This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/dbase.c
vsc d11fd73306 global variables
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1685 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2006-08-22 16:12:46 +00:00

5276 lines
128 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: dbase.c *
* Last rev: 8/2/88 *
* mods: *
* comments: YAP's internal data base *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
#include "Yap.h"
#include "clause.h"
#include "yapio.h"
#include "attvar.h"
#include "heapgc.h"
#if HAVE_STRING_H
#include <string.h>
#endif
#if HAVE_STRING_H
#include <string.h>
#endif
#include <stdlib.h>
/* There are two options to implement traditional immediate update semantics.
- In the first option, we only remove an element of the chain when
it is phisically disposed of. This simplifies things, because
pointers are always valid, but it complicates some stuff a bit:
o You may have go through long lines of deleted db entries before you
actually reach the one you want.
o Deleted clauses are also not removed of the chain. The solution
was to place a fail in every clause, but you still have to
backtrack through failed clauses.
An alternative solution is to remove clauses from the chain, even
if they are still phisically present. Unfortunately this creates
problems because immediate update semantics means you have to
backtrack clauses or see the db entries stored later.
There are several solutions. One of the simplest is to use an age
counter. When you backtrack to a removed clause or to a deleted db
entry you use the age to find newly entered clauses in the DB.
This still causes a problem when you backtrack to a deleted
clause, because clauses are supposed to point to the next
alternative, and having been removed from the chain you cannot
point there directly. One solution is to have a predicate in C that
recovers the place where to go to and then gets rid of the clause.
*/
#define DISCONNECT_OLD_ENTRIES 1
#ifdef MACYAPBUG
#define Register
#else
#define Register register
#endif
/* Flags for recorda or recordz */
/* MkCode should be the same as CodeDBProperty */
#define MkFirst 1
#define MkCode CodeDBBit
#define MkLast 4
#define WithRef 8
#define MkIfNot 16
#define InQueue 32
#define FrstDBRef(V) ( (V) -> First )
#define NextDBRef(V) ( (V) -> Next )
#define DBLength(V) (sizeof(DBStruct) + (Int)(V) + CellSize)
#define AllocDBSpace(V) ((DBRef)Yap_AllocCodeSpace(V))
#define FreeDBSpace(V) Yap_FreeCodeSpace(V)
#if SIZEOF_INT_P==4
#define ToSmall(V) ((link_entry)(Unsigned(V)>>2))
#else
#define ToSmall(V) ((link_entry)(Unsigned(V)>>3))
#endif
#define DEAD_REF(ref) FALSE
#ifdef SFUNC
#define MaxSFs 256
typedef struct {
Term SName; /* The culprit */
CELL *SFather; /* and his father's position */
} SFKeep;
#endif
typedef struct queue_entry {
struct queue_entry *next;
DBTerm *DBT;
} QueueEntry;
typedef struct idb_queue
{
Functor id; /* identify this as being pointed to by a DBRef */
SMALLUNSGN Flags; /* always required */
#if defined(YAPOR) || defined(THREADS)
rwlock_t QRWLock; /* a simple lock to protect this entry */
#endif
QueueEntry *FirstInQueue, *LastInQueue;
} db_queue;
#define HashFieldMask ((CELL)0xffL)
#define DualHashFieldMask ((CELL)0xffffL)
#define TripleHashFieldMask ((CELL)0xffffffL)
#define FourHashFieldMask ((CELL)0xffffffffL)
#define ONE_FIELD_SHIFT 8
#define TWO_FIELDS_SHIFT 16
#define THREE_FIELDS_SHIFT 24
#define AtomHash(t) (Unsigned(t)>>4)
#define FunctorHash(t) (Unsigned(t)>>4)
#define NumberHash(t) (Unsigned(IntOfTerm(t)))
#define LARGE_IDB_LINK_TABLE 1
/* traditionally, YAP used a link table to recover IDB terms*/
#define IDB_LINK_TABLE 1
#if LARGE_IDB_LINK_TABLE
