimal(Tableau0) -> Tableau0 = Tableau
 | |
|         ;   pivot_column(Tableau0, PCol),
 | |
|             pivot_row(Tableau0, PCol, PRow),
 | |
|             Tableau0 = tableau(Obj0,Variables,Inds,Matrix0),
 | |
|             nth0(PRow, Matrix0, Row0),
 | |
|             Row0 = row(Leaving, Left0, _Right0),
 | |
|             nth0(PCol, Left0, PivotElement),
 | |
|             row_divide(Row0, PivotElement, Row1),
 | |
|             gauss_elimination([Obj0|Matrix0], Row1, PCol, [Obj|Matrix1]),
 | |
|             nth0(PCol, Variables, Entering),
 | |
|             swap_basic(Matrix1, Leaving, Entering, Matrix),
 | |
|             simplex(tableau(Obj,Variables,Inds,Matrix), Tableau)
 | |
|         ).
 | |
| 
 | |
| swap_basic([Row0|Rows0], Old, New, Matrix) :-
 | |
|         Row0 = row(Var, Left, Right),
 | |
|         (   Var == Old -> Matrix = [row(New, Left, Right)|Rows0]
 | |
|         ;   Matrix = [Row0|Rest],
 | |
|             swap_basic(Rows0, Old, New, Rest)
 | |
|         ).
 | |
| 
 | |
| constraints_variables([]) --> [].
 | |
| constraints_variables([c(_,Left,_)|Cs]) -->
 | |
|         variables(Left),
 | |
|         constraints_variables(Cs).
 | |
| 
 | |
| variables([]) --> [].
 | |
| variables([_Coeff*Var|Rest]) --> [Var], variables(Rest).
 | |
| 
 | |
| 
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    A dual algorithm ("algorithm alpha-beta" in Papadimitriou and
 | |
|    Steiglitz) is used for transportation and assignment problems. The
 | |
|    arising max-flow problem is solved with Edmonds-Karp, itself a dual
 | |
|    algorithm.
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    An attributed variable is introduced for each node. Attributes:
 | |
|    node: Original name of the node.
 | |
|    edges: arc_to(To,F,Capacity) (F has an attribute "flow") or
 | |
|           arc_from(From,F,Capacity)
 | |
|    parent: used in breadth-first search
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| arcs([], Assoc, Assoc).
 | |
| arcs([arc(From0,To0,C)|As], Assoc0, Assoc) :-
 | |
|         (   get_assoc(From0, Assoc0, From) -> Assoc1 = Assoc0
 | |
|         ;   put_assoc(From0, Assoc0, From, Assoc1),
 | |
|             put_attr(From, node, From0)
 | |
|         ),
 | |
|         (   get_attr(From, edges, Es) -> true
 | |
|         ;   Es = []
 | |
|         ),
 | |
|         put_attr(F, flow, 0),
 | |
|         put_attr(From, edges, [arc_to(To,F,C)|Es]),
 | |
|         (   get_assoc(To0, Assoc1, To) -> Assoc2 = Assoc1
 | |
|         ;   put_assoc(To0, Assoc1, To, Assoc2),
 | |
|             put_attr(To, node, To0)
 | |
|         ),
 | |
|         (   get_attr(To, edges, Es1) -> true
 | |
|         ;   Es1 = []
 | |
|         ),
 | |
|         put_attr(To, edges, [arc_from(From,F,C)|Es1]),
 | |
|         arcs(As, Assoc2, Assoc).
 | |
| 
 | |
| 
 | |
| edmonds_karp(Arcs0, Arcs) :-
 | |
|         empty_assoc(E),
 | |
|         arcs(Arcs0, E, Assoc),
 | |
|         get_assoc(s, Assoc, S),
 | |
|         get_assoc(t, Assoc, T),
 | |
|         maximum_flow(S, T),
 | |
|         % fetch attvars before deleting visited edges
 | |
|         term_attvars(S, AttVars),
 | |
|         phrase(flow_to_arcs(S), Ls),
 | |
|         arcs_assoc(Ls, Arcs),
 | |
|         maplist(del_attrs, AttVars).
