This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/CLPBN/clpbn/bp/BpNode.cpp
2011-05-17 12:00:33 +01:00

251 lines
4.4 KiB
C++

#include <iostream>
#include <cassert>
#include <cmath>
#include "BpNode.h"
bool BpNode::calculateMessageResidual_ = true;
BpNode::BpNode (BayesNode* node)
{
ds_ = node->getDomainSize();
const NodeSet& childs = node->getChilds();
piVals_.resize (ds_, 1);
ldVals_.resize (ds_, 1);
if (calculateMessageResidual_) {
piResiduals_.resize (childs.size(), 0.0);
ldResiduals_.resize (childs.size(), 0.0);
}
childs_ = &childs;
for (unsigned i = 0; i < childs.size(); i++) {
//indexMap_.insert (make_pair (childs[i]->getVarId(), i));
currPiMsgs_.push_back (ParamSet (ds_, 1));
currLdMsgs_.push_back (ParamSet (ds_, 1));
nextPiMsgs_.push_back (ParamSet (ds_, 1));
nextLdMsgs_.push_back (ParamSet (ds_, 1));
}
}
ParamSet
BpNode::getBeliefs (void) const
{
double sum = 0.0;
ParamSet beliefs (ds_);
for (int xi = 0; xi < ds_; xi++) {
double prod = piVals_[xi] * ldVals_[xi];
beliefs[xi] = prod;
sum += prod;
}
assert (sum);
//normalize the beliefs
for (int xi = 0; xi < ds_; xi++) {
beliefs[xi] /= sum;
}
return beliefs;
}
double
BpNode::getPiValue (int idx) const
{
assert (idx >=0 && idx < ds_);
return piVals_[idx];
}
void
BpNode::setPiValue (int idx, double value)
{
assert (idx >=0 && idx < ds_);
piVals_[idx] = value;
}
double
BpNode::getLambdaValue (int idx) const
{
assert (idx >=0 && idx < ds_);
return ldVals_[idx];
}
void
BpNode::setLambdaValue (int idx, double value)
{
assert (idx >=0 && idx < ds_);
ldVals_[idx] = value;
}
ParamSet&
BpNode::getPiValues (void)
{
return piVals_;
}
ParamSet&
BpNode::getLambdaValues (void)
{
return ldVals_;
}
double
BpNode::getPiMessageValue (const BayesNode* destination, int idx) const
{
assert (idx >=0 && idx < ds_);
return currPiMsgs_[getIndex(destination)][idx];
}
double
BpNode::getLambdaMessageValue (const BayesNode* source, int idx) const
{
assert (idx >=0 && idx < ds_);
return currLdMsgs_[getIndex(source)][idx];
}
const ParamSet&
BpNode::getPiMessage (const BayesNode* destination) const
{
return currPiMsgs_[getIndex(destination)];
}
const ParamSet&
BpNode::getLambdaMessage (const BayesNode* source) const
{
return currLdMsgs_[getIndex(source)];
}
ParamSet&
BpNode::piNextMessageReference (const BayesNode* destination)
{
return nextPiMsgs_[getIndex(destination)];
}
ParamSet&
BpNode::lambdaNextMessageReference (const BayesNode* source)
{
return nextLdMsgs_[getIndex(source)];
}
void
BpNode::updatePiMessage (const BayesNode* destination)
{
int idx = getIndex (destination);
currPiMsgs_[idx] = nextPiMsgs_[idx];
Util::normalize (currPiMsgs_[idx]);
}
void
BpNode::updateLambdaMessage (const BayesNode* source)
{
int idx = getIndex (source);
currLdMsgs_[idx] = nextLdMsgs_[idx];
Util::normalize (currLdMsgs_[idx]);
}
double
BpNode::getBeliefChange (void)
{
double change = 0.0;
if (oldBeliefs_.size() == 0) {
oldBeliefs_ = getBeliefs();
change = 9999999999.0;
} else {
ParamSet currentBeliefs = getBeliefs();
for (int xi = 0; xi < ds_; xi++) {
change += abs (currentBeliefs[xi] - oldBeliefs_[xi]);
}
oldBeliefs_ = currentBeliefs;
}
return change;
}
void
BpNode::updatePiResidual (const BayesNode* destination)
{
int idx = getIndex (destination);
Util::normalize (nextPiMsgs_[idx]);
//piResiduals_[idx] = Util::getL1dist (
// currPiMsgs_[idx], nextPiMsgs_[idx]);
piResiduals_[idx] = Util::getMaxNorm (
currPiMsgs_[idx], nextPiMsgs_[idx]);
}
void
BpNode::updateLambdaResidual (const BayesNode* source)
{
int idx = getIndex (source);
Util::normalize (nextLdMsgs_[idx]);
//ldResiduals_[idx] = Util::getL1dist (
// currLdMsgs_[idx], nextLdMsgs_[idx]);
ldResiduals_[idx] = Util::getMaxNorm (
currLdMsgs_[idx], nextLdMsgs_[idx]);
}
void
BpNode::clearPiResidual (const BayesNode* destination)
{
piResiduals_[getIndex(destination)] = 0;
}
void
BpNode::clearLambdaResidual (const BayesNode* source)
{
ldResiduals_[getIndex(source)] = 0;
}
bool
BpNode::hasReceivedChildInfluence (void) const
{
// if all lambda values are equal, then neither
// this node neither its descendents have evidence,
// we can use this to don't send lambda messages his parents
bool childInfluenced = false;
for (int xi = 1; xi < ds_; xi++) {
if (ldVals_[xi] != ldVals_[0]) {
childInfluenced = true;
break;
}
}
return childInfluenced;
}