typedef BITS32 link_entry;
#define SIZEOF_LINK_ENTRY 4
#else
typedef BITS16 link_entry;
#define SIZEOF_LINK_ENTRY 2
#endif
/* a second alternative is to just use a tag */
/*#define IDB_USE_MBIT 1*/
/* These global variables are necessary to build the data base
structure */
typedef struct db_globs {
#ifdef IDB_LINK_TABLE
link_entry *lr, *LinkAr;
#endif
/* we cannot call Error directly from within recorded(). These flags are used
to delay for a while
*/
DBRef *tofref; /* place the refs also up */
#ifdef SFUNC
CELL *FathersPlace; /* Where the father was going when the term
* was reached */
SFKeep *SFAr, *TopSF; /* Where are we putting our SFunctors */
#endif
DBRef found_one; /* Place where we started recording */
} dbglobs;
static dbglobs *s_dbg;
#ifdef SUPPORT_HASH_TABLES
typedef struct {
CELL key;
DBRef entry;
} hash_db_entry;
typedef table {
Int NOfEntries;
Int HashArg;
hash_db_entry *table;
} hash_db_table;
#endif
STATIC_PROTO(CELL *cpcells,(CELL *,CELL*,Int));
#ifdef IDB_LINK_TABLE
STATIC_PROTO(void linkblk,(link_entry *,CELL *,CELL));
#endif
#ifdef IDB_USE_MBIT
STATIC_PROTO(CELL *linkcells,(CELL *,Int));
#endif
STATIC_PROTO(Int cmpclls,(CELL *,CELL *,Int));
STATIC_PROTO(Prop FindDBProp,(AtomEntry *, int, unsigned int, Term));
STATIC_PROTO(CELL CalcKey, (Term));
#ifdef COROUTINING
STATIC_PROTO(CELL *MkDBTerm, (CELL *, CELL *, CELL *, CELL *, CELL *, CELL *,int *, struct db_globs *));
#else
STATIC_PROTO(CELL *MkDBTerm, (CELL *, CELL *, CELL *, CELL *, CELL *, int *, struct db_globs *));
#endif
STATIC_PROTO(DBRef CreateDBStruct, (Term, DBProp, int, int *, UInt, struct db_globs *));
STATIC_PROTO(DBRef record, (int, Term, Term, Term));
STATIC_PROTO(DBRef check_if_cons, (DBRef, Term));
STATIC_PROTO(DBRef check_if_var, (DBRef));
STATIC_PROTO(DBRef check_if_wvars, (DBRef, unsigned int, CELL *));
#ifdef IDB_LINK_TABLE
STATIC_PROTO(int scheckcells, (int, CELL *, CELL *, link_entry *, CELL));
#endif
STATIC_PROTO(DBRef check_if_nvars, (DBRef, unsigned int, CELL *, struct db_globs *));
STATIC_PROTO(Int p_rcda, (void));
STATIC_PROTO(Int p_rcdap, (void));
STATIC_PROTO(Int p_rcdz, (void));
STATIC_PROTO(Int p_rcdzp, (void));
STATIC_PROTO(Int p_drcdap, (void));
STATIC_PROTO(Int p_drcdzp, (void));
STATIC_PROTO(Term GetDBTerm, (DBTerm *));
STATIC_PROTO(DBProp FetchDBPropFromKey, (Term, int, int, char *));
STATIC_PROTO(Int i_recorded, (DBProp,Term));
STATIC_PROTO(Int c_recorded, (int));
STATIC_PROTO(Int co_rded, (void));
STATIC_PROTO(Int in_rdedp, (void));
STATIC_PROTO(Int co_rdedp, (void));
STATIC_PROTO(Int p_first_instance, (void));
STATIC_PROTO(void ErasePendingRefs, (DBTerm *));
STATIC_PROTO(void RemoveDBEntry, (DBRef));
STATIC_PROTO(void EraseLogUpdCl, (LogUpdClause *));
STATIC_PROTO(void MyEraseClause, (DynamicClause *));
STATIC_PROTO(void PrepareToEraseClause, (DynamicClause *, DBRef));
STATIC_PROTO(void EraseEntry, (DBRef));
STATIC_PROTO(Int p_erase, (void));
STATIC_PROTO(Int p_eraseall, (void));
STATIC_PROTO(Int p_erased, (void));
STATIC_PROTO(Int p_instance, (void));
STATIC_PROTO(int NotActiveDB, (DBRef));
STATIC_PROTO(DBEntry *NextDBProp, (PropEntry *));
STATIC_PROTO(Int init_current_key, (void));
STATIC_PROTO(Int cont_current_key, (void));
STATIC_PROTO(Int cont_current_key_integer, (void));
STATIC_PROTO(Int p_rcdstatp, (void));
STATIC_PROTO(Int p_somercdedp, (void));
STATIC_PROTO(yamop * find_next_clause, (DBRef));
STATIC_PROTO(Int p_jump_to_next_dynamic_clause, (void));
#ifdef SFUNC
STATIC_PROTO(void SFVarIn, (Term));
STATIC_PROTO(void sf_include, (SFKeep *));
#endif
STATIC_PROTO(Int p_init_queue, (void));
STATIC_PROTO(Int p_enqueue, (void));
STATIC_PROTO(void keepdbrefs, (DBTerm *));
STATIC_PROTO(Int p_dequeue, (void));
