This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/ordsets.yap

358 lines
11 KiB
Prolog

% This file has been included as an YAP library by Vitor Santos Costa, 1999
% File : ORDSET.PL
% Author : R.A.O'Keefe
% Updated: 22 May 1983
% Purpose: Ordered set manipulation utilities
% In this module, sets are represented by ordered lists with no
% duplicates. Thus {c,r,a,f,t} would be [a,c,f,r,t]. The ordering
% is defined by the @< family of term comparison predicates, which
% is the ordering used by sort/2 and setof/3.
% The benefit of the ordered representation is that the elementary
% set operations can be done in time proportional to the Sum of the
% argument sizes rather than their Product. Some of the unordered
% set routines, such as member/2, length/2, select/3 can be used
% unchanged. The main difficulty with the ordered representation is
% remembering to use it!
:- module(ordsets, [
list_to_ord_set/2, % List -> Set
merge/3, % OrdList x OrdList -> OrdList
ord_add_element/3, % Set x Elem -> Set
ord_del_element/3, % Set x Elem -> Set
ord_disjoint/2, % Set x Set ->
ord_insert/3, % Set x Elem -> Set
ord_member/2, % Set -> Elem
ord_intersect/2, % Set x Set ->
ord_intersect/3, % Set x Set -> Set
ord_intersection/3, % Set x Set -> Set
ord_intersection/4, % Set x Set -> Set x Set
ord_seteq/2, % Set x Set ->
ord_setproduct/3, % Set x Set -> Set
ord_subset/2, % Set x Set ->
ord_subtract/3, % Set x Set -> Set
ord_symdiff/3, % Set x Set -> Set
ord_union/2, % Set^2 -> Set
ord_union/3, % Set x Set -> Set
ord_union/4, % Set x Set -> Set x Set,
ord_empty/1, % -> Set
ord_memberchk/2 % Element X Set
]).
/*
:- mode
list_to_ord_set(+, ?),
merge(+, +, -),
ord_disjoint(+, +),
ord_disjoint(+, +, +, +, +),
ord_insert(+, +, ?),
ord_insert(+, +, +, +, ?),
ord_intersect(+, +),
ord_intersect(+, +, +, +, +),
ord_intersect(+, +, ?),
ord_intersect(+, +, +, +, +, ?),
ord_seteq(+, +),
ord_subset(+, +),
ord_subset(+, +, +, +, +),
ord_subtract(+, +, ?),
ord_subtract(+, +, +, +, +, ?),
ord_symdiff(+, +, ?),
ord_symdiff(+, +, +, +, +, ?),
ord_union(+, +, ?),
ord_union(+, +, +, +, +, ?).
*/
% list_to_ord_set(+List, ?Set)
% is true when Set is the ordered representation of the set represented
% by the unordered representation List. The only reason for giving it
% a name at all is that you may not have realised that sort/2 could be
% used this way.
list_to_ord_set(List, Set) :-
sort(List, Set).
% merge(+List1, +List2, -Merged)
% is true when Merged is the stable merge of the two given lists.
% If the two lists are not ordered, the merge doesn't mean a great
% deal. Merging is perfectly well defined when the inputs contain
% duplicates, and all copies of an element are preserved in the
% output, e.g. merge("122357", "34568", "12233455678"). Study this
% routine carefully, as it is the basis for all the rest.
merge([Head1|Tail1], [Head2|Tail2], [Head2|Merged]) :-
Head1 @> Head2, !,
merge([Head1|Tail1], Tail2, Merged).
merge([Head1|Tail1], List2, [Head1|Merged]) :-
List2 \== [], !,
merge(Tail1, List2, Merged).
merge([], List2, List2) :- !.
merge(List1, [], List1).
% ord_disjoint(+Set1, +Set2)
% is true when the two ordered sets have no element in common. If the
% arguments are not ordered, I have no idea what happens.
ord_disjoint([], _) :- !.
ord_disjoint(_, []) :- !.
ord_disjoint([Head1|Tail1], [Head2|Tail2]) :-
compare(Order, Head1, Head2),
ord_disjoint(Order, Head1, Tail1, Head2, Tail2).
ord_disjoint(<, _, Tail1, Head2, Tail2) :-
ord_disjoint(Tail1, [Head2|Tail2]).
ord_disjoint(>, Head1, Tail1, _, Tail2) :-
ord_disjoint([Head1|Tail1], Tail2).