 | |
| 
 | |
| flow_to_arcs(V) -->
 | |
|         (   { get_attr(V, edges, Es) } ->
 | |
|             { del_attr(V, edges),
 | |
|               get_attr(V, node, Name) },
 | |
|             flow_to_arcs_(Es, Name)
 | |
|         ;   []
 | |
|         ).
 | |
| 
 | |
| flow_to_arcs_([], _) --> [].
 | |
| flow_to_arcs_([E|Es], Name) -->
 | |
|         edge_to_arc(E, Name),
 | |
|         flow_to_arcs_(Es, Name).
 | |
| 
 | |
| edge_to_arc(arc_from(_,_,_), _) --> [].
 | |
| edge_to_arc(arc_to(To,F,C), Name) -->
 | |
|         { get_attr(To, node, NTo),
 | |
|           get_attr(F, flow, Flow) },
 | |
|         [arc(Name,NTo,Flow,C)],
 | |
|         flow_to_arcs(To).
 | |
| 
 | |
| arcs_assoc(Arcs, Hash) :-
 | |
|         empty_assoc(E),
 | |
|         arcs_assoc(Arcs, E, Hash).
 | |
| 
 | |
| arcs_assoc([], Hs, Hs).
 | |
| arcs_assoc([arc(From,To,F,C)|Rest], Hs0, Hs) :-
 | |
|         (   get_assoc(From, Hs0, As) -> Hs1 = Hs0
 | |
|         ;   put_assoc(From, Hs0, [], Hs1),
 | |
|             empty_assoc(As)
 | |
|         ),
 | |
|         put_assoc(To, As, arc(From,To,F,C), As1),
 | |
|         put_assoc(From, Hs1, As1, Hs2),
 | |
|         arcs_assoc(Rest, Hs2, Hs).
 | |
| 
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    Strategy: Breadth-first search until we find a free right vertex in
 | |
|    the value graph, then find an augmenting path in reverse.
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| maximum_flow(S, T) :-
 | |
|         (   augmenting_path([[S]], Levels, T) ->
 | |
|             phrase(augmenting_path(S, T), Path),
 | |
|             Path = [augment(_,First,_)|Rest],
 | |
|             path_minimum(Rest, First, Min),
 | |
|             % format("augmenting path: ~w\n", [Min]),
 | |
|             maplist(augment(Min), Path),
 | |
|             maplist(maplist(clear_parent), Levels),
 | |
|             maximum_flow(S, T)
 | |
|         ;   true
 | |
|         ).
 | |
| 
 | |
| clear_parent(V) :- del_attr(V, parent).
 | |
| 
 | |
| augmenting_path(Levels0, Levels, T) :-
 | |
|         Levels0 = [Vs|_],
 | |
|         Levels1 = [Tos|Levels0],
 | |
|         phrase(reachables(Vs), Tos),
 | |
|         Tos = [_|_],
 | |
|         (   member(To, Tos), To == T -> Levels = Levels1
 | |
|         ;   augmenting_path(Levels1, Levels, T)
 | |
|         ).
 | |
| 
 | |
| reachables([])     --> [].
 | |
| reachables([V|Vs]) -->
 | |
|         { get_attr(V, edges, Es) },
 | |
|         reachables_(Es, V),
 | |
|         reachables(Vs).
 | |
| 
 | |
| reachables_([], _)     --> [].
 | |
| reachables_([E|Es], V) -->
 | |
|         reachable(E, V),
 | |
|         reachables_(Es, V).
 | |
| 
 | |
| reachable(arc_from(V,F,_), P) -->
 | |
|         (   { \+ get_attr(V, parent, _),
 | |
|               get_attr(F, flow, Flow),
 | |
|               Flow > 0 } ->
 | |
|             { put_attr(V, parent, P-augment(F,Flow,-)) },
 | |
|             [V]
 | |
|         ;   []
 | |
|         ).
 | |
| reachable(arc_to(V,F,C), P) -->
 | |
|         (   { \+ get_attr(V, parent, _),
 | |
|               get_attr(F, flow, Flow),
 | |
|               (   C == inf ; Flow < C )} ->
 | |
|             { ( C == inf -> Diff = inf
 | |
|               ;   Diff is C - Flow
 | |
|               ),
 | |
|               put_attr(V, parent, P-augment(F,Diff,+)) },
 | |
|             [V]
 | |
|         ;   []
 | |
|         ).
