This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/python/swig/yap4py/prolog/dgraphs.yap
2017-05-19 10:03:49 +01:00

709 lines
18 KiB
Prolog

/**
* @file dgraphs.yap
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
* @date Tue Nov 17 01:23:20 2015
*
* @brief Directed Graph Processing Utilities.
*
*
*/
:- module( dgraphs,
[
dgraph_vertices/2,
dgraph_edge/3,
dgraph_edges/2,
dgraph_add_vertex/3,
dgraph_add_vertices/3,
dgraph_del_vertex/3,
dgraph_del_vertices/3,
dgraph_add_edge/4,
dgraph_add_edges/3,
dgraph_del_edge/4,
dgraph_del_edges/3,
dgraph_to_ugraph/2,
ugraph_to_dgraph/2,
dgraph_neighbors/3,
dgraph_neighbours/3,
dgraph_complement/2,
dgraph_transpose/2,
dgraph_compose/3,
dgraph_transitive_closure/2,
dgraph_symmetric_closure/2,
dgraph_top_sort/2,
dgraph_top_sort/3,
dgraph_min_path/5,
dgraph_max_path/5,
dgraph_min_paths/3,
dgraph_isomorphic/4,
dgraph_path/3,
dgraph_path/4,
dgraph_leaves/2,
dgraph_reachable/3
]).
/** @defgroup dgraphs Directed Graphs
@ingroup library
@{
The following graph manipulation routines use the red-black tree library
to try to avoid linear-time scans of the graph for all graph
operations. Graphs are represented as a red-black tree, where the key is
the vertex, and the associated value is a list of vertices reachable
from that vertex through an edge (ie, a list of edges).
*/
/** @pred dgraph_new(+ _Graph_)
Create a new directed graph. This operation must be performed before
trying to use the graph.
*/
:- reexport(library(rbtrees),
[rb_new/1 as dgraph_new]).
:- use_module(library(rbtrees),
[rb_new/1,
rb_empty/1,
rb_lookup/3,
rb_apply/4,
rb_insert/4,
rb_visit/2,
rb_keys/2,
rb_delete/3,
rb_map/3,
rb_clone/3,
ord_list_to_rbtree/2]).
:- use_module(library(ordsets),
[ord_insert/3,
ord_union/3,
ord_subtract/3,
ord_del_element/3,
ord_memberchk/2]).
:- use_module(library(wdgraphs),
[dgraph_to_wdgraph/2,
wdgraph_min_path/5,
wdgraph_max_path/5,
wdgraph_min_paths/3]).
/** @pred dgraph_add_edge(+ _Graph_, + _N1_, + _N2_, - _NewGraph_)
Unify _NewGraph_ with a new graph obtained by adding the edge
_N1_- _N2_ to the graph _Graph_.
*/
dgraph_add_edge(Vs0,V1,V2,Vs2) :-
dgraph_new_edge(V1,V2,Vs0,Vs1),
dgraph_add_vertex(Vs1,V2,Vs2).
/** @pred dgraph_add_edges(+ _Graph_, + _Edges_, - _NewGraph_)
Unify _NewGraph_ with a new graph obtained by adding the list of
edges _Edges_ to the graph _Graph_.
*/
dgraph_add_edges(V0, Edges, VF) :-
rb_empty(V0), !,
sort(Edges,SortedEdges),
all_vertices_in_edges(SortedEdges,Vertices),
sort(Vertices,SortedVertices),
edges2graphl(SortedVertices, SortedEdges, GraphL),
ord_list_to_rbtree(GraphL, VF).
dgraph_add_edges(G0, Edges, GF) :-
sort(Edges,SortedEdges),
all_vertices_in_edges(SortedEdges,Vertices),
sort(Vertices,SortedVertices),
dgraph_add_edges(SortedVertices,SortedEdges, G0, GF).
all_vertices_in_edges([],[]).
all_vertices_in_edges([V1-V2|Edges],[V1,V2|Vertices]) :-
all_vertices_in_edges(Edges,Vertices).
edges2graphl([], [], []).
edges2graphl([V|Vertices], [VV-V1|SortedEdges], [V-[V1|Children]|GraphL]) :-
V == VV, !,
get_extra_children(SortedEdges,VV,Children,RemEdges),
edges2graphl(Vertices, RemEdges, GraphL).