% ord_insert(+Set1, +Element, ?Set2)
% ord_add_element(+Set1, +Element, ?Set2)
% is the equivalent of add_element for ordered sets. It should give
% exactly the same result as merge(Set1, [Element], Set2), but a bit
% faster, and certainly more clearly.
ord_add_element([], Element, [Element]).
ord_add_element([Head|Tail], Element, Set) :-
compare(Order, Head, Element),
ord_insert(Order, Head, Tail, Element, Set).
ord_insert([], Element, [Element]).
ord_insert([Head|Tail], Element, Set) :-
compare(Order, Head, Element),
ord_insert(Order, Head, Tail, Element, Set).
ord_insert(<, Head, Tail, Element, [Head|Set]) :-
ord_insert(Tail, Element, Set).
ord_insert(=, Head, Tail, _, [Head|Tail]).
ord_insert(>, Head, Tail, Element, [Element,Head|Tail]).
% ord_intersect(+Set1, +Set2)
% is true when the two ordered sets have at least one element in common.
% Note that the test is == rather than = .
ord_intersect([Head1|Tail1], [Head2|Tail2]) :-
compare(Order, Head1, Head2),
ord_intersect(Order, Head1, Tail1, Head2, Tail2).
ord_intersect(=, _, _, _, _).
ord_intersect(<, _, Tail1, Head2, Tail2) :-
ord_intersect(Tail1, [Head2|Tail2]).
ord_intersect(>, Head1, Tail1, _, Tail2) :-
ord_intersect([Head1|Tail1], Tail2).
ord_intersect(L1, L2, L) :-
ord_intersection(L1, L2, L).
% ord_intersection(+Set1, +Set2, ?Intersection)
% is true when Intersection is the ordered representation of Set1
% and Set2, provided that Set1 and Set2 are ordered sets.
ord_intersection([], _, []) :- !.
ord_intersection([_|_], [], []) :- !.
ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection) :-
( Head1 == Head2 ->
Intersection = [Head1|Tail],
ord_intersection(Tail1, Tail2, Tail)
;
Head1 @< Head2 ->
ord_intersection(Tail1, [Head2|Tail2], Intersection)
;
ord_intersection([Head1|Tail1], Tail2, Intersection)
).
% ord_intersection(+Set1, +Set2, ?Intersection, ?Difference)
% is true when Intersection is the ordered representation of Set1
% and Set2, provided that Set1 and Set2 are ordered sets.
ord_intersection([], L, [], L) :- !.
ord_intersection([_|_], [], [], []) :- !.
ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection, Difference) :-
( Head1 == Head2 ->
Intersection = [Head1|Tail],
ord_intersection(Tail1, Tail2, Tail, Difference)
;
Head1 @< Head2 ->
ord_intersection(Tail1, [Head2|Tail2], Intersection, Difference)
;
Difference = [Head2|HDifference],
ord_intersection([Head1|Tail1], Tail2, Intersection, HDifference)
).
% ord_seteq(+Set1, +Set2)
% is true when the two arguments represent the same set. Since they
% are assumed to be ordered representations, they must be identical.
ord_seteq(Set1, Set2) :-
Set1 == Set2.
% ord_subset(+Set1, +Set2)
% is true when every element of the ordered set Set1 appears in the
% ordered set Set2.
ord_subset([], _) :- !.
ord_subset([Head1|Tail1], [Head2|Tail2]) :-
compare(Order, Head1, Head2),
ord_subset(Order, Head1, Tail1, Head2, Tail2).
ord_subset(=, _, Tail1, _, Tail2) :-
ord_subset(Tail1, Tail2).
ord_subset(>, Head1, Tail1, _, Tail2) :-
ord_subset([Head1|Tail1], Tail2).
% ord_subtract(+Set1, +Set2, ?Difference)
% is true when Difference contains all and only the elements of Set1
% which are not also in Set2.
ord_subtract(Set1, [], Set1) :- !.
ord_subtract([], _, []) :- !.
ord_subtract([Head1|Tail1], [Head2|Tail2], Difference) :-
compare(Order, Head1, Head2),
ord_subtract(Order, Head1, Tail1, Head2, Tail2, Difference).
ord_subtract(=, _, Tail1, _, Tail2, Difference) :-
ord_subtract(Tail1, Tail2, Difference).
ord_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
ord_subtract(Tail1, [Head2|Tail2], Difference).
ord_subtract(>, Head1, Tail1, _, Tail2, Difference) :-
ord_subtract([Head1|Tail1], Tail2, Difference).