 | |
| 
 | |
| 
 | |
| path_minimum([], Min, Min).
 | |
| path_minimum([augment(_,A,_)|As], Min0, Min) :-
 | |
|         (   A == inf -> Min1 = Min0
 | |
|         ;   Min1 is min(Min0,A)
 | |
|         ),
 | |
|         path_minimum(As, Min1, Min).
 | |
| 
 | |
| augment(Min, augment(F,_,Sign)) :-
 | |
|         get_attr(F, flow, Flow0),
 | |
|         flow_(Sign, Flow0, Min, Flow),
 | |
|         put_attr(F, flow, Flow).
 | |
| 
 | |
| flow_(+, F0, A, F) :- F is F0 + A.
 | |
| flow_(-, F0, A, F) :- F is F0 - A.
 | |
| 
 | |
| augmenting_path(S, V) -->
 | |
|         (   { V == S } -> []
 | |
|         ;   { get_attr(V, parent, V1-Augment) },
 | |
|             [Augment],
 | |
|             augmenting_path(S, V1)
 | |
|         ).
 | |
| 
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| naive_init(Supplies, _, Costs, Alphas, Betas) :-
 | |
|         length(Supplies, LAs),
 | |
|         length(Alphas, LAs),
 | |
|         maplist(=(0), Alphas),
 | |
|         transpose(Costs, TCs),
 | |
|         naive_init_betas(TCs, Betas).
 | |
| 
 | |
| naive_init_betas([], []).
 | |
| naive_init_betas([Ls|Lss], [B|Bs]) :-
 | |
|         list_min(Ls, B),
 | |
|         naive_init_betas(Lss, Bs).
 | |
| 
 | |
| list_min([F|Rest], Min) :-
 | |
|         list_min(Rest, F, Min).
 | |
| 
 | |
| list_min([], Min, Min).
 | |
| list_min([L|Ls], Min0, Min) :-
 | |
|         Min1 is min(L,Min0),
 | |
|         list_min(Ls, Min1, Min).
 | |
| 
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| transpose(Ms, Ts) :- Ms = [F|_], transpose(F, Ms, Ts).
 | |
| 
 | |
| transpose([], _, []).
 | |
| transpose([_|Rs], Ms, [Ts|Tss]) :-
 | |
|         lists_firsts_rests(Ms, Ts, Ms1),
 | |
|         transpose(Rs, Ms1, Tss).
 | |
| 
 | |
| lists_firsts_rests([], [], []).
 | |
| lists_firsts_rests([[F|Os]|Rest], [F|Fs], [Os|Oss]) :-
 | |
|         lists_firsts_rests(Rest, Fs, Oss).
 | |
| 
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    TODO: use attributed variables throughout
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| transportation(Supplies, Demands, Costs, Transport) :-
 | |
|         length(Supplies, LAs),
 | |
|         length(Demands, LBs),
 | |
|         naive_init(Supplies, Demands, Costs, Alphas, Betas),
 | |
|         network_head(Supplies, 1, SArcs, []),
 | |
|         network_tail(Demands, 1, DArcs, []),
 | |
|         numlist(1, LAs, Sources),
 | |
|         numlist(1, LBs, Sinks0),
 | |
|         maplist(make_sink, Sinks0, Sinks),
 | |
|         append(SArcs, DArcs, Torso),
 | |
|         alpha_beta(Torso, Sources, Sinks, Costs, Alphas, Betas, Flow),
 | |
|         flow_transport(Supplies, 1, Demands, Flow, Transport).
 | |
| 
 | |
| flow_transport([], _, _, _, []).
 | |
| flow_transport([_|Rest], N, Demands, Flow, [Line|Lines]) :-
 | |
|         transport_line(Demands, N, 1, Flow, Line),
 | |
|         N1 is N + 1,
 | |
|         flow_transport(Rest, N1, Demands, Flow, Lines).
 | |
| 
 | |
| transport_line([], _, _, _, []).
 | |
| transport_line([_|Rest], I, J, Flow, [L|Ls]) :-
 | |
|         (   get_assoc(I, Flow, As), get_assoc(p(J), As, arc(I,p(J),F,_)) -> L = F
 | |
|         ;   L = 0
 | |
|         ),
 | |
|         J1 is J + 1,
 | |
|         transport_line(Rest, I, J1, Flow, Ls).