edges2graphl([V|Vertices], SortedEdges, [V-[]|GraphL]) :-
edges2graphl(Vertices, SortedEdges, GraphL).
dgraph_add_edges([],[]) --> [].
dgraph_add_edges([V|Vs],[V0-V1|Es]) --> { V == V0 }, !,
{ get_extra_children(Es,V,Children,REs) },
dgraph_update_vertex(V,[V1|Children]),
dgraph_add_edges(Vs,REs).
dgraph_add_edges([V|Vs],Es) --> !,
dgraph_update_vertex(V,[]),
dgraph_add_edges(Vs,Es).
get_extra_children([V-C|Es],VV,[C|Children],REs) :- V == VV, !,
get_extra_children(Es,VV,Children,REs).
get_extra_children(Es,_,[],Es).
dgraph_update_vertex(V,Children, Vs0, Vs) :-
rb_apply(Vs0, V, add_edges(Children), Vs), !.
dgraph_update_vertex(V,Children, Vs0, Vs) :-
rb_insert(Vs0,V,Children,Vs).
add_edges(E0,E1,E) :-
ord_union(E0,E1,E).
dgraph_new_edge(V1,V2,Vs0,Vs) :-
rb_apply(Vs0, V1, insert_edge(V2), Vs), !.
dgraph_new_edge(V1,V2,Vs0,Vs) :-
rb_insert(Vs0,V1,[V2],Vs).
insert_edge(V2, Children0, Children) :-
ord_insert(Children0,V2,Children).
/** @pred dgraph_add_vertices(+ _Graph_, + _Vertices_, - _NewGraph_)
Unify _NewGraph_ with a new graph obtained by adding the list of
vertices _Vertices_ to the graph _Graph_.
*/
dgraph_add_vertices(G, [], G).
dgraph_add_vertices(G0, [V|Vs], GF) :-
dgraph_add_vertex(G0, V, G1),
dgraph_add_vertices(G1, Vs, GF).
/** @pred dgraph_add_vertex(+ _Graph_, + _Vertex_, - _NewGraph_)
Unify _NewGraph_ with a new graph obtained by adding
vertex _Vertex_ to the graph _Graph_.
*/
dgraph_add_vertex(Vs0, V, Vs0) :-
rb_lookup(V,_,Vs0), !.
dgraph_add_vertex(Vs0, V, Vs) :-
rb_insert(Vs0, V, [], Vs).
/** @pred dgraph_edges(+ _Graph_, - _Edges_)
Unify _Edges_ with all edges appearing in graph
_Graph_.
*/
dgraph_edges(Vs,Edges) :-
rb_visit(Vs,L0),
cvt2edges(L0,Edges).
/** @pred dgraph_vertices(+ _Graph_, - _Vertices_)
Unify _Vertices_ with all vertices appearing in graph
_Graph_.
*/
dgraph_vertices(Vs,Vertices) :-
rb_keys(Vs,Vertices).
cvt2edges([],[]).
cvt2edges([V-Children|L0],Edges) :-
children2edges(Children,V,Edges,Edges0),
cvt2edges(L0,Edges0).
children2edges([],_,Edges,Edges).
children2edges([Child|L0],V,[V-Child|EdgesF],Edges0) :-
children2edges(L0,V,EdgesF,Edges0).
/** @pred dgraph_neighbours(+ _Vertex_, + _Graph_, - _Vertices_)
Unify _Vertices_ with the list of neighbours of vertex _Vertex_
in _Graph_.
*/
dgraph_neighbours(V,Vertices,Children) :-
rb_lookup(V,Children,Vertices).
/** @pred dgraph_neighbors(+ _Vertex_, + _Graph_, - _Vertices_)
Unify _Vertices_ with the list of neighbors of vertex _Vertex_
in _Graph_. If the vertice is not in the graph fail.
*/
dgraph_neighbors(V,Vertices,Children) :-
rb_lookup(V,Children,Vertices).
add_vertices(Graph, [], Graph).
add_vertices(Graph, [V|Vertices], NewGraph) :-
rb_insert(Graph, V, [], IntGraph),
add_vertices(IntGraph, Vertices, NewGraph).