STATIC_PROTO(void ErDBE, (DBRef));
STATIC_PROTO(void ReleaseTermFromDB, (DBTerm *));
STATIC_PROTO(PredEntry *new_lu_entry, (Term));
STATIC_PROTO(PredEntry *new_lu_int_key, (Int));
STATIC_PROTO(PredEntry *find_lu_entry, (Term));
STATIC_PROTO(DBProp find_int_key, (Int));
#if USE_SYSTEM_MALLOC
#define db_check_trail(x) { \
if (Unsigned(dbg->tofref) == Unsigned(x)) { \
goto error_tr_overflow; \
} \
}
#else
#define db_check_trail(x) { \
if (Unsigned(dbg->tofref) == Unsigned(x)) { \
goto error_tr_overflow; \
} \
}
#endif
static UInt new_trail_size(void)
{
UInt sz = (Yap_TrailTop-(ADDR)TR)/2;
if (sz < 64 * 1024L)
return 64 * 1024L;
if (sz > 1024*1024L)
return 1024*1024L;
return sz;
}
static int
recover_from_record_error(int nargs)
{
switch(Yap_Error_TYPE) {
case OUT_OF_STACK_ERROR:
if (!Yap_gcl(Yap_Error_Size, nargs, ENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
goto recover_record;
case OUT_OF_TRAIL_ERROR:
if (!Yap_growtrail(new_trail_size(), FALSE)) {
Yap_Error(OUT_OF_TRAIL_ERROR, TermNil, "YAP could not grow trail in recorda/3");
return FALSE;
}
goto recover_record;
case OUT_OF_HEAP_ERROR:
if (!Yap_growheap(FALSE, Yap_Error_Size, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, Yap_Error_Term, Yap_ErrorMessage);
return FALSE;
}
goto recover_record;
case OUT_OF_AUXSPACE_ERROR:
if (!Yap_ExpandPreAllocCodeSpace(Yap_Error_Size, NULL)) {
Yap_Error(OUT_OF_AUXSPACE_ERROR, Yap_Error_Term, Yap_ErrorMessage);
return FALSE;
}
goto recover_record;
default:
Yap_Error(Yap_Error_TYPE, Yap_Error_Term, Yap_ErrorMessage);
return FALSE;
}
recover_record:
Yap_Error_Size = 0;
Yap_Error_TYPE = YAP_NO_ERROR;
return TRUE;
}
#ifdef SUPPORT_HASH_TABLES
/* related property and hint on number of entries */
static void create_hash_table(DBProp p, Int hint) {
int off = sizeof(CELL)*4, out;
Int size;
if (hint < p->NOfEntries)
hint = p->NOfEntries;
while (off) {
Int limit = 1L << (off);
if (inp >= limit) {
out += off;
inp >>= off;
}
off >>= 1;
}
if ((size = 1L << out) < hint)
hint <<= 1;
/* clean up the table */
pt = tbl = (hash_db_entry *)AllocDBSpace(hint*sizeof(hash_db_entry));
for (i=0; i< hint; i++) {
pt->key = NULL;
pt++;
}
/* next insert the entries */
}
static void insert_in_table() {
}
static void remove_from_table() {
}
#endif
#ifdef IDB_LINK_TABLE
inline static CELL *cpcells(CELL *to, CELL *from, Int n)
{
#if HAVE_MEMMOVE
memmove((void *)to, (void *)from, (size_t)(n*sizeof(CELL)));
return(to+n);
#else
while (n-- >= 0) {
*to++ = *from++;
}
return(to);
#endif
}
static void linkblk(link_entry *r, CELL *c, CELL offs)
{
CELL p;
while ((p = (CELL)*r) != 0) {
Term t = c[p];
r++;
c[p] = AdjustIDBPtr(t, offs);
}
}
#endif
#ifdef IDB_USE_MBIT
inline static CELL *cpcells(register CELL *to, register CELL *from, Int n)
{
CELL *last = to + n;
register CELL off = ((CELL)to)-MBIT;
while (to <= last) {
register d0 = *from++;
if (MARKED(d0))
*to++ = AdjustIDBPtr(d0, off);
else
*to++ = d0;
}
return(to);
}
static CELL *linkcells(register CELL *to, Int n)
{
CELL *last = to + n;
register CELL off = ((CELL)to)-MBIT;
while(to <= last) {
register d0 = *to++;
if (MARKED(d0))
to[-1] = AdjustIDBPtr(d0, off);
}
return(to);
}
#endif
static Int cmpclls(CELL *a,CELL *b,Int n)
{
while (n-- > 0) {
if(*a++ != *b++) return FALSE;
}
return TRUE;
}
#if !THREADS
int Yap_DBTrailOverflow()
{
#ifdef IDB_USE_MBIT
return(FALSE);
#endif
#ifdef IDB_LINK_TABLE
return((CELL *)s_dbg->lr > (CELL *)s_dbg->tofref - 2048);
#endif
}
#endif
/* get DB entry for ap/arity; */
static Prop
FindDBPropHavingLock(AtomEntry *ae, int CodeDB, unsigned int arity, Term dbmod)
{
Prop p0;
DBProp p;
p = RepDBProp(p0 = ae->PropsOfAE);
while (p0 && (((p->KindOfPE & ~0x1) != (CodeDB|DBProperty)) ||
