This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/undgraphs.yap
vsc 5198ba1077 more graph stuff.
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1603 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2006-04-20 15:28:08 +00:00

182 lines
4.1 KiB
Prolog

% File : dgraphs.yap
% Author : Vitor Santos Costa
% Updated: 2006
% Purpose: Directed Graph Processing Utilities.
:- module( undgraphs,
[
undgraph_new/1,
undgraph_add_edge/4,
undgraph_add_edges/3,
undgraph_add_vertex/3,
undgraph_add_vertices/3,
undgraph_del_edge/4,
undgraph_del_edges/3,
undgraph_del_vertex/3,
undgraph_del_vertices/3,
undgraph_edge/3,
undgraph_edges/2,
undgraph_vertices/2,
undgraph_neighbors/3,
undgraph_neighbours/3,
undgraph_complement/2,
dgraph_to_undgraph/2,
undgraph_min_tree/2]).
:- use_module( library(dgraphs),
[
dgraph_new/1,
dgraph_add_edge/4,
dgraph_add_edges/3,
dgraph_add_vertex/3,
dgraph_add_vertices/3,
dgraph_del_edge/4,
dgraph_del_edges/3,
dgraph_del_vertex/3,
dgraph_del_vertices/3,
dgraph_edge/3,
dgraph_edges/2,
dgraph_vertices/2,
dgraph_neighbors/3,
dgraph_neighbours/3,
dgraph_complement/2,
dgraph_symmetric_closure/2]).
:- use_module(library(wundgraphs), [
undgraph_to_wundgraph/2,
wundgraph_min_tree/3,
wundgraph_max_tree/3,
wundgraph_to_undgraph/2]).
:- use_module(library(ordsets),
[ ord_del_element/3,
ord_union/3,
ord_subtract/3]).
:- use_module(library(rbtrees),
[ rb_delete/4,
rb_partial_map/4
]).
undgraph_new(Vertices) :-
dgraph_new(Vertices).
undgraph_add_edge(V1,V2,Vs0,Vs2) :-
dgraphs:dgraph_new_edge(V1,V2,Vs0,Vs1),
dgraphs:dgraph_new_edge(V2,V1,Vs1,Vs2).
undgraph_add_edges(Edges) -->
{ dup_edges(Edges, DupEdges) },
dgraph_add_edges(DupEdges).
dup_edges([],[]).
dup_edges([E1-E2|Edges], [E1-E2,E2-E1|DupEdges]) :-
dup_edges(Edges, DupEdges).
undgraph_add_vertices([]) --> [].
undgraph_add_vertices([V|Vs]) -->
dgraph_add_vertex(V),
undgraph_add_vertices(Vs).
undgraph_add_vertex(V) -->
dgraph_add_vertex(V).
undgraph_edges(Vs,Edges) :-
dgraph_edges(Vs,DupEdges),
remove_dups(DupEdges,Edges).
remove_dups([],[]).
remove_dups([V1-V2|DupEdges],NEdges) :- V1 @< V2, !,
NEdges = [V1-V2|Edges],
remove_dups(DupEdges,Edges).
remove_dups([_|DupEdges],Edges) :-
remove_dups(DupEdges,Edges).
undgraph_vertices(Vs,Vertices) :-
dgraph_vertices(Vs,Vertices).
undgraph_neighbours(V,Vertices,Children) :-
dgraph_neighbours(V,Vertices,Children0),
(
ord_del_element(Children0,V,Children)
->
true
;
Children = Children0
).
undgraph_neighbors(V,Vertices,Children) :-
dgraph_neighbors(V,Vertices,Children0),
(
ord_del_element(Children0,V,Children)
->
true
;
Children = Children0
).
undgraph_complement(Vs0,VsF) :-
dgraph_complement(Vs0,VsF).
undgraph_del_edge(V1,V2,Vs0,VsF) :-
dgraph_del_edge(V1,V2,Vs0,Vs1),
dgraph_del_edge(V2,V1,Vs1,VsF).
undgraph_del_edges(Edges) -->
{
dup_edges(Edges,DupEdges)
},
dgraph_del_edges(DupEdges).
undgraph_del_vertex(V, Vs0, Vsf) :-
rb_delete(Vs0, V, BackEdges, Vsi),
(
ord_del_element(BackEdges,V,RealBackEdges)
->
true
;
BackEdges = RealBackEdges
),
rb_partial_map(Vsi, RealBackEdges, del_edge(V), Vsf).
undgraph_del_vertices(Vs) -->
{ sort(Vs,SortedVs) },
delete_all(SortedVs, [], BackEdges),
{ ord_subtract(BackEdges, SortedVs, TrueBackEdges) },
delete_remaining_edges(SortedVs, TrueBackEdges).
% it would be nice to be able to delete a set of elements from an RB tree
% but I don't how to do it yet.
delete_all([], BackEdges, BackEdges) --> [].
delete_all([V|Vs], BackEdges0, BackEdgesF, Vs0,Vsf) :-
rb_delete(Vs0, V, NewEdges, Vsi),
ord_union(NewEdges,BackEdges0,BackEdgesI),
delete_all(Vs, BackEdgesI ,BackEdgesF, Vsi,Vsf).
delete_remaining_edges(SortedVs, TrueBackEdges, Vs0,Vsf) :-
rb_partial_map(Vs0, TrueBackEdges, del_edges(SortedVs), Vsf).
del_edges(ToRemove,E0,E) :-
ord_subtract(E0,ToRemove,E).
del_edge(ToRemove,E0,E) :-
ord_del_element(E0,ToRemove,E).
dgraph_to_undgraph(G, U) :-
dgraph_symmetric_closure(G, U).
undgraph_edge(N1, N2, G) :-
dgraph_edge(N1, N2, G).
undgraph_min_tree(G, T) :-
undgraph_to_wundgraph(G, WG),
wundgraph_min_tree(WG, WT, _),
wundgraph_to_undgraph(WT, T).
undgraph_max_tree(G, T) :-
undgraph_to_wundgraph(G, WG),
wundgraph_max_tree(WG, WT, _),
wundgraph_to_undgraph(WT, T).