 | |
| 
 | |
| 
 | |
| make_sink(N, p(N)).
 | |
| 
 | |
| network_head([], _) --> [].
 | |
| network_head([S|Ss], N) -->
 | |
|         [arc(s,N,S)],
 | |
|         { N1 is N + 1 },
 | |
|         network_head(Ss, N1).
 | |
| 
 | |
| network_tail([], _) --> [].
 | |
| network_tail([D|Ds], N) -->
 | |
|         [arc(p(N),t,D)],
 | |
|         { N1 is N + 1 },
 | |
|         network_tail(Ds, N1).
 | |
| 
 | |
| network_connections([], _, _, _) --> [].
 | |
| network_connections([A|As], Betas, [Cs|Css], N) -->
 | |
|         network_connections(Betas, Cs, A, N, 1),
 | |
|         { N1 is N + 1 },
 | |
|         network_connections(As, Betas, Css, N1).
 | |
| 
 | |
| network_connections([], _, _, _, _) --> [].
 | |
| network_connections([B|Bs], [C|Cs], A, N, PN) -->
 | |
|         (   { C =:= A + B } -> [arc(N,p(PN),inf)]
 | |
|         ;   []
 | |
|         ),
 | |
|         { PN1 is PN + 1 },
 | |
|         network_connections(Bs, Cs, A, N, PN1).
 | |
| 
 | |
| alpha_beta(Torso, Sources, Sinks, Costs, Alphas, Betas, Flow) :-
 | |
|         network_connections(Alphas, Betas, Costs, 1, Cons, []),
 | |
|         append(Torso, Cons, Arcs),
 | |
|         edmonds_karp(Arcs, MaxFlow),
 | |
|         mark_hashes(MaxFlow, MArcs, MRevArcs),
 | |
|         all_markable(MArcs, MRevArcs, Markable),
 | |
|         mark_unmark(Sources, Markable, MarkSources, UnmarkSources),
 | |
|         (   MarkSources == [] -> Flow = MaxFlow
 | |
|         ;   mark_unmark(Sinks, Markable, MarkSinks0, UnmarkSinks0),
 | |
|             maplist(un_p, MarkSinks0, MarkSinks),
 | |
|             maplist(un_p, UnmarkSinks0, UnmarkSinks),
 | |
|             MarkSources = [FirstSource|_],
 | |
|             UnmarkSinks = [FirstSink|_],
 | |
|             theta(FirstSource, FirstSink, Costs, Alphas, Betas, TInit),
 | |
|             theta(MarkSources, UnmarkSinks, Costs, Alphas, Betas, TInit, Theta),
 | |
|             duals_add(MarkSources, Alphas, Theta, Alphas1),
 | |
|             duals_add(UnmarkSinks, Betas, Theta, Betas1),
 | |
|             Theta1 is -Theta,
 | |
|             duals_add(UnmarkSources, Alphas1, Theta1, Alphas2),
 | |
|             duals_add(MarkSinks, Betas1, Theta1, Betas2),
 | |
|             alpha_beta(Torso, Sources, Sinks, Costs, Alphas2, Betas2, Flow)
 | |
|         ).
 | |
| 
 | |
| mark_hashes(MaxFlow, Arcs, RevArcs) :-
 | |
|         assoc_to_list(MaxFlow, FlowList),
 | |
|         maplist(un_arc, FlowList, FlowList1),
 | |
|         flatten(FlowList1, FlowList2),
 | |
|         empty_assoc(E),
 | |
|         mark_arcs(FlowList2, E, Arcs),
 | |
|         mark_revarcs(FlowList2, E, RevArcs).
 | |
| 
 | |
| un_arc(_-Ls0, Ls) :-
 | |
|         assoc_to_list(Ls0, Ls1),
 | |
|         maplist(un_arc_, Ls1, Ls).
 | |
| 
 | |
| un_arc_(_-Ls, Ls).
 | |
| 
 | |
| mark_arcs([], Arcs, Arcs).