/** @pred dgraph_complement(+ _Graph_, - _NewGraph_)
Unify _NewGraph_ with the graph complementary to _Graph_.
*/
dgraph_complement(Vs0,VsF) :-
dgraph_vertices(Vs0,Vertices),
rb_map(Vs0,complement(Vertices),VsF).
complement(Vs,Children,NewChildren) :-
ord_subtract(Vs,Children,NewChildren).
/** @pred dgraph_del_edge(+ _Graph_, + _N1_, + _N2_, - _NewGraph_)
Succeeds if _NewGraph_ unifies with a new graph obtained by
removing the edge _N1_- _N2_ from the graph _Graph_. Notice
that no vertices are deleted.
*/
dgraph_del_edge(Vs0,V1,V2,Vs1) :-
rb_apply(Vs0, V1, delete_edge(V2), Vs1).
/** @pred dgraph_del_edges(+ _Graph_, + _Edges_, - _NewGraph_)
Unify _NewGraph_ with a new graph obtained by removing the list of
edges _Edges_ from the graph _Graph_. Notice that no vertices
are deleted.
*/
dgraph_del_edges(G0, Edges, Gf) :-
sort(Edges,SortedEdges),
continue_del_edges(SortedEdges, G0, Gf).
continue_del_edges([]) --> [].
continue_del_edges([V-V1|Es]) --> !,
{ get_extra_children(Es,V,Children,REs) },
contract_vertex(V,[V1|Children]),
continue_del_edges(REs).
contract_vertex(V,Children, Vs0, Vs) :-
rb_apply(Vs0, V, del_edges(Children), Vs).
del_edges(ToRemove,E0,E) :-
ord_subtract(E0,ToRemove,E).
/** @pred dgraph_del_vertex(+ _Graph_, + _Vertex_, - _NewGraph_)
Unify _NewGraph_ with a new graph obtained by deleting vertex
_Vertex_ and all the edges that start from or go to _Vertex_ to
the graph _Graph_.
*/
dgraph_del_vertex(Vs0, V, Vsf) :-
rb_delete(Vs0, V, Vs1),
rb_map(Vs1, delete_edge(V), Vsf).
delete_edge(Edges0, V, Edges) :-
ord_del_element(Edges0, V, Edges).
/** @pred dgraph_del_vertices(+ _Graph_, + _Vertices_, - _NewGraph_)
Unify _NewGraph_ with a new graph obtained by deleting the list of
vertices _Vertices_ and all the edges that start from or go to a
vertex in _Vertices_ to the graph _Graph_.
*/
dgraph_del_vertices(G0, Vs, GF) :-
sort(Vs,SortedVs),
delete_all(SortedVs, G0, G1),
delete_remaining_edges(SortedVs, G1, GF).
% it would be nice to be able to delete a set of elements from an RB tree
% but I don't how to do it yet.
delete_all([]) --> [].
delete_all([V|Vs],Vs0,Vsf) :-
rb_delete(Vs0, V, Vsi),
delete_all(Vs,Vsi,Vsf).
delete_remaining_edges(SortedVs,Vs0,Vsf) :-
rb_map(Vs0, del_edges(SortedVs), Vsf).
/** @pred dgraph_transpose(+ _Graph_, - _Transpose_)
Unify _NewGraph_ with a new graph obtained from _Graph_ by
replacing all edges of the form _V1-V2_ by edges of the form
_V2-V1_.
*/
dgraph_transpose(Graph, TGraph) :-
rb_visit(Graph, Edges),
transpose(Edges, Nodes, TEdges, []),
dgraph_new(G0),
% make sure we have all vertices, even if they are unconnected.
dgraph_add_vertices(G0, Nodes, G1),
dgraph_add_edges(G1, TEdges, TGraph).
transpose([], []) --> [].
transpose([V-Edges|MoreVs], [V|Vs]) -->
transpose_edges(Edges, V),
transpose(MoreVs, Vs).
transpose_edges([], _V) --> [].
transpose_edges(E.Edges, V) -->
[E-V],
transpose_edges(Edges, V).
dgraph_compose(T1,T2,CT) :-
rb_visit(T1,Nodes),
compose(Nodes,T2,NewNodes),
dgraph_new(CT0),
dgraph_add_edges(CT0,NewNodes,CT).
