This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/CLPBN/clpbn/bp/BnBpSolver.cpp
Vitor Santos Costa 21d317b223 new version of bp
2012-03-22 11:33:24 +00:00

804 lines
22 KiB
C++

#include <cstdlib>
#include <limits>
#include <time.h>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <iomanip>
#include "BnBpSolver.h"
#include "Indexer.h"
BnBpSolver::BnBpSolver (const BayesNet& bn) : Solver (&bn)
{
bayesNet_ = &bn;
}
BnBpSolver::~BnBpSolver (void)
{
for (unsigned i = 0; i < nodesI_.size(); i++) {
delete nodesI_[i];
}
for (unsigned i = 0; i < links_.size(); i++) {
delete links_[i];
}
}
void
BnBpSolver::runSolver (void)
{
clock_t start;
if (COLLECT_STATISTICS) {
start = clock();
}
initializeSolver();
runLoopySolver();
if (DL >= 2) {
cout << endl;
if (nIters_ < BpOptions::maxIter) {
cout << "Belief propagation converged in " ;
cout << nIters_ << " iterations" << endl;
} else {
cout << "The maximum number of iterations was hit, terminating..." ;
cout << endl;
}
}
unsigned size = bayesNet_->nrNodes();
if (COLLECT_STATISTICS) {
unsigned nIters = 0;
bool loopy = bayesNet_->isPolyTree() == false;
if (loopy) nIters = nIters_;
double time = (double (clock() - start)) / CLOCKS_PER_SEC;
Statistics::updateStatistics (size, loopy, nIters, time);
}
if (EXPORT_TO_GRAPHVIZ && size > EXPORT_MINIMAL_SIZE) {
stringstream ss;
ss << Statistics::getSolvedNetworksCounting() << "." << size << ".dot" ;
bayesNet_->exportToGraphViz (ss.str().c_str());
}
}
Params
BnBpSolver::getPosterioriOf (VarId vid)
{
BayesNode* node = bayesNet_->getBayesNode (vid);
assert (node);
return nodesI_[node->getIndex()]->getBeliefs();
}
Params
BnBpSolver::getJointDistributionOf (const VarIds& jointVarIds)
{
if (DL >= 2) {
cout << "calculating joint distribution on: " ;
for (unsigned i = 0; i < jointVarIds.size(); i++) {
VarNode* var = bayesNet_->getBayesNode (jointVarIds[i]);
cout << var->label() << " " ;
}
cout << endl;
}
return getJointByConditioning (jointVarIds);
}
void
BnBpSolver::initializeSolver (void)
{
const BnNodeSet& nodes = bayesNet_->getBayesNodes();
for (unsigned i = 0; i < nodesI_.size(); i++) {
delete nodesI_[i];
}
nodesI_.clear();
nodesI_.reserve (nodes.size());
links_.clear();
sortedOrder_.clear();
linkMap_.clear();
for (unsigned i = 0; i < nodes.size(); i++) {
nodesI_.push_back (new BpNodeInfo (nodes[i]));
}
BnNodeSet roots = bayesNet_->getRootNodes();
for (unsigned i = 0; i < roots.size(); i++) {
const Params& params = roots[i]->getParameters();
Params& piVals = ninf(roots[i])->getPiValues();
for (unsigned ri = 0; ri < roots[i]->nrStates(); ri++) {
piVals[ri] = params[ri];
}
}
for (unsigned i = 0; i < nodes.size(); i++) {
const BnNodeSet& parents = nodes[i]->getParents();
for (unsigned j = 0; j < parents.size(); j++) {
BpLink* newLink = new BpLink (
parents[j], nodes[i], LinkOrientation::DOWN);
links_.push_back (newLink);
ninf(nodes[i])->addIncomingParentLink (newLink);
ninf(parents[j])->addOutcomingChildLink (newLink);
}
const BnNodeSet& childs = nodes[i]->getChilds();
for (unsigned j = 0; j < childs.size(); j++) {
BpLink* newLink = new BpLink (
childs[j], nodes[i], LinkOrientation::UP);
links_.push_back (newLink);
ninf(nodes[i])->addIncomingChildLink (newLink);
ninf(childs[j])->addOutcomingParentLink (newLink);