% ord_del_element(+Set1, Element, ?Rest)
% is true when Rest contains the elements of Set1
% except for Set1
ord_del_element([], _, []).
ord_del_element([Head1|Tail1], Head2, Rest) :-
compare(Order, Head1, Head2),
ord_del_element(Order, Head1, Tail1, Head2, Rest).
ord_del_element(=, _, Tail1, _, Tail1).
ord_del_element(<, Head1, Tail1, Head2, [Head1|Difference]) :-
ord_del_element(Tail1, Head2, Difference).
ord_del_element(>, Head1, Tail1, _, [Head1|Tail1]).
% ord_symdiff(+Set1, +Set2, ?Difference)
% is true when Difference is the symmetric difference of Set1 and Set2.
ord_symdiff(Set1, [], Set1) :- !.
ord_symdiff([], Set2, Set2) :- !.
ord_symdiff([Head1|Tail1], [Head2|Tail2], Difference) :-
compare(Order, Head1, Head2),
ord_symdiff(Order, Head1, Tail1, Head2, Tail2, Difference).
ord_symdiff(=, _, Tail1, _, Tail2, Difference) :-
ord_symdiff(Tail1, Tail2, Difference).
ord_symdiff(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
ord_symdiff(Tail1, [Head2|Tail2], Difference).
ord_symdiff(>, Head1, Tail1, Head2, Tail2, [Head2|Difference]) :-
ord_symdiff([Head1|Tail1], Tail2, Difference).
% ord_union(+Set1, +Set2, ?Union)
% is true when Union is the union of Set1 and Set2. Note that when
% something occurs in both sets, we want to retain only one copy.
ord_union([S|Set1], [], [S|Set1]).
ord_union([], Set2, Set2).
ord_union([Head1|Tail1], [Head2|Tail2], Union) :-
compare(Order, Head1, Head2),
ord_union(Order, Head1, Tail1, Head2, Tail2, Union).
ord_union(=, Head, Tail1, _, Tail2, [Head|Union]) :-
ord_union(Tail1, Tail2, Union).
ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-
ord_union(Tail1, [Head2|Tail2], Union).
ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-
ord_union([Head1|Tail1], Tail2, Union).
% ord_union(+Set1, +Set2, ?Union, ?Difference)
% is true when Union is the union of Set1 and Set2 and Difference is the
% difference between Set2 and Set1.
ord_union(Set1, [], Set1, []) :- !.
ord_union([], Set2, Set2, Set2) :- !.
ord_union([Head1|Tail1], [Head2|Tail2], Union, Diff) :-
compare(Order, Head1, Head2),
ord_union(Order, Head1, Tail1, Head2, Tail2, Union, Diff).
ord_union(=, Head, Tail1, _, Tail2, [Head|Union], Diff) :-
ord_union(Tail1, Tail2, Union, Diff).
ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union], Diff) :-
ord_union(Tail1, [Head2|Tail2], Union, Diff).
ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union], [Head2|Diff]) :-
ord_union([Head1|Tail1], Tail2, Union, Diff).
% ord_setproduct(+Set1, +Set2, ?Product)
% is in fact identical to setproduct(Set1, Set2, Product).
% If Set1 and Set2 are ordered sets, Product will be an ordered
% set of x1-x2 pairs. Note that we cannot solve for Set1 and
% Set2, because there are infinitely many solutions when
% Product is empty, and may be a large number in other cases.
ord_setproduct([], _, []).
ord_setproduct([H|T], L, Product) :-
ord_setproduct(L, H, Product, Rest),
ord_setproduct(T, L, Rest).
ord_setproduct([], _, L, L).
ord_setproduct([H|T], X, [X-H|TX], TL) :-
ord_setproduct(T, X, TX, TL).
ord_member(El,[H|T]):-
compare(Op,El,H),
ord_member(Op,El,T).
ord_member(=,_,_).
ord_member(>,El,[H|T]) :-
compare(Op,El,H),
ord_member(Op,El,T).
ord_union([], []).
ord_union([Set|Sets], Union) :-
length([Set|Sets], NumberOfSets),
ord_union_all(NumberOfSets, [Set|Sets], Union, []).
ord_union_all(N,Sets0,Union,Sets) :-
( N=:=1 -> Sets0=[Union|Sets]
; N=:=2 -> Sets0=[Set1,Set2|Sets],
ord_union(Set1,Set2,Union)
; A is N>>1,
Z is N-A,
ord_union_all(A, Sets0, X, Sets1),
ord_union_all(Z, Sets1, Y, Sets),
ord_union(X, Y, Union)
).
ord_empty([]).
ord_memberchk(Element, [E|_]) :- E == Element, !.
ord_memberchk(Element, [_|Set]) :-
ord_memberchk(Element, Set).