(p->ArityOfDB != arity) ||
((CodeDB & MkCode) && p->ModuleOfDB && p->ModuleOfDB != dbmod))) {
p = RepDBProp(p0 = p->NextOfPE);
}
return (p0);
}
/* get DB entry for ap/arity; */
static Prop
FindDBProp(AtomEntry *ae, int CodeDB, unsigned int arity, Term dbmod)
{
Prop out;
READ_LOCK(ae->ARWLock);
out = FindDBPropHavingLock(ae, CodeDB, arity, dbmod);
READ_UNLOCK(ae->ARWLock);
return(out);
}
/* These two functions allow us a fast lookup method in the data base */
/* PutMasks builds the mask and hash for a single argument */
inline static CELL
CalcKey(Term tw)
{
/* The first argument is known to be instantiated */
if (IsApplTerm(tw)) {
Functor f = FunctorOfTerm(tw);
if (IsExtensionFunctor(f)) {
if (f == FunctorDBRef) {
return(FunctorHash(tw)); /* Ref */
} /* if (f == FunctorLongInt || f == FunctorDouble) */
return(NumberHash(RepAppl(tw)[1]));
}
return(FunctorHash(f));
} else if (IsAtomOrIntTerm(tw)) {
if (IsAtomTerm(tw)) {
return(AtomHash(tw));
}
return(NumberHash(tw));
}
return(FunctorHash(FunctorList));
}
/* EvalMasks builds the mask and hash for up to three arguments of a term */
static CELL
EvalMasks(register Term tm, CELL *keyp)
{
if (IsVarTerm(tm)) {
*keyp = 0L;
return(0L);
} else if (IsApplTerm(tm)) {
Functor fun = FunctorOfTerm(tm);
if (IsExtensionFunctor(fun)) {
if (fun == FunctorDBRef) {
*keyp = FunctorHash(tm); /* Ref */
} else /* if (f == FunctorLongInt || f == FunctorDouble) */ {
*keyp = NumberHash(RepAppl(tm)[1]);
}
return(FourHashFieldMask);
} else {
unsigned int arity;
arity = ArityOfFunctor(fun);
#ifdef SFUNC
if (arity == SFArity) { /* do not even try to calculate masks */
*keyp = key;
return(FourHashFieldMask);
}
#endif
switch (arity) {
case 1:
{
Term tw = ArgOfTerm(1, tm);
if (IsNonVarTerm(tw)) {
*keyp = (FunctorHash(fun) & DualHashFieldMask) | (CalcKey(tw) << TWO_FIELDS_SHIFT);
return(FourHashFieldMask);
} else {
*keyp = (FunctorHash(fun) & DualHashFieldMask);
return(DualHashFieldMask);
}
}
case 2:
{
Term tw1, tw2;
CELL key, mask;
key = FunctorHash(fun) & DualHashFieldMask;
mask = DualHashFieldMask;
tw1 = ArgOfTerm(1, tm);
if (IsNonVarTerm(tw1)) {
key |= ((CalcKey(tw1) & HashFieldMask) << TWO_FIELDS_SHIFT);
mask |= (HashFieldMask << TWO_FIELDS_SHIFT);
}
tw2 = ArgOfTerm(2, tm);
if (IsNonVarTerm(tw2)) {
*keyp = key | (CalcKey(tw2) << THREE_FIELDS_SHIFT);
return(mask | (HashFieldMask << THREE_FIELDS_SHIFT));
} else {
*keyp = key;
return(mask);
}
}
default:
{
Term tw1, tw2, tw3;
CELL key, mask;
key = FunctorHash(fun) & HashFieldMask;
mask = HashFieldMask;
tw1 = ArgOfTerm(1, tm);
if (IsNonVarTerm(tw1)) {
key |= (CalcKey(tw1) & HashFieldMask) << ONE_FIELD_SHIFT;
mask |= HashFieldMask << ONE_FIELD_SHIFT;
}
tw2 = ArgOfTerm(2, tm);
if (IsNonVarTerm(tw2)) {
key |= (CalcKey(tw2) & HashFieldMask) << TWO_FIELDS_SHIFT;
mask |= HashFieldMask << TWO_FIELDS_SHIFT;
}
tw3 = ArgOfTerm(3, tm);
if (IsNonVarTerm(tw3)) {
*keyp = key | (CalcKey(tw3) << THREE_FIELDS_SHIFT);
return(mask | (HashFieldMask << THREE_FIELDS_SHIFT));
} else {
*keyp = key;
return(mask);
}
}
}
}
} else {
CELL key = (FunctorHash(FunctorList) & DualHashFieldMask);
CELL mask = DualHashFieldMask;
Term th = HeadOfTerm(tm), tt;
if (IsNonVarTerm(th)) {
mask |= (HashFieldMask << TWO_FIELDS_SHIFT);
key |= (CalcKey(th) << TWO_FIELDS_SHIFT);
}
tt = TailOfTerm(tm);
if (IsNonVarTerm(tt)) {
*keyp = key | (CalcKey(tt) << THREE_FIELDS_SHIFT);
return( mask|(HashFieldMask << THREE_FIELDS_SHIFT));
}
*keyp = key;
return(mask);
}
}
CELL
Yap_EvalMasks(register Term tm, CELL *keyp)
{
return EvalMasks(tm, keyp);
}
/* Called to inform that a new pointer to a data base entry has been added */
#define MarkThisRef(Ref) ((Ref)->NOfRefsTo ++ )
/* From a term, builds its representation in the data base */