compose([],_,[]).
compose([V-Children|Nodes],T2,NewNodes) :-
compose2(Children,V,T2,NewNodes,NewNodes0),
compose(Nodes,T2,NewNodes0).
compose2([],_,_,NewNodes,NewNodes).
compose2([C|Children],V,T2,NewNodes,NewNodes0) :-
rb_lookup(C, GrandChildren, T2),
compose3(GrandChildren, V, NewNodes,NewNodesI),
compose2(Children,V,T2,NewNodesI,NewNodes0).
compose3([], _, NewNodes, NewNodes).
compose3([GC|GrandChildren], V, [V-GC|NewNodes], NewNodes0) :-
compose3(GrandChildren, V, NewNodes, NewNodes0).
/** @pred dgraph_transitive_closure(+ _Graph_, - _Closure_)
Unify _Closure_ with the transitive closure of graph _Graph_.
*/
dgraph_transitive_closure(G,Closure) :-
dgraph_edges(G,Edges),
continue_closure(Edges,G,Closure).
continue_closure([], Closure, Closure) :- !.
continue_closure(Edges, G, Closure) :-
transit_graph(Edges,G,NewEdges),
dgraph_add_edges(G, NewEdges, GN),
continue_closure(NewEdges, GN, Closure).
transit_graph([],_,[]).
transit_graph([V-V1|Edges],G,NewEdges) :-
rb_lookup(V1, GrandChildren, G),
transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges),
transit_graph(Edges, G, MoreEdges).
transit_graph2([], _, _, NewEdges, NewEdges).
transit_graph2([GC|GrandChildren], V, G, NewEdges, MoreEdges) :-
is_edge(V,GC,G), !,
transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges).
transit_graph2([GC|GrandChildren], V, G, [V-GC|NewEdges], MoreEdges) :-
transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges).
is_edge(V1,V2,G) :-
rb_lookup(V1,Children,G),
ord_memberchk(V2, Children).
/** @pred dgraph_symmetric_closure(+ _Graph_, - _Closure_)
Unify _Closure_ with the symmetric closure of graph _Graph_,
that is, if _Closure_ contains an edge _U-V_ it must also
contain the edge _V-U_.
*/
dgraph_symmetric_closure(G,S) :-
dgraph_edges(G, Edges),
invert_edges(Edges, InvertedEdges),
dgraph_add_edges(G, InvertedEdges, S).
invert_edges([], []).
invert_edges([V1-V2|Edges], [V2-V1|InvertedEdges]) :-
invert_edges(Edges, InvertedEdges).
/** @pred dgraph_top_sort(+ _Graph_, - _Vertices_)
Unify _Vertices_ with the topological sort of graph _Graph_.
*/
dgraph_top_sort(G, Q) :-
dgraph_top_sort(G, Q, []).
/** @pred dgraph_top_sort(+ _Graph_, - _Vertices_, ? _Vertices0_)
Unify the difference list _Vertices_- _Vertices0_ with the
topological sort of graph _Graph_.
*/
dgraph_top_sort(G, Q, RQ0) :-
% O(E)
rb_visit(G, Vs),
% O(E)
invert_and_link(Vs, Links, UnsortedInvertedEdges, AllVs, Q),
% O(V)
rb_clone(G, LinkedG, Links),
% O(Elog(E))
sort(UnsortedInvertedEdges, InvertedEdges),
% O(E)
dgraph_vertices(G, AllVs),
start_queue(AllVs, InvertedEdges, Q, RQ),
continue_queue(Q, LinkedG, RQ, RQ0).
invert_and_link([], [], [], [], []).
invert_and_link([V-Vs|Edges], [V-NVs|ExtraEdges], UnsortedInvertedEdges, [V|AllVs],[_|Q]) :-
inv_links(Vs, NVs, V, UnsortedInvertedEdges, UnsortedInvertedEdges0),
invert_and_link(Edges, ExtraEdges, UnsortedInvertedEdges0, AllVs, Q).
inv_links([],[],_,UnsortedInvertedEdges,UnsortedInvertedEdges).
