This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/gecode/gecode-common.icc

260 lines
6.6 KiB
C++

// -*- c++ -*-
//=============================================================================
// Copyright (C) 2011 by Denys Duchier
//
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by the
// Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//=============================================================================
#ifndef GECODE_COMMON
#define GECODE_COMMON
#include "gecode/int.hh"
#include "gecode/set.hh"
#include "gecode/search.hh"
#include <vector>
namespace generic_gecode
{
using namespace std;
using namespace Gecode;
// description of the optimization criterion
struct Optimizing
{
enum What { OPT_NONE, OPT_INT, OPT_RATIO };
enum How { OPT_MIN, OPT_MAX };
int num;
int den;
What what;
How how;
Optimizing(): num(-1), den(-1), what(OPT_NONE), how(OPT_MAX) {}
Optimizing(Optimizing& o)
: num(o.num), den(o.den), what(o.what), how(o.how) {}
void maximize(int i)
{ what = OPT_INT; how = OPT_MAX; num = i; };
void maximize(int i,int j)
{ what = OPT_RATIO; how = OPT_MAX; num = i; den = j; };
void minimize(int i)
{ what = OPT_INT; how = OPT_MIN; num = i; };
void minimize(int i,int j)
{ what = OPT_RATIO; how = OPT_MIN; num = i; den = j; };
};
struct GenericSpace;
struct GenericEngine
{
virtual GenericSpace* next(void)=0;
virtual ~GenericEngine() {};
};
struct GenericDFS: GenericEngine
{
DFS<GenericSpace> engine;
GenericDFS(GenericSpace* s) : engine(s) {}
virtual GenericSpace* next(void) { return engine.next(); }
};
struct GenericBAB: GenericEngine
{
BAB<GenericSpace> engine;
GenericBAB(GenericSpace* s) : engine(s) {}
virtual GenericSpace* next(void) { return engine.next(); }
};
struct GenericSpace: Space
{
Optimizing optim;
IntVarArray ivars;
BoolVarArray bvars;
SetVarArray svars;
vector<IntVar>* _ivars;
vector<BoolVar>* _bvars;
vector<SetVar>* _svars;
Space* space() { return this; }
GenericSpace(bool share, GenericSpace& s)
: Space(share, s), optim(s.optim),
_ivars(NULL), _bvars(NULL), _svars(NULL)
{
ivars.update(*this, share, s.ivars);
bvars.update(*this, share, s.bvars);
svars.update(*this, share, s.svars);
}
Space* copy(bool share)
{ freeze(); return new GenericSpace(share, *this); }
GenericSpace() : _ivars(NULL), _bvars(NULL), _svars(NULL) {}
// freeze the space before handing it off to a search engine
void freeze()
{
if (_ivars)
{
int n = _ivars->size();
ivars = IntVarArray(*this, n);
vector<IntVar>& v(*_ivars);
for (; n--;) ivars[n] = v[n];
delete _ivars;
_ivars = NULL;
}
if (_bvars)
{
int n = _bvars->size();
bvars = BoolVarArray(*this, n);
vector<BoolVar>& v(*_bvars);
for (; n--;) bvars[n] = v[n];
delete _bvars;
_bvars = NULL;
}
if (_svars)
{
int n = _svars->size();
svars = SetVarArray(*this, n);
vector<SetVar>& v(*_svars);
for (; n--;) svars[n] = v[n];
delete _svars;
_svars = NULL;
}
}
IntVar get_ivar(int i) const { return (_ivars) ? (*_ivars)[i] : ivars[i]; }
BoolVar get_bvar(int i) const { return (_bvars) ? (*_bvars)[i] : bvars[i]; }
SetVar get_svar(int i) const { return (_svars) ? (*_svars)[i] : svars[i]; }
GenericEngine* new_engine()
{
freeze();
return (optim.what == Optimizing::OPT_NONE)
? static_cast<GenericEngine*>(new GenericDFS(this))
: static_cast<GenericEngine*>(new GenericBAB(this));
}
int _new_ivar(IntVar& v)
{
if (!_ivars) _ivars = new vector<IntVar>;
int i = _ivars->size();
_ivars->push_back(v);
return i;
}
int new_ivar(int lo, int hi)
{
IntVar v(*this, lo, hi);
return _new_ivar(v);
}
int new_ivar(IntSet& s)
{
IntVar v(*this, s);
return _new_ivar(v);
}
int _new_bvar(BoolVar& v)
{
if (!_bvars) _bvars = new vector<BoolVar>;
int i = _bvars->size();
_bvars->push_back(v);
return i;
}
int new_bvar()
{
BoolVar v(*this, 0, 1);
return _new_bvar(v);
}
int _new_svar(SetVar& v)
{
if (!_svars) _svars = new vector<SetVar>;
int i = _svars->size();
_svars->push_back(v);
return i;
}
int new_svar(int glbMin, int glbMax, int lubMin, int lubMax,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glbMin, glbMax, lubMin, lubMax, cardMin, cardMax);
return _new_svar(v);
}
int new_svar(IntSet glb, int lubMin, int lubMax,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glb, lubMin, lubMax, cardMin, cardMax);
return _new_svar(v);
}
int new_svar(int glbMin, int glbMax, IntSet lub,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glbMin, glbMax, lub, cardMin, cardMax);
return _new_svar(v);
}
int new_svar(IntSet glb, IntSet lub,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glb, lub, cardMin, cardMax);
return _new_svar(v);
}
void minimize(int i) { optim.minimize(i); }
void minimize(int i, int j) { optim.minimize(i,j); }
void maximize(int i) { optim.maximize(i); }
void maximize(int i, int j) { optim.maximize(i,j); }
virtual void constrain(const Space& s)
{
const GenericSpace& sol = static_cast<const GenericSpace&>(s);
switch (optim.what)
{
case Optimizing::OPT_NONE:
break;
case Optimizing::OPT_INT:
rel(*this, ivars[optim.num],
((optim.how==Optimizing::OPT_MIN) ? IRT_LE : IRT_GR),
sol.ivars[optim.num].val());
break;
case Optimizing::OPT_RATIO:
{
IntArgs c(2, sol.ivars[optim.den].val(),
- sol.ivars[optim.num].val());
IntVarArgs v(2);
v[0] = ivars[optim.num];
v[1] = ivars[optim.den];
linear(*this, c, v,
((optim.how==Optimizing::OPT_MIN) ? IRT_LE : IRT_GR), 0);
break;
}
}
}
};
}
#ifdef DISJUNCTOR
#include "disjunctor.icc"
#endif
#endif