}
}
for (unsigned i = 0; i < nodes.size(); i++) {
if (nodes[i]->hasEvidence()) {
Params& piVals = ninf(nodes[i])->getPiValues();
Params& ldVals = ninf(nodes[i])->getLambdaValues();
for (unsigned xi = 0; xi < nodes[i]->nrStates(); xi++) {
piVals[xi] = Util::noEvidence();
ldVals[xi] = Util::noEvidence();
}
piVals[nodes[i]->getEvidence()] = Util::withEvidence();
ldVals[nodes[i]->getEvidence()] = Util::withEvidence();
}
}
}
void
BnBpSolver::runLoopySolver()
{
nIters_ = 0;
while (!converged() && nIters_ < BpOptions::maxIter) {
nIters_++;
if (DL >= 2) {
cout << "****************************************" ;
cout << "****************************************" ;
cout << endl;
cout << " Iteration " << nIters_ << endl;
cout << "****************************************" ;
cout << "****************************************" ;
cout << endl;
}
switch (BpOptions::schedule) {
case BpOptions::Schedule::SEQ_RANDOM:
random_shuffle (links_.begin(), links_.end());
// no break
case BpOptions::Schedule::SEQ_FIXED:
for (unsigned i = 0; i < links_.size(); i++) {
calculateAndUpdateMessage (links_[i]);
updateValues (links_[i]);
}
break;
case BpOptions::Schedule::PARALLEL:
for (unsigned i = 0; i < links_.size(); i++) {
calculateMessage (links_[i]);
}
for (unsigned i = 0; i < links_.size(); i++) {
updateMessage (links_[i]);
updateValues (links_[i]);
}
break;
case BpOptions::Schedule::MAX_RESIDUAL:
maxResidualSchedule();
break;
}
if (DL >= 2) {
cout << endl;
}
}
}
bool
BnBpSolver::converged (void) const
{
// this can happen if the graph is fully disconnected
if (links_.size() == 0) {
return true;
}
if (nIters_ == 0 || nIters_ == 1) {
return false;
}
bool converged = true;
if (BpOptions::schedule == BpOptions::Schedule::MAX_RESIDUAL) {
double maxResidual = (*(sortedOrder_.begin()))->getResidual();
if (maxResidual < BpOptions::accuracy) {
converged = true;
} else {
converged = false;
}
} else {
for (unsigned i = 0; i < links_.size(); i++) {
double residual = links_[i]->getResidual();
if (DL >= 2) {
cout << links_[i]->toString() + " residual change = " ;
cout << residual << endl;
}
if (residual > BpOptions::accuracy) {
converged = false;
break;
}
}
}
return converged;
}
void
BnBpSolver::maxResidualSchedule (void)
{
if (nIters_ == 1) {
for (unsigned i = 0; i < links_.size(); i++) {
calculateMessage (links_[i]);
SortedOrder::iterator it = sortedOrder_.insert (links_[i]);
linkMap_.insert (make_pair (links_[i], it));
}
return;
}
for (unsigned c = 0; c < sortedOrder_.size(); c++) {
if (DL >= 2) {
cout << "current residuals:" << endl;
for (SortedOrder::iterator it = sortedOrder_.begin();
it != sortedOrder_.end(); it ++) {
cout << " " << setw (30) << left << (*it)->toString();
cout << "residual = " << (*it)->getResidual() << endl;
}
}
SortedOrder::iterator it = sortedOrder_.begin();
BpLink* link = *it;
if (link->getResidual() < BpOptions::accuracy) {
sortedOrder_.erase (it);
it = sortedOrder_.begin();
return;
}
updateMessage (link);
updateValues (link);
link->clearResidual();
sortedOrder_.erase (it);
linkMap_.find (link)->second = sortedOrder_.insert (link);
const BpLinkSet& outParentLinks =
ninf(link->getDestination())->getOutcomingParentLinks();
for (unsigned i = 0; i < outParentLinks.size(); i++) {
