259 lines
6.0 KiB
Prolog
259 lines
6.0 KiB
Prolog
|
|
:- module(ddnnf,
|
|
[cnf_to_ddnnf/5,
|
|
ddnnf/5,
|
|
ddnnf_is/2]).
|
|
|
|
:- use_module(library(lists)).
|
|
:- use_module(library(readutil)).
|
|
:- use_module(library(lineutils)).
|
|
:- use_module(library(terms)).
|
|
:- use_module(library(cnf)).
|
|
:- use_module(library(simpbool)).
|
|
|
|
%
|
|
% convert a CNF as list with Variables Vars and Existential variables
|
|
% in DDNNF, Exs \in LVars into DDNNF with extra existential vars
|
|
%
|
|
cnf_to_ddnnf(CNF0, Vars, Exs, LVars, DDNNF) :-
|
|
list2cnf(CNF0, CNF, []),
|
|
new_variables_in_term(Vars, CNF, LVars),
|
|
append(Exs, LVars, MVars),
|
|
append(Vars, LVars, AllVars),
|
|
% (numbervars(CNF,1,_), writeln(CNF), fail ; true),
|
|
open(dimacs, write, S),
|
|
cnf_to_file(CNF, AllVars, S),
|
|
close(S),
|
|
% execute c2d at this point, but we're lazy%
|
|
% unix(system('c2d -dt_method 3 -in dimacs')),
|
|
unix(system('c2d -in dimacs')),
|
|
open('dimacs.nnf',read,R),
|
|
SVars =.. [v|AllVars],
|
|
% ones(LVars),
|
|
input_ddnnf(R, SVars, MVars, DDNNF),
|
|
% writeln(DDNNF),
|
|
close(R).
|
|
|
|
list2cnf([]) --> [].
|
|
list2cnf([(O=A)|Impls]) --> !,
|
|
{cvt(O,FO,NO),
|
|
and2cnf(A,Conj,[]) },
|
|
[[FO|Conj]],
|
|
disj(A, NO),
|
|
list2cnf(Impls).
|
|
list2cnf([CNF|Impls]) -->
|
|
{ to_format(CNF, Format, []) },
|
|
[Format],
|
|
list2cnf(Impls).
|
|
|
|
cvt(O,O,-O) :- var(O), !.
|
|
cvt(not(O),-O,O).
|
|
|
|
neg(O,-O) :- var(O), !.
|
|
neg(-O,O).
|
|
|
|
to_format(A) -->
|
|
{ var(A) },
|
|
!,
|
|
[A].
|
|
to_format(A+B) -->
|
|
!,
|
|
to_format(A),
|
|
to_format(B).
|
|
to_format(not(A)) -->
|
|
!,
|
|
[-A].
|
|
to_format(A) -->
|
|
[A].
|
|
|
|
|
|
and2cnf(A) -->
|
|
{ var(A) },
|
|
!,
|
|
[-A].
|
|
and2cnf(A*B) -->
|
|
!,
|
|
and2cnf(A),
|
|
and2cnf(B).
|
|
and2cnf(not(A)) -->
|
|
!,
|
|
[A].
|
|
and2cnf(A) -->
|
|
!,
|
|
[-A].
|
|
|
|
disj(A, NO) -->
|
|
{ var(A) }, !,
|
|
[[NO,A]].
|
|
disj(A*B, NO) --> !,
|
|
disj(A, NO),
|
|
disj(B, NO).
|
|
disj(A, NO) -->
|
|
[[NO,A]].