/* otherwise, we just need to restore variables*/
typedef struct {
CELL *addr;
} visitel;
#define DB_UNWIND_CUNIF() \
while (visited < (visitel *)AuxSp) { \
RESET_VARIABLE(visited->addr); \
visited ++; \
}
/* no checking for overflow while building DB terms yet */
#define CheckDBOverflow(X) if (CodeMax+X >= (CELL *)visited-1024) { \
goto error; \
}
/* no checking for overflow while building DB terms yet */
#define CheckVisitOverflow() if ((CELL *)to_visit+1024 >= ASP) { \
goto error2; \
}
static CELL *
copy_long_int(CELL *st, CELL *pt)
{
/* first thing, store a link to the list before we move on */
st[0] = (CELL)FunctorLongInt;
st[1] = pt[1];
st[2] = EndSpecials;
/* now reserve space */
return st+3;
}
static CELL *
copy_double(CELL *st, CELL *pt)
{
/* first thing, store a link to the list before we move on */
st[0] = (CELL)FunctorDouble;
st[1] = pt[1];
#if SIZEOF_DOUBLE == 2*SIZEOF_LONG_INT
st[2] = pt[2];
st[3] = EndSpecials;
#else
st[2] = EndSpecials;
#endif
/* now reserve space */
return st+(2+SIZEOF_DOUBLE/SIZEOF_LONG_INT);
}
#ifdef USE_GMP
static CELL *
copy_big_int(CELL *st, CELL *pt)
{
Int sz =
sizeof(MP_INT)+
(((MP_INT *)(pt+1))->_mp_alloc*sizeof(mp_limb_t));
/* first functor */
st[0] = (CELL)FunctorBigInt;
/* then the actual number */
memcpy((void *)(st+1), (void *)(pt+1), sz);
st = st+1+sz/CellSize;
/* then the tail for gc */
st[0] = EndSpecials;
return st+1;
}
#endif /* BIG_INT */
#define DB_MARKED(d0) ((CELL *)(d0) < CodeMax && (CELL *)(d0) >= tbase)
/* This routine creates a complex term in the heap. */
static CELL *MkDBTerm(register CELL *pt0, register CELL *pt0_end,
register CELL *StoPoint,
CELL *CodeMax, CELL *tbase,
#ifdef COROUTINING
CELL *attachmentsp,
#endif
int *vars_foundp,
struct db_globs *dbg)
{
#if THREADS
#undef Yap_REGS
register REGSTORE *regp = Yap_regp;
#define Yap_REGS (*regp)
#endif
register visitel *visited = (visitel *)AuxSp;
/* store this in H */
register CELL **to_visit = (CELL **)H;
CELL **to_visit_base = to_visit;
/* where we are going to add a new pair */
int vars_found = 0;
#ifdef COROUTINING
Term ConstraintsTerm = TermNil;
CELL *origH = H;
#endif
CELL *CodeMaxBase = CodeMax;
loop:
while (pt0 <= pt0_end) {
CELL *ptd0 = pt0;
CELL d0 = *ptd0;
restart:
if (IsVarTerm(d0))
goto deref_var;
if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* we will need to link afterwards */
ap2 = RepAppl(d0);
#ifdef RATIONAL_TREES
if (ap2 >= tbase && ap2 < StoPoint) {
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall((CELL)(StoPoint)-(CELL)(tbase));
*StoPoint++ = d0;
++pt0;
continue;
}
#endif
#ifdef IDB_LINK_TABLE
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall((CELL)(StoPoint)-(CELL)(tbase));
#endif
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
switch((CELL)f) {
case (CELL)FunctorDBRef:
{
DBRef dbentry;
/* store now the correct entry */
dbentry = DBRefOfTerm(d0);
*StoPoint++ = d0;
#ifdef IDB_LINK_TABLE
dbg->lr--;
#endif
if (dbentry->Flags & LogUpdMask) {
LogUpdClause *cl = (LogUpdClause *)dbentry;
cl->ClRefCount++;
} else {
dbentry->NOfRefsTo++;
}
*--dbg->tofref = dbentry;
db_check_trail(dbg->lr);
/* just continue the loop */
++ pt0;
continue;
}
case (CELL)FunctorLongInt:
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl(CodeMax)|MBIT;
#else
*StoPoint++ = AbsAppl(CodeMax);
#endif
CheckDBOverflow(3);
CodeMax = copy_long_int(CodeMax, ap2);
++pt0;
continue;
#ifdef USE_GMP
case (CELL)FunctorBigInt:
CheckDBOverflow(2+Yap_SizeOfBigInt(d0));
/* first thing, store a link to the list before we move on */
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl(CodeMax)|MBIT;
#else
*StoPoint++ = AbsAppl(CodeMax);
#endif
CodeMax = copy_big_int(CodeMax, ap2);
++pt0;