inv_links([V2|Vs],[l(V2,A,B,S,E)|VLnks],V1,[V2-e(A,B,S,E)|UnsortedInvertedEdges],UnsortedInvertedEdges0) :-
inv_links(Vs,VLnks,V1,UnsortedInvertedEdges,UnsortedInvertedEdges0).
dup([], []).
dup([_|AllVs], [_|Q]) :-
dup(AllVs, Q).
start_queue([], [], RQ, RQ).
start_queue([V|AllVs], [VV-e(S,B,S,E)|InvertedEdges], Q, RQ) :- V == VV, !,
link_edges(InvertedEdges, VV, B, S, E, RemainingEdges),
start_queue(AllVs, RemainingEdges, Q, RQ).
start_queue([V|AllVs], InvertedEdges, [V|Q], RQ) :-
start_queue(AllVs, InvertedEdges, Q, RQ).
link_edges([V-e(A,B,S,E)|InvertedEdges], VV, A, S, E, RemEdges) :- V == VV, !,
link_edges(InvertedEdges, VV, B, S, E, RemEdges).
link_edges(RemEdges, _, A, _, A, RemEdges).
continue_queue([], _, RQ0, RQ0).
continue_queue([V|Q], LinkedG, RQ, RQ0) :-
rb_lookup(V, Links, LinkedG),
close_links(Links, RQ, RQI),
% not clear whether I should deleted V from LinkedG
continue_queue(Q, LinkedG, RQI, RQ0).
close_links([], RQ, RQ).
close_links([l(V,A,A,S,E)|Links], RQ, RQ0) :-
( S == E -> RQ = [V| RQ1] ; RQ = RQ1),
close_links(Links, RQ1, RQ0).
/** @pred ugraph_to_dgraph( + _UGraph_, - _Graph_)
Unify _Graph_ with the directed graph obtain from _UGraph_,
represented in the form used in the _ugraphs_ unweighted graphs
library.
*/
ugraph_to_dgraph(UG, DG) :-
ord_list_to_rbtree(UG, DG).
/** @pred dgraph_to_ugraph(+ _Graph_, - _UGraph_)
Unify _UGraph_ with the representation used by the _ugraphs_
unweighted graphs library, that is, a list of the form
_V-Neighbors_, where _V_ is a node and _Neighbors_ the nodes
children.
*/
dgraph_to_ugraph(DG, UG) :-
rb_visit(DG, UG).
/** @pred dgraph_edge(+ _N1_, + _N2_, + _Graph_)
Edge _N1_- _N2_ is an edge in directed graph _Graph_.
*/
dgraph_edge(N1, N2, G) :-
rb_lookup(N1, Ns, G),
ord_memberchk(N2, Ns).
/** @pred dgraph_min_path(+ _V1_, + _V1_, + _Graph_, - _Path_, ? _Costt_)
Unify the list _Path_ with the minimal cost path between nodes
_N1_ and _N2_ in graph _Graph_. Path _Path_ has cost
_Cost_.
*/
dgraph_min_path(V1, V2, Graph, Path, Cost) :-
dgraph_to_wdgraph(Graph, WGraph),
wdgraph_min_path(V1, V2, WGraph, Path, Cost).
/** @pred dgraph_max_path(+ _V1_, + _V1_, + _Graph_, - _Path_, ? _Costt_)
Unify the list _Path_ with the maximal cost path between nodes
_N1_ and _N2_ in graph _Graph_. Path _Path_ has cost
_Cost_.
*/
dgraph_max_path(V1, V2, Graph, Path, Cost) :-
dgraph_to_wdgraph(Graph, WGraph),
wdgraph_max_path(V1, V2, WGraph, Path, Cost).
/** @pred dgraph_min_paths(+ _V1_, + _Graph_, - _Paths_)
Unify the list _Paths_ with the minimal cost paths from node
_N1_ to the nodes in graph _Graph_.
*/
dgraph_min_paths(V1, Graph, Paths) :-
dgraph_to_wdgraph(Graph, WGraph),
wdgraph_min_paths(V1, WGraph, Paths).
/** @pred dgraph_path(+ _Vertex_, + _Vertex1_, + _Graph_, ? _Path_)
The path _Path_ is a path starting at vertex _Vertex_ in graph
_Graph_ and ending at path _Vertex2_.