|
|
|
|
%
|
|
% convert a boolean expression with Variables Vars and Existential variables
|
|
% in DDNNF, Exs \in LVars into DDNNF with extra existential vars
|
|
%
|
|
% ex: (A*B+not(B))*(C=B) into something complicated
|
|
%
|
|
ddnnf(List, Vars, Exs, LVars, DDNNF) :-
|
|
exps2conj(List, Conj),
|
|
cnf(Conj, CNF),
|
|
% (numbervars(CNF,1,_), writeln(Vars:CNF), fail ; true),
|
|
open(dimacs, write, S),
|
|
new_variables_in_term(Vars, CNF, LVars),
|
|
append(Exs, LVars, MVars),
|
|
append(Vars, LVars, AllVars),
|
|
cnf_to_file(CNF, AllVars, S),
|
|
close(S),
|
|
% execute c2d at this point, but we're lazy
|
|
unix(system('c2d -in dimacs')),
|
|
open('dimacs.nnf',read,R),
|
|
SVars =.. [v|AllVars],
|
|
% ones(LVars),
|
|
input_ddnnf(R, SVars, MVars, DDNNF),
|
|
close(R).
|
|
|
|
exps2conj((C1,C2), CC1*CC2) :- !,
|
|
exps2conj(C1, CC1),
|
|
exps2conj(C2, CC2).
|
|
exps2conj((Conj), CConj) :-
|
|
cvt_el(Conj, CConj).
|
|
|
|
cvt_el(V, V) :- var(V), !.
|
|
cvt_el(not(X), -X1) :- !,
|
|
cvt_el(X, X1).
|
|
cvt_el(X+Y, X1+Y1) :- !,
|
|
cvt_el(X, X1),
|
|
cvt_el(Y, Y1).
|
|
cvt_el(X*Y, X1*Y1) :- !,
|
|
cvt_el(X, X1),
|
|
cvt_el(Y, Y1).
|
|
cvt_el(X=Y, X1==Y1) :- !,
|
|
cvt_el(X, X1),
|
|
cvt_el(Y, Y1).
|
|
cvt_el(X, X).
|
|
|
|
cnf_to_file(List, Vars, S) :-
|
|
number_ivars(Vars, 1, M),
|
|
length(List, N),
|
|
M1 is M-1,
|
|
format(S,'p cnf ~d ~d~n',[M1,N]),
|
|
output_list(List, S),
|
|
fail.
|
|
cnf_to_file(_List, _Vars, _S).
|
|
|
|
number_ivars([], M, M).
|
|
number_ivars([I0|IVars], I0, M) :-
|
|
I is I0+1,
|
|
number_ivars(IVars, I, M).
|
|
|
|
output_list([], _S).
|
|
output_list([CNF|List], S) :-
|
|
output_cnf(CNF, S),
|
|
output_list(List, S).
|
|
|
|
output_cnf([], S) :-
|
|
format(S, '0~n', []).
|
|
output_cnf([-V|CNF], S) :- !,
|
|
format(S, '-~d ',[V]),
|
|
output_cnf(CNF, S).
|
|
output_cnf([V|CNF], S) :-
|
|
format(S, '~d ',[V]),
|
|
output_cnf(CNF, S).
|
|
|
|
input_ddnnf(Stream, SVars, Exs, ddnnf(Out, SVars, Result)) :-
|
|
read_line_to_codes(Stream, Header),
|
|
split(Header, ["nnf",VS,_ES,_NS]),
|
|
number_codes(NVs, VS),
|
|
functor(TempResults, nnf, NVs),
|
|
process_nnf_lines(Stream, SVars, Exs, 1, TempResults, Out, Last),
|
|
Last1 is Last-1,
|
|
arg(Last1, TempResults, Result).
|
|
|
|
process_nnf_lines(Stream, SVars, Exs, LineNumber, TempResults, O, LL) :-
|
|
read_line_to_codes(Stream, Codes),
|
|
( Codes = end_of_file -> O = [], LL = LineNumber ;
|
|
% (LineNumber > 1 -> N is LineNumber-1, arg(N,TempResults,P), format("~w ",[P]);true),
|
|
% format("~s~n",[Codes]),
|
|
arg(LineNumber, TempResults, P),
|
|
process_nnf_line(SVars, Exs, TempResults, Exp0, Codes, []),
|
|
simplify_line(P=Exp0, Lines, O),
|
|
NewLine is LineNumber+1,
|
|
process_nnf_lines(Stream, SVars, Exs, NewLine, TempResults, Lines, LL)
|
|
).