continue;
#endif
case (CELL)FunctorDouble:
{
CELL *st = CodeMax;
CheckDBOverflow(4);
/* first thing, store a link to the list before we move on */
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl(st)|MBIT;
#else
*StoPoint++ = AbsAppl(st);
#endif
CodeMax = copy_double(CodeMax, ap2);
++pt0;
continue;
}
}
}
/* first thing, store a link to the list before we move on */
#ifdef IDB_USE_MBIT
*StoPoint++ = AbsAppl(CodeMax)|MBIT;
#else
*StoPoint++ = AbsAppl(CodeMax);
#endif
/* next, postpone analysis to the rest of the current list */
#ifdef RATIONAL_TREES
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit[3] = (CELL *)*pt0;
to_visit += 4;
*pt0 = StoPoint[-1];
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit += 3;
}
#endif
CheckVisitOverflow();
d0 = ArityOfFunctor(f);
pt0 = ap2+1;
pt0_end = ap2 + d0;
CheckDBOverflow(d0+1);
/* prepare for our new compound term */
/* first the functor */
*CodeMax++ = (CELL)f;
/* we'll be working here */
StoPoint = CodeMax;
/* now reserve space */
CodeMax += d0;
continue;
}
else if (IsPairTerm(d0)) {
/* we will need to link afterwards */
#ifdef RATIONAL_TREES
CELL *ap2 = RepPair(d0);
if (ap2 >= tbase && ap2 < StoPoint) {
*StoPoint++ = d0;
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall((CELL)(StoPoint)-(CELL)(tbase));
++pt0;
continue;
}
#endif
#ifdef IDB_LINK_TABLE
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall((CELL)(StoPoint)-(CELL)(tbase));
#endif
#ifdef IDB_USE_MBIT
*StoPoint++ =
AbsPair(CodeMax)|MBIT;
#else
*StoPoint++ = AbsPair(CodeMax);
#endif
/* next, postpone analysis to the rest of the current list */
#ifdef RATIONAL_TREES
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit[3] = (CELL *)*pt0;
to_visit += 4;
*pt0 = StoPoint[-1];
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0+1;
to_visit[1] = pt0_end;
to_visit[2] = StoPoint;
to_visit += 3;
}
#endif
CheckVisitOverflow();
/* new list */
/* we are working at CodeMax */
StoPoint = CodeMax;
/* set ptr to new term being analysed */
pt0 = RepPair(d0);
pt0_end = RepPair(d0) + 1;
/* reserve space for our new list */
CodeMax += 2;
CheckDBOverflow(2);
continue;
} else if (IsAtomOrIntTerm(d0)) {
*StoPoint++ = d0;
++pt0;
continue;
}
/* the code to dereference a variable */
deref_var:
if (!DB_MARKED(d0)) {
if (
#if SBA
d0 != 0
#else
d0 != (CELL)ptd0
#endif
) {
ptd0 = (Term *) d0;
d0 = *ptd0;
goto restart; /* continue dereferencing */
}
/* else just drop to found_var */
}
/* else just drop to found_var */
{
CELL displacement = (CELL)(StoPoint)-(CELL)(tbase);
pt0++;
/* first time we found this variable! */
if (!DB_MARKED(d0)) {
/* store previous value */
visited --;
visited->addr = ptd0;
CheckDBOverflow(1);
/* variables need to be offset at read time */
*ptd0 = (CELL)StoPoint;
#if SBA
/* the copy we keep will be an empty variable */
*StoPoint++ = 0;
#else
#ifdef IDB_USE_MBIT
/* say we've seen the variable, and make it point to its
offset */
/* the copy we keep will be the current displacement */
*StoPoint = ((CELL)StoPoint | MBIT);
StoPoint++;
#else
/* the copy we keep will be the current displacement */
*StoPoint = (CELL)StoPoint;
StoPoint++;
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall(displacement);
#endif
#endif
/* indicate we found variables */
vars_found++;
#ifdef COROUTINING
if (SafeIsAttachedTerm((CELL)ptd0)) {
Term t[4];
int sz = to_visit-to_visit_base;
H = (CELL *)to_visit;
/* store the constraint away for: we need a back pointer to
the variable, the constraint in some cannonical form, what type
of constraint, and a list pointer */
t[0] = (CELL)ptd0;
t[1] = attas[ExtFromCell(ptd0)].to_term_op(ptd0);
t[2] = MkIntegerTerm(ExtFromCell(ptd0));
t[3] = ConstraintsTerm;