*/
dgraph_path(V1, V2, Graph, Path) :-
rb_new(E0),
rb_lookup(V1, Children, Graph),
dgraph_path_children(Children, V2, E0, Graph, Path).
dgraph_path_children([V1|_], V2, _E1, _Graph, []) :- V1 == V2.
dgraph_path_children([V1|_], V2, E1, Graph, [V1|Path]) :-
V2 \== V1,
\+ rb_lookup(V1, _, E0),
rb_insert(E0, V2, [], E1),
rb_lookup(V1, Children, Graph),
dgraph_path_children(Children, V2, E1, Graph, Path).
dgraph_path_children([_|Children], V2, E1, Graph, Path) :-
dgraph_path_children(Children, V2, E1, Graph, Path).
do_path([], _, _, []).
do_path([C|Children], G, SoFar, Path) :-
do_children([C|Children], G, SoFar, Path).
do_children([V|_], G, SoFar, [V|Path]) :-
rb_lookup(V, Children, G),
ord_subtract(Children, SoFar, Ch),
ord_insert(SoFar, V, NextSoFar),
do_path(Ch, G, NextSoFar, Path).
do_children([_|Children], G, SoFar, Path) :-
do_children(Children, G, SoFar, Path).
/** @pred dgraph_path(+ _Vertex_, + _Graph_, ? _Path_)
The path _Path_ is a path starting at vertex _Vertex_ in graph
_Graph_.
*/
dgraph_path(V, G, [V|P]) :-
rb_lookup(V, Children, G),
ord_del_element(Children, V, Ch),
do_path(Ch, G, [V], P).
/** @pred dgraph_isomorphic(+ _Vs_, + _NewVs_, + _G0_, - _GF_)
Unify the list _GF_ with the graph isomorphic to _G0_ where
vertices in _Vs_ map to vertices in _NewVs_.
*/
dgraph_isomorphic(Vs, Vs2, G1, G2) :-
rb_new(Map0),
mapping(Vs,Vs2,Map0,Map),
dgraph_edges(G1,Edges),
translate_edges(Edges,Map,TEdges),
dgraph_new(G20),
dgraph_add_vertices(Vs2,G20,G21),
dgraph_add_edges(G21,TEdges,G2).
mapping([],[],Map,Map).
mapping([V1|Vs],[V2|Vs2],Map0,Map) :-
rb_insert(Map0,V1,V2,MapI),
mapping(Vs,Vs2,MapI,Map).
translate_edges([],_,[]).
translate_edges([V1-V2|Edges],Map,[NV1-NV2|TEdges]) :-
rb_lookup(V1,NV1,Map),
rb_lookup(V2,NV2,Map),
translate_edges(Edges,Map,TEdges).
/** @pred dgraph_reachable(+ _Vertex_, + _Graph_, ? _Edges_)
The path _Path_ is a path starting at vertex _Vertex_ in graph
_Graph_.
*/
dgraph_reachable(V, G, Edges) :-
rb_lookup(V, Children, G),
ord_list_to_rbtree([V-[]],Done0),
reachable(Children, Done0, _, G, Edges, []).
reachable([], Done, Done, _, Edges, Edges).
reachable([V|Vertices], Done0, DoneF, G, EdgesF, Edges0) :-
rb_lookup(V,_, Done0), !,
reachable(Vertices, Done0, DoneF, G, EdgesF, Edges0).
reachable([V|Vertices], Done0, DoneF, G, [V|EdgesF], Edges0) :-
rb_lookup(V, Kids, G),
rb_insert(Done0, V, [], Done1),
reachable(Kids, Done1, DoneI, G, EdgesF, EdgesI),
reachable(Vertices, DoneI, DoneF, G, EdgesI, Edges0).
/** @pred dgraph_leaves(+ _Graph_, ? _Vertices_)
The vertices _Vertices_ have no outgoing edge in graph
_Graph_.
*/
dgraph_leaves(Graph, Vertices) :-
rb_visit(Graph, Pairs),
vertices_without_children(Pairs, Vertices).
vertices_without_children([], []).
vertices_without_children((V-[]).Pairs, V.Vertices) :-
vertices_without_children(Pairs, Vertices).
vertices_without_children(_V-[_|_].Pairs, Vertices) :-
vertices_without_children(Pairs, Vertices).
%% @}/** @} */