if (outParentLinks[i]->getDestination() != link->getSource()
&& outParentLinks[i]->getDestination()->hasEvidence() == false) {
calculateMessage (outParentLinks[i]);
BpLinkMap::iterator iter = linkMap_.find (outParentLinks[i]);
sortedOrder_.erase (iter->second);
iter->second = sortedOrder_.insert (outParentLinks[i]);
}
}
const BpLinkSet& outChildLinks =
ninf(link->getDestination())->getOutcomingChildLinks();
for (unsigned i = 0; i < outChildLinks.size(); i++) {
if (outChildLinks[i]->getDestination() != link->getSource()) {
calculateMessage (outChildLinks[i]);
BpLinkMap::iterator iter = linkMap_.find (outChildLinks[i]);
sortedOrder_.erase (iter->second);
iter->second = sortedOrder_.insert (outChildLinks[i]);
}
}
if (DL >= 2) {
cout << "----------------------------------------" ;
cout << "----------------------------------------" << endl;
}
}
}
void
BnBpSolver::updatePiValues (BayesNode* x)
{
// π(Xi)
if (DL >= 3) {
cout << "updating " << PI_SYMBOL << " values for " << x->label() << endl;
}
Params& piValues = ninf(x)->getPiValues();
const BpLinkSet& parentLinks = ninf(x)->getIncomingParentLinks();
const BnNodeSet& ps = x->getParents();
Ranges ranges;
for (unsigned i = 0; i < ps.size(); i++) {
ranges.push_back (ps[i]->nrStates());
}
StatesIndexer indexer (ranges, false);
stringstream* calcs1 = 0;
stringstream* calcs2 = 0;
Params messageProducts (indexer.size());
for (unsigned k = 0; k < indexer.size(); k++) {
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
double messageProduct = Util::multIdenty();
if (Globals::logDomain) {
for (unsigned i = 0; i < parentLinks.size(); i++) {
messageProduct += parentLinks[i]->getMessage()[indexer[i]];
}
} else {
for (unsigned i = 0; i < parentLinks.size(); i++) {
messageProduct *= parentLinks[i]->getMessage()[indexer[i]];
if (DL >= 5) {
if (i != 0) *calcs1 << " + " ;
if (i != 0) *calcs2 << " + " ;
*calcs1 << parentLinks[i]->toString (indexer[i]);
*calcs2 << parentLinks[i]->getMessage()[indexer[i]];
}
}
}
messageProducts[k] = messageProduct;
if (DL >= 5) {
cout << " mp" << k;
cout << " = " << (*calcs1).str();
if (parentLinks.size() == 1) {
cout << " = " << messageProduct << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << messageProduct << endl;
}
delete calcs1;
delete calcs2;
}
++ indexer;
}
for (unsigned xi = 0; xi < x->nrStates(); xi++) {
double sum = Util::addIdenty();
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
indexer.reset();
if (Globals::logDomain) {
for (unsigned k = 0; k < indexer.size(); k++) {
Util::logSum (sum,
x->getProbability(xi, indexer.linearIndex()) + messageProducts[k]);
++ indexer;
}
} else {
for (unsigned k = 0; k < indexer.size(); k++) {
sum += x->getProbability (xi, indexer.linearIndex()) * messageProducts[k];
if (DL >= 5) {
if (k != 0) *calcs1 << " + " ;
if (k != 0) *calcs2 << " + " ;
*calcs1 << x->cptEntryToString (xi, indexer.indices());
*calcs1 << ".mp" << k;
*calcs2 << Util::fl (x->getProbability (xi, indexer.linearIndex()));
*calcs2 << "*" << messageProducts[k];
}
++ indexer;
}
}
piValues[xi] = sum;
if (DL >= 5) {
cout << " " << PI_SYMBOL << "(" << x->label() << ")" ;
cout << "[" << x->states()[xi] << "]" ;
cout << " = " << (*calcs1).str();
cout << " = " << (*calcs2).str();