ConstraintsTerm = Yap_MkApplTerm(FunctorClist, 4, t);
if (H+sz >= ASP) {
goto error2;
}
memcpy((void *)H, (void *)(to_visit_base), sz*sizeof(CELL *));
to_visit_base = (CELL **)H;
to_visit = to_visit_base+sz;
}
#endif
continue;
} else {
/* references need to be offset at read time */
#ifdef IDB_LINK_TABLE
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall(displacement);
#endif
/* store the offset */
#ifdef IDB_USE_MBIT
*StoPoint = d0 | MBIT;
#else
*StoPoint = d0;
#endif
StoPoint++;
continue;
}
}
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit_base) {
#ifdef RATIONAL_TREES
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
#else
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
CheckDBOverflow(1);
StoPoint = to_visit[2];
#endif
goto loop;
}
#ifdef COROUTINING
/* we still may have constraints to do */
if (ConstraintsTerm != TermNil &&
!IN_BETWEEN(tbase,RepAppl(ConstraintsTerm),CodeMax)) {
*attachmentsp = (CELL)(CodeMax+1);
pt0 = RepAppl(ConstraintsTerm)+1;
pt0_end = RepAppl(ConstraintsTerm)+4;
StoPoint = CodeMax;
*StoPoint++ = RepAppl(ConstraintsTerm)[0];
ConstraintsTerm = AbsAppl(CodeMax);
CheckDBOverflow(1);
CodeMax += 5;
goto loop;
}
#endif
/* we're done */
*vars_foundp = vars_found;
DB_UNWIND_CUNIF();
#ifdef COROUTINING
H = origH;
#endif
return CodeMax;
error:
Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR;
Yap_Error_Size = 1024+((char *)AuxSp-(char *)CodeMaxBase);
*vars_foundp = vars_found;
#ifdef RATIONAL_TREES
while (to_visit > to_visit_base) {
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
}
#endif
DB_UNWIND_CUNIF();
#ifdef COROUTINING
H = origH;
#endif
return NULL;
error2:
Yap_Error_TYPE = OUT_OF_STACK_ERROR;
*vars_foundp = vars_found;
#ifdef RATIONAL_TREES
while (to_visit > to_visit_base) {
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
}
#endif
DB_UNWIND_CUNIF();
#ifdef COROUTINING
H = origH;
#endif
return NULL;
error_tr_overflow:
Yap_Error_TYPE = OUT_OF_TRAIL_ERROR;
*vars_foundp = vars_found;
#ifdef RATIONAL_TREES
while (to_visit > to_visit_base) {
to_visit -= 4;
pt0 = to_visit[0];
pt0_end = to_visit[1];
StoPoint = to_visit[2];
pt0[-1] = (CELL)to_visit[3];
}
#endif
DB_UNWIND_CUNIF();
#ifdef COROUTINING
H = origH;
#endif
return NULL;
#if THREADS
#undef Yap_REGS
#define Yap_REGS (*Yap_regp)
#endif /* THREADS */
}
#ifdef SFUNC
/*
* The sparse terms existing in the structure are to be included now. This
* means simple copy for constant terms but, some care about variables If
* they have appeared before, we will know by their position number
*/
static void
sf_include(SFKeep *sfp, struct db_globs *dbg)
SFKeep *sfp;
{
Term Tm = sfp->SName;
CELL *tp = ArgsOfSFTerm(Tm);
Register Term *StoPoint = ntp;
CELL *displacement = CodeAbs;
CELL arg_no;
Term tvalue;
int j = 3;
if (sfp->SFather != NIL)
*(sfp->SFather) = AbsAppl(displacement);
*StoPoint++ = FunctorOfTerm(Tm);
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall(displacement + 1);
*StoPoint++ = (Term) (displacement + 1);
while (*tp) {
arg_no = *tp++;
tvalue = Derefa(tp++);
if (IsVarTerm(tvalue)) {
if (((VarKeep *) tvalue)->NOfVars != 0) {
*StoPoint++ = arg_no;
db_check_trail(dbg->lr+1);
*dbg->lr++ = ToSmall(displacement + j);
if (((VarKeep *) tvalue)->New == 0)
*StoPoint++ = ((VarKeep *) tvalue)->New = Unsigned(displacement + j);
else
*StoPoint++ = ((VarKeep *) tvalue)->New;
j += 2;
}
} else if (IsAtomicTerm(tvalue)) {
*StoPoint++ = arg_no;
*StoPoint++ = tvalue;
j += 2;
} else {
Yap_Error_TYPE = TYPE_ERROR_DBTERM;
Yap_Error_Term = d0;
Yap_ErrorMessage = "wrong term in SF";
return(NULL);
}
}
*StoPoint++ = 0;
ntp = StoPoint;
CodeAbs = displacement + j;
}
#endif
/*
* This function is used to check if one of the terms in the idb is the