|
|
|
|
process_nnf_line(SVars, Exs, _TempResults, Exp) --> "L ",
|
|
nnf_leaf(SVars, Exs, Exp).
|
|
process_nnf_line(_SVars, _, TempResults, Exp) --> "A ",
|
|
nnf_and_node(TempResults, Exp).
|
|
process_nnf_line(_SVars, _, TempResults, Exp) --> "O ",
|
|
nnf_or_node(TempResults, Exp).
|
|
|
|
nnf_leaf(SVars, Exs, Prob, Codes, []) :-
|
|
number_codes(Number, Codes),
|
|
Abs is abs(Number),
|
|
arg(Abs, SVars, Node),
|
|
(Number < 0 ->
|
|
(existential(Node,Exs) -> Prob = 1 ; Prob = 1-Node )
|
|
;
|
|
Prob = Node
|
|
).
|
|
|
|
existential(F,[F1|Exs]) :- F == F1, !.
|
|
existential(F,[_|Exs]) :-
|
|
existential(F, Exs).
|
|
|
|
nnf_and_node(TempResults, Product, Codes, []) :-
|
|
split(Codes, [_|NumberAsStrings]),
|
|
multiply_nodes(NumberAsStrings, TempResults, Product).
|
|
|
|
multiply_nodes([], _, 1).
|
|
multiply_nodes(NumberAsString.NumberAsStrings, TempResults, Product) :-
|
|
number_codes(Pos, NumberAsString),
|
|
Pos1 is Pos+1,
|
|
arg(Pos1, TempResults, P),
|
|
Product = Product0*P,
|
|
multiply_nodes(NumberAsStrings, TempResults, Product0).
|
|
|
|
nnf_or_node(TempResults, Sum, Codes, []) :-
|
|
split(Codes, [_J,_C|NumberAsStrings]),
|
|
add_nodes(NumberAsStrings, TempResults, Sum).
|
|
|
|
add_nodes([], _, 0).
|
|
add_nodes(NumberAsString.NumberAsStrings, TempResults, Product) :-
|
|
number_codes(Pos, NumberAsString),
|
|
Pos1 is Pos+1,
|
|
arg(Pos1, TempResults, P),
|
|
Product = Product0+P,
|
|
add_nodes(NumberAsStrings, TempResults, Product0).
|
|
|
|
ones([]).
|
|
ones([1|LVars]) :-
|
|
ones(LVars).
|
|
|
|
simplify_line((A=Exp0), List, Final) :-
|
|
simplify_exp(Exp0, Exp),
|
|
propagate_constants(Exp, A, List, Final).
|
|
|
|
propagate_constants(Exp, A, Lines, Lines) :- var(Exp), !, A=Exp.
|
|
propagate_constants(0, 0, Lines, Lines) :- !.
|
|
propagate_constants(1, 1, Lines, Lines) :- !.
|
|
propagate_constants(Exp, A, Lines, [(A=Exp)|Lines]).
|
|
|
|
%
|
|
% compute the value of a SP
|
|
%
|
|
%
|
|
ddnnf_is(ddnnf(F, _Vs, Out), Out) :-
|
|
%(numbervars(F,1,_),writeln(F),fail;true),
|
|
ddnnf_is_acc(F).
|
|
|
|
%ddnnf_is_acc([H=Exp|_]) :- writeln((H=Exp)),fail.
|
|
ddnnf_is_acc([]).
|
|
ddnnf_is_acc([H=Exp|Attrs]) :-
|
|
H is Exp,
|
|
%writeln(Exp:H),
|
|
ddnnf_is_acc(Attrs).
|