 | |
| mark_arcs([arc(From,To,F,C)|Rest], Arcs0, Arcs) :-
 | |
|         (   get_assoc(From, Arcs0, As) -> true
 | |
|         ;   As = []
 | |
|         ),
 | |
|         (   C == inf -> As1 = [To|As]
 | |
|         ;   F < C -> As1 = [To|As]
 | |
|         ;   As1 = As
 | |
|         ),
 | |
|         put_assoc(From, Arcs0, As1, Arcs1),
 | |
|         mark_arcs(Rest, Arcs1, Arcs).
 | |
| 
 | |
| mark_revarcs([], Arcs, Arcs).
 | |
| mark_revarcs([arc(From,To,F,_)|Rest], Arcs0, Arcs) :-
 | |
|         (   get_assoc(To, Arcs0, Fs) -> true
 | |
|         ;   Fs = []
 | |
|         ),
 | |
|         (   F > 0 -> Fs1 = [From|Fs]
 | |
|         ;   Fs1 = Fs
 | |
|         ),
 | |
|         put_assoc(To, Arcs0, Fs1, Arcs1),
 | |
|         mark_revarcs(Rest, Arcs1, Arcs).
 | |
| 
 | |
| 
 | |
| un_p(p(N), N).
 | |
| 
 | |
| duals_add([], Alphas, _, Alphas).
 | |
| duals_add([S|Ss], Alphas0, Theta, Alphas) :-
 | |
|         add_to_nth(1, S, Alphas0, Theta, Alphas1),
 | |
|         duals_add(Ss, Alphas1, Theta, Alphas).
 | |
| 
 | |
| add_to_nth(N, N, [A0|As], Theta, [A|As]) :- !,
 | |
|         A is A0 + Theta.
 | |
| add_to_nth(N0, N, [A|As0], Theta, [A|As]) :-
 | |
|         N1 is N0 + 1,
 | |
|         add_to_nth(N1, N, As0, Theta, As).
 | |
| 
 | |
| 
 | |
| theta(Source, Sink, Costs, Alphas, Betas, Theta) :-
 | |
|         nth1(Source, Costs, Row),
 | |
|         nth1(Sink, Row, C),
 | |
|         nth1(Source, Alphas, A),
 | |
|         nth1(Sink, Betas, B),
 | |
|         Theta is (C - A - B) rdiv 2.
 | |
| 
 | |
| theta([], _, _, _, _, Theta, Theta).
 | |
| theta([Source|Sources], Sinks, Costs, Alphas, Betas, Theta0, Theta) :-
 | |
|         theta_(Sinks, Source, Costs, Alphas, Betas, Theta0, Theta1),
 | |
|         theta(Sources, Sinks, Costs, Alphas, Betas, Theta1, Theta).
 | |
| 
 | |
| theta_([], _, _, _, _, Theta, Theta).
 | |
| theta_([Sink|Sinks], Source, Costs, Alphas, Betas, Theta0, Theta) :-
 | |
|         theta(Source, Sink, Costs, Alphas, Betas, Theta1),
 | |
|         Theta2 is min(Theta0, Theta1),
 | |
|         theta_(Sinks, Source, Costs, Alphas, Betas, Theta2, Theta).
 | |
| 
 | |
| 
 | |
| mark_unmark(Nodes, Hash, Mark, Unmark) :-
 | |
|         mark_unmark(Nodes, Hash, Mark, [], Unmark, []).
 | |
| 
 | |
| mark_unmark([], _, Mark, Mark, Unmark, Unmark).
 | |
| mark_unmark([Node|Nodes], Markable, Mark0, Mark, Unmark0, Unmark) :-
 | |
|         (   memberchk(Node, Markable) ->
 | |
|             Mark0 = [Node|Mark1],
 | |
|             Unmark0 = Unmark1
 | |
|         ;   Mark0 = Mark1,
 | |
|             Unmark0 = [Node|Unmark1]
 | |
|         ),
 | |
|         mark_unmark(Nodes, Markable, Mark1, Mark, Unmark1, Unmark).
 | |
| 
 | |
| all_markable(Flow, RevArcs, Markable) :-
 | |
|         phrase(markable(s, [], _, Flow, RevArcs), Markable).
 | |
| 
 | |
| all_markable([], Visited, Visited, _, _) --> [].