* constant to_compare
*/
inline static DBRef
check_if_cons(DBRef p, Term to_compare)
{
while (p != NIL
&& (p->Flags & (DBCode | ErasedMask | DBVar | DBNoVars | DBComplex)
|| p->DBT.Entry != Unsigned(to_compare)))
p = NextDBRef(p);
return (p);
}
/*
* This function is used to check if one of the terms in the idb is a prolog
* variable
*/
static DBRef
check_if_var(DBRef p)
{
while (p != NIL &&
p->Flags & (DBCode | ErasedMask | DBAtomic | DBNoVars | DBComplex ))
p = NextDBRef(p);
return (p);
}
/*
* This function is used to check if a Prolog complex term with variables
* already exists in the idb for that key. The comparison is alike ==, but
* only the relative binding of variables, not their position is used. The
* comparison is done using the function cmpclls only. The function could
* only fail if a functor was matched to a Prolog term, but then, it should
* have failed before because the structure of term would have been very
* different
*/
static DBRef
check_if_wvars(DBRef p, unsigned int NOfCells, CELL *BTptr)
{
CELL *memptr;
do {
while (p != NIL &&
p->Flags & (DBCode | ErasedMask | DBAtomic | DBNoVars | DBVar))
p = NextDBRef(p);
if (p == NIL)
return (p);
memptr = CellPtr(&(p->DBT.Contents));
if (NOfCells == p->DBT.NOfCells
&& cmpclls(memptr, BTptr, NOfCells))
return (p);
else
p = NextDBRef(p);
} while (TRUE);
return (NIL);
}
#ifdef IDB_LINK_TABLE
static int
scheckcells(int NOfCells, register CELL *m1, register CELL *m2, link_entry *lp, register CELL bp)
{
CELL base = Unsigned(m1);
link_entry *lp1;
while (NOfCells-- > 0) {
Register CELL r1, r2;
r1 = *m1++;
r2 = *m2++;
if (r1 == r2)
continue;
else if (r2 + bp == r1) {
/* link pointers may not have been generated in the */
/* same order */
/* make sure r1 is really an offset. */
lp1 = lp;
r1 = m1 - (CELL *)base;
while (*lp1 != r1 && *lp1)
lp1++;
if (!(*lp1))
return (FALSE);
/* keep the old link pointer for future search. */
/* vsc: this looks like a bug!!!! */
/* *lp1 = *lp++; */
} else {
return (FALSE);
}
}
return (TRUE);
}
#endif
/*
* the cousin of the previous, but with things a bit more sophisticated.
* mtchcells, if an error was an found, needs to test ........
*/
static DBRef
check_if_nvars(DBRef p, unsigned int NOfCells, CELL *BTptr, struct db_globs *dbg)
{
CELL *memptr;
do {
while (p != NIL &&
p->Flags & (DBCode | ErasedMask | DBAtomic | DBComplex | DBVar))
p = NextDBRef(p);
if (p == NIL)
return (p);
memptr = CellPtr(p->DBT.Contents);
#ifdef IDB_LINK_TABLE
if (scheckcells(NOfCells, memptr, BTptr, dbg->LinkAr, Unsigned(p->DBT.Contents-1)))
#else
if (NOfCells == *memptr++
&& cmpclls(memptr, BTptr, NOfCells))
#endif
return (p);
else
p = NextDBRef(p);
} while (TRUE);
return (NIL);
}
static DBRef
generate_dberror_msg(int errnumb, UInt sz, char *msg)
{
Yap_Error_Size = sz;
Yap_Error_TYPE = errnumb;
Yap_Error_Term = TermNil;
Yap_ErrorMessage = msg;
return NULL;
}
static DBRef
CreateDBWithDBRef(Term Tm, DBProp p)
{
DBRef pp, dbr = DBRefOfTerm(Tm);
DBTerm *ppt;
if (p == NULL) {
ppt = (DBTerm *)AllocDBSpace(sizeof(DBTerm)+2*sizeof(CELL));
if (ppt == NULL) {
return generate_dberror_msg(OUT_OF_HEAP_ERROR, TermNil, "could not allocate space");
}
pp = (DBRef)ppt;
} else {
pp = AllocDBSpace(DBLength(2*sizeof(DBRef)));
if (pp == NULL) {
return generate_dberror_msg(OUT_OF_HEAP_ERROR, 0, "could not allocate space");
}
pp->id = FunctorDBRef;
pp->Flags = DBNoVars|DBComplex|DBWithRefs;
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
ppt = &(pp->DBT);
}
if (dbr->Flags & LogUpdMask) {
LogUpdClause *cl = (LogUpdClause *)dbr;
cl->ClRefCount++;
} else {
dbr->NOfRefsTo++;
}
ppt->Entry = Tm;
ppt->NOfCells = 0;
ppt->Contents[0] = (CELL)NULL;
ppt->Contents[1] = (CELL)dbr;
ppt->DBRefs = (DBRef *)