cout << " = " << piValues[xi] << endl;
delete calcs1;
delete calcs2;
}
}
}
void
BnBpSolver::updateLambdaValues (BayesNode* x)
{
// λ(Xi)
if (DL >= 3) {
cout << "updating " << LD_SYMBOL << " values for " << x->label() << endl;
}
Params& lambdaValues = ninf(x)->getLambdaValues();
const BpLinkSet& childLinks = ninf(x)->getIncomingChildLinks();
stringstream* calcs1 = 0;
stringstream* calcs2 = 0;
for (unsigned xi = 0; xi < x->nrStates(); xi++) {
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
double product = Util::multIdenty();
if (Globals::logDomain) {
for (unsigned i = 0; i < childLinks.size(); i++) {
product += childLinks[i]->getMessage()[xi];
}
} else {
for (unsigned i = 0; i < childLinks.size(); i++) {
product *= childLinks[i]->getMessage()[xi];
if (DL >= 5) {
if (i != 0) *calcs1 << "." ;
if (i != 0) *calcs2 << "*" ;
*calcs1 << childLinks[i]->toString (xi);
*calcs2 << childLinks[i]->getMessage()[xi];
}
}
}
lambdaValues[xi] = product;
if (DL >= 5) {
cout << " " << LD_SYMBOL << "(" << x->label() << ")" ;
cout << "[" << x->states()[xi] << "]" ;
cout << " = " << (*calcs1).str();
if (childLinks.size() == 1) {
cout << " = " << product << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << lambdaValues[xi] << endl;
}
delete calcs1;
delete calcs2;
}
}
}
void
BnBpSolver::calculatePiMessage (BpLink* link)
{
// πX(Zi)
BayesNode* z = link->getSource();
BayesNode* x = link->getDestination();
Params& zxPiNextMessage = link->getNextMessage();
const BpLinkSet& zChildLinks = ninf(z)->getIncomingChildLinks();
stringstream* calcs1 = 0;
stringstream* calcs2 = 0;
const Params& zPiValues = ninf(z)->getPiValues();
for (unsigned zi = 0; zi < z->nrStates(); zi++) {
double product = zPiValues[zi];
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
*calcs1 << PI_SYMBOL << "(" << z->label() << ")";
*calcs1 << "[" << z->states()[zi] << "]" ;
*calcs2 << product;
}
if (Globals::logDomain) {
for (unsigned i = 0; i < zChildLinks.size(); i++) {
if (zChildLinks[i]->getSource() != x) {
product += zChildLinks[i]->getMessage()[zi];
}
}
} else {
for (unsigned i = 0; i < zChildLinks.size(); i++) {
if (zChildLinks[i]->getSource() != x) {
product *= zChildLinks[i]->getMessage()[zi];
if (DL >= 5) {
*calcs1 << "." << zChildLinks[i]->toString (zi);
*calcs2 << " * " << zChildLinks[i]->getMessage()[zi];
}
}
}
}
zxPiNextMessage[zi] = product;
if (DL >= 5) {
cout << " " << link->toString();
cout << "[" << z->states()[zi] << "]" ;
cout << " = " << (*calcs1).str();
if (zChildLinks.size() == 1) {
cout << " = " << product << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << product << endl;
}
delete calcs1;
delete calcs2;
}
}
Util::normalize (zxPiNextMessage);
}
void
BnBpSolver::calculateLambdaMessage (BpLink* link)
{
// λY(Xi)
BayesNode* y = link->getSource();
BayesNode* x = link->getDestination();
if (x->hasEvidence()) {
return;
}
Params& yxLambdaNextMessage = link->getNextMessage();
const BpLinkSet& yParentLinks = ninf(y)->getIncomingParentLinks();
const Params& yLambdaValues = ninf(y)->getLambdaValues();
int parentIndex = y->getIndexOfParent (x);
stringstream* calcs1 = 0;
stringstream* calcs2 = 0;
const BnNodeSet& ps = y->getParents();
Ranges ranges;
for (unsigned i = 0; i < ps.size(); i++) {
ranges.push_back (ps[i]->nrStates());
