122 lines
5.0 KiB
Prolog
122 lines
5.0 KiB
Prolog
%%% -*- Mode: Prolog; -*-
|
|
|
|
% This file is part of YAP-LBFGS.
|
|
% Copyright (C) 2009 Bernd Gutmann
|
|
%
|
|
% YAP-LBFGS is free software: you can redistribute it and/or modify
|
|
% it under the terms of the GNU General Public License as published by
|
|
% the Free Software Foundation, either version 3 of the License, or
|
|
% (at your option) any later version.
|
|
%
|
|
% YAP-LBFGS is distributed in the hope that it will be useful,
|
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
% GNU General Public License for more details.
|
|
%
|
|
% You should have received a copy of the GNU General Public License
|
|
% along with YAP-LBFGS. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
:- module(lbfgs,[optimizer_initialize/3,
|
|
optimizer_initialize/4,
|
|
optimizer_run/2,
|
|
optimizer_get_x/2,
|
|
optimizer_set_x/2,
|
|
|
|
optimizer_get_g/2,
|
|
optimizer_set_g/2,
|
|
|
|
optimizer_finalize/0,
|
|
|
|
optimizer_set_parameter/2,
|
|
optimizer_get_parameter/2,
|
|
optimizer_parameters/0]).
|
|
|
|
% switch on all the checks to reduce bug searching time
|
|
% :- yap_flag(unknown,error).
|
|
% :- style_check(single_var).
|
|
|
|
:- dynamic initialized/0.
|
|
|
|
:- load_foreign_files(['yap_lbfgs'],[],'init_lbfgs_predicates').
|
|
|
|
|
|
optimizer_initialize(N,Call_Evaluate,Call_Progress) :-
|
|
optimizer_initialize(N,user,Call_Evaluate,Call_Progress).
|
|
optimizer_initialize(N,Module,Call_Evaluate,Call_Progress) :-
|
|
\+ initialized,
|
|
|
|
integer(N),
|
|
N>0,
|
|
|
|
% check whether there are such call back functions
|
|
current_module(Module),
|
|
current_predicate(Module:Call_Evaluate/3),
|
|
current_predicate(Module:Call_Progress/8),
|
|
|
|
optimizer_reserve_memory(N),
|
|
|
|
% install call back predicates in the user module which call
|
|
% the predicates given by the arguments
|
|
EvalGoal =.. [Call_Evaluate,E1,E2,E3],
|
|
ProgressGoal =.. [Call_Progress,P1,P2,P3,P4,P5,P6,P7,P8],
|
|
retractall( user:'$lbfgs_callback_evaluate'(_E1,_E2,_E3) ),
|
|
retractall( user:'$lbfgs_callback_progress'(_P1,_P2,_P3,_P4,_P5,_P6,_P7,_P8) ),
|
|
assert( (user:'$lbfgs_callback_evaluate'(E1,E2,E3) :- Module:EvalGoal, !) ),
|
|
assert( (user:'$lbfgs_callback_progress'(P1,P2,P3,P4,P5,P6,P7,P8) :- Module:ProgressGoal, !) ),
|
|
assert(initialized).
|
|
|
|
optimizer_finalize :-
|
|
initialized,
|
|
optimizer_free_memory,
|
|
retractall(user:'$lbfgs_callback_evaluate'(_,_,_)),
|
|
retractall(user:'$lbfgs_callback_progress'(_,_,_,_,_,_,_,_)),
|
|
retractall(initialized).
|
|
|
|
optimizer_parameters :-
|
|
optimizer_get_parameter(m,M),
|
|
optimizer_get_parameter(epsilon,Epsilon),
|
|
optimizer_get_parameter(past,Past),
|
|
optimizer_get_parameter(delta,Delta),
|
|
optimizer_get_parameter(max_iterations,Max_Iterations),
|
|
optimizer_get_parameter(linesearch,Linesearch),
|
|
optimizer_get_parameter(max_linesearch,Max_Linesearch),
|
|
optimizer_get_parameter(min_step,Min_Step),
|
|
optimizer_get_parameter(max_step,Max_Step),
|
|
optimizer_get_parameter(ftol,Ftol),
|
|
optimizer_get_parameter(gtol,Gtol),
|
|
optimizer_get_parameter(xtol,Xtol),
|
|
optimizer_get_parameter(orthantwise_c,Orthantwise_C),
|
|
optimizer_get_parameter(orthantwise_start,Orthantwise_Start),
|
|
optimizer_get_parameter(orthantwise_end,Orthantwise_End),
|
|
|
|
format('/******************************************************************************************~n',[]),
|
|
print_param('Name','Value','Description','Type'),
|
|
format('******************************************************************************************~n',[]),
|
|
print_param(m,M,'The number of corrections to approximate the inverse hessian matrix.',int),
|
|
print_param(epsilon,Epsilon,'Epsilon for convergence test.',float),
|
|
print_param(past,Past,'Distance for delta-based convergence test.',int),
|
|
print_param(delta,Delta,'Delta for convergence test.',float),
|
|
print_param(max_iterations,Max_Iterations,'The maximum number of iterations',int),
|
|
print_param(linesearch,Linesearch,'The line search algorithm.',int),
|
|
print_param(max_linesearch,Max_Linesearch,'The maximum number of trials for the line search.',int),
|
|
print_param(min_step,Min_Step,'The minimum step of the line search routine.',float),
|
|
print_param(max_step,Max_Step,'The maximum step of the line search.',float),
|
|
print_param(ftol,Ftol,'A parameter to control the accuracy of the line search routine.',float),
|
|
print_param(gtol,Gtol,'A parameter to control the accuracy of the line search routine.',float),
|
|
print_param(xtol,Xtol,'The machine precision for floating-point values.',float),
|
|
print_param(orthantwise_c,Orthantwise_C,'Coefficient for the L1 norm of variables',float),
|
|
print_param(orthantwise_start,Orthantwise_Start,'Start index for computing the L1 norm of the variables.',int),
|
|
print_param(orthantwise_end,Orthantwise_End,'End index for computing the L1 norm of the variables.',int),
|
|
format('******************************************************************************************/~n',[]),
|
|
format(' use optimizer_set_paramater(Name,Value) to change parameters~n',[]),
|
|
format(' use optimizer_get_parameter(Name,Value) to see current parameters~n',[]),
|
|
format(' use optimizer_parameters to print this overview~2n',[]).
|
|
|
|
|
|
print_param(Name,Value,Text,Dom) :-
|
|
format(user,'~w~10+~w~19+~w~15+~w~30+~n',[Dom,Name,Value,Text]).
|
|
|
|
|