 | |
| all_markable([To|Tos], Visited0, Visited, Arcs, RevArcs) -->
 | |
|         (   { memberchk(To, Visited0) } -> { Visited0 = Visited1 }
 | |
|         ;   markable(To, [To|Visited0], Visited1, Arcs, RevArcs)
 | |
|         ),
 | |
|         all_markable(Tos, Visited1, Visited, Arcs, RevArcs).
 | |
| 
 | |
| markable(Current, Visited0, Visited, Arcs, RevArcs) -->
 | |
|         { (   Current = p(_) ->
 | |
|               (   get_assoc(Current, RevArcs, Fs) -> true
 | |
|               ;   Fs = []
 | |
|               )
 | |
|           ;   (   get_assoc(Current, Arcs, Fs) -> true
 | |
|               ;   Fs = []
 | |
|               )
 | |
|           ) },
 | |
|         [Current],
 | |
|         all_markable(Fs, [Current|Visited0], Visited, Arcs, RevArcs).
 | |
| 
 | |
| /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | |
|    solve(File) -- read input from File.
 | |
| 
 | |
|    Format (NS = number of sources, ND = number of demands):
 | |
| 
 | |
|    NS
 | |
|    ND
 | |
|    S1 S2 S3 ...
 | |
|    D1 D2 D3 ...
 | |
|    C11 C12 C13 ...
 | |
|    C21 C22 C23 ...
 | |
|    ... ... ... ...
 | |
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 | |
| 
 | |
| input(Ss, Ds, Costs) -->
 | |
|         integer(NS),
 | |
|         integer(ND),
 | |
|         n_integers(NS, Ss),
 | |
|         n_integers(ND, Ds),
 | |
|         n_kvectors(NS, ND, Costs).
 | |
| 
 | |
| n_kvectors(0, _, []) --> !.
 | |
| n_kvectors(N, K, [V|Vs]) -->
 | |
|         n_integers(K, V),
 | |
|         { N1 is N - 1 },
 | |
|         n_kvectors(N1, K, Vs).
 | |
| 
 | |
| n_integers(0, []) --> !.
 | |
| n_integers(N, [I|Is]) --> integer(I), { N1 is N - 1 }, n_integers(N1, Is).
 | |
| 
 | |
| 
 | |
| number([D|Ds]) --> digit(D), number(Ds).
 | |
| number([D])    --> digit(D).
 | |
| 
 | |
| digit(D) --> [D], { between(0'0, 0'9, D) }.
 | |
| 
 | |
| integer(N) --> number(Ds), !, ws, { name(N, Ds) }.
 | |
| 
 | |
| ws --> [W], { W =< 0' }, !, ws.  % closing quote for syntax highlighting: '
 | |
| ws --> [].
 | |
| 
 | |
| solve(File) :-
 | |
|         time((phrase_from_file(input(Supplies, Demands, Costs), File),
 | |
|               transportation(Supplies, Demands, Costs, Matrix),
 | |
|               maplist(print_row, Matrix))),
 | |
|         halt.
 | |
| 
 | |
| print_row(R) :- maplist(print_row_, R), nl.
 | |
| 
 | |
| print_row_(N) :- format("~w ", [N]).
 | |
| 
 | |
| 
 | |
| % ?- call_residue_vars(transportation([12,7,14], [3,15,9,6], [[20,50,10,60],[70,40,60,30],[40,80,70,40]], Ms), Vs).
 | |
| %@ Ms = [[0, 3, 9, 0], [0, 7, 0, 0], [3, 5, 0, 6]],
 | |
| %@ Vs = [].
 | |
| 
 | |
| 
 | |
| %?- call_residue_vars(simplex:solve('instance_80_80.txt'), Vs).
 | |
| 
 | |
| %?- call_residue_vars(simplex:solve('instance_3_4.txt'), Vs).
 | |
| 
 | |
| %?- call_residue_vars(simplex:solve('instance_100_100.txt'), Vs).
 | |
| 
 | |
| 
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % Assignment problem - for now, reduce to transportation problem
 | |
| 
 | |
| assignment(Costs, Assignment) :-
 | |
|         length(Costs, LC),
 | |
|         length(Supply, LC),
 | |
|         all_one(Supply),
 | |
|         transportation(Supply, Supply, Costs, Assignment).
 | |
| 
 |