}
StatesIndexer indexer (ranges, false);
unsigned N = indexer.size() / x->nrStates();
Params messageProducts (N);
for (unsigned k = 0; k < N; k++) {
while (indexer[parentIndex] != 0) {
++ indexer;
}
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
double messageProduct = Util::multIdenty();
if (Globals::logDomain) {
for (unsigned i = 0; i < yParentLinks.size(); i++) {
if (yParentLinks[i]->getSource() != x) {
messageProduct += yParentLinks[i]->getMessage()[indexer[i]];
}
}
} else {
for (unsigned i = 0; i < yParentLinks.size(); i++) {
if (yParentLinks[i]->getSource() != x) {
if (DL >= 5) {
if (messageProduct != Util::multIdenty()) *calcs1 << "*" ;
if (messageProduct != Util::multIdenty()) *calcs2 << "*" ;
*calcs1 << yParentLinks[i]->toString (indexer[i]);
*calcs2 << yParentLinks[i]->getMessage()[indexer[i]];
}
messageProduct *= yParentLinks[i]->getMessage()[indexer[i]];
}
}
}
messageProducts[k] = messageProduct;
++ indexer;
if (DL >= 5) {
cout << " mp" << k;
cout << " = " << (*calcs1).str();
if (yParentLinks.size() == 1) {
cout << 1 << endl;
} else if (yParentLinks.size() == 2) {
cout << " = " << messageProduct << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << messageProduct << endl;
}
delete calcs1;
delete calcs2;
}
}
for (unsigned xi = 0; xi < x->nrStates(); xi++) {
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
double outerSum = Util::addIdenty();
for (unsigned yi = 0; yi < y->nrStates(); yi++) {
if (DL >= 5) {
(yi != 0) ? *calcs1 << " + {" : *calcs1 << "{" ;
(yi != 0) ? *calcs2 << " + {" : *calcs2 << "{" ;
}
double innerSum = Util::addIdenty();
indexer.reset();
if (Globals::logDomain) {
for (unsigned k = 0; k < N; k++) {
while (indexer[parentIndex] != xi) {
++ indexer;
}
Util::logSum (innerSum, y->getProbability (
yi, indexer.linearIndex()) + messageProducts[k]);
++ indexer;
}
Util::logSum (outerSum, innerSum + yLambdaValues[yi]);
} else {
for (unsigned k = 0; k < N; k++) {
while (indexer[parentIndex] != xi) {
++ indexer;
}
if (DL >= 5) {
if (k != 0) *calcs1 << " + " ;
if (k != 0) *calcs2 << " + " ;
*calcs1 << y->cptEntryToString (yi, indexer.indices());
*calcs1 << ".mp" << k;
*calcs2 << y->getProbability (yi, indexer.linearIndex());
*calcs2 << "*" << messageProducts[k];
}
innerSum += y->getProbability (
yi, indexer.linearIndex()) * messageProducts[k];
++ indexer;
}
outerSum += innerSum * yLambdaValues[yi];
}
if (DL >= 5) {
*calcs1 << "}." << LD_SYMBOL << "(" << y->label() << ")" ;
*calcs1 << "[" << y->states()[yi] << "]";
*calcs2 << "}*" << yLambdaValues[yi];
}
}
yxLambdaNextMessage[xi] = outerSum;
if (DL >= 5) {
cout << " " << link->toString();
cout << "[" << x->states()[xi] << "]" ;
cout << " = " << (*calcs1).str();
cout << " = " << (*calcs2).str();
cout << " = " << yxLambdaNextMessage[xi] << endl;
delete calcs1;
delete calcs2;
}
}
Util::normalize (yxLambdaNextMessage);
}
Params
BnBpSolver::getJointByConditioning (const VarIds& jointVarIds) const
{
BnNodeSet jointVars;
for (unsigned i = 0; i < jointVarIds.size(); i++) {
assert (bayesNet_->getBayesNode (jointVarIds[i]));
jointVars.push_back (bayesNet_->getBayesNode (jointVarIds[i]));
}
BayesNet* mrn = bayesNet_->getMinimalRequesiteNetwork (jointVarIds[0]);
BnBpSolver solver (*mrn);
solver.runSolver();
Params prevBeliefs = solver.getPosterioriOf (jointVarIds[0]);
delete mrn;
VarIds observedVids = {jointVars[0]->varId()};
for (unsigned i = 1; i < jointVarIds.size(); i++) {
assert (jointVars[i]->hasEvidence() == false);
VarIds reqVars = {jointVarIds[i]};
reqVars.insert (reqVars.end(), observedVids.begin(), observedVids.end());
mrn = bayesNet_->getMinimalRequesiteNetwork (reqVars);
Params newBeliefs;
VarNodes observedVars;
for (unsigned j = 0; j < observedVids.size(); j++) {
observedVars.push_back (mrn->getBayesNode (observedVids[j]));
}
StatesIndexer idx (observedVars, false);
while (idx.valid()) {
for (unsigned j = 0; j < observedVars.size(); j++) {
observedVars[j]->setEvidence (idx[j]);
}
BnBpSolver solver (*mrn);
solver.runSolver();
Params beliefs = solver.getPosterioriOf (jointVarIds[i]);
for (unsigned k = 0; k < beliefs.size(); k++) {
newBeliefs.push_back (beliefs[k]);
}
++ idx;
}
int count = -1;
for (unsigned j = 0; j < newBeliefs.size(); j++) {
if (j % jointVars[i]->nrStates() == 0) {
count ++;
}
newBeliefs[j] *= prevBeliefs[count];
}
prevBeliefs = newBeliefs;
observedVids.push_back (jointVars[i]->varId());
delete mrn;
}
return prevBeliefs;
}
void
BnBpSolver::printPiLambdaValues (const BayesNode* var) const
{
cout << left;
cout << setw (10) << "states" ;
cout << setw (20) << PI_SYMBOL << "(" + var->label() + ")" ;
cout << setw (20) << LD_SYMBOL << "(" + var->label() + ")" ;
cout << setw (16) << "belief" ;
cout << endl;
cout << "--------------------------------" ;
cout << "--------------------------------" ;
cout << endl;
const States& states = var->states();
const Params& piVals = ninf(var)->getPiValues();
const Params& ldVals = ninf(var)->getLambdaValues();
const Params& beliefs = ninf(var)->getBeliefs();
for (unsigned xi = 0; xi < var->nrStates(); xi++) {
cout << setw (10) << states[xi];
cout << setw (19) << piVals[xi];
cout << setw (19) << ldVals[xi];
cout.precision (PRECISION);
cout << setw (16) << beliefs[xi];
cout << endl;
}
cout << endl;
}
void
BnBpSolver::printAllMessageStatus (void) const
{
const BnNodeSet& nodes = bayesNet_->getBayesNodes();
for (unsigned i = 0; i < nodes.size(); i++) {
printPiLambdaValues (nodes[i]);
}
}
BpNodeInfo::BpNodeInfo (BayesNode* node)
{
node_ = node;
piVals_.resize (node->nrStates(), Util::one());
ldVals_.resize (node->nrStates(), Util::one());
}
Params
BpNodeInfo::getBeliefs (void) const
{
double sum = 0.0;
Params beliefs (node_->nrStates());
if (Globals::logDomain) {
for (unsigned xi = 0; xi < node_->nrStates(); xi++) {
beliefs[xi] = exp (piVals_[xi] + ldVals_[xi]);
sum += beliefs[xi];
}
} else {
for (unsigned xi = 0; xi < node_->nrStates(); xi++) {
beliefs[xi] = piVals_[xi] * ldVals_[xi];
sum += beliefs[xi];
}
}
assert (sum);
for (unsigned xi = 0; xi < node_->nrStates(); xi++) {
beliefs[xi] /= sum;
}
return beliefs;
}
bool
BpNodeInfo::receivedBottomInfluence (void) const
{
// if all lambda values are equal, then neither
// this node neither its descendents have evidence,
// we can use this to don't send lambda messages his parents
bool childInfluenced = false;
for (unsigned xi = 1; xi < node_->nrStates(); xi++) {
if (ldVals_[xi] != ldVals_[0]) {
childInfluenced = true;
break;
}
}
return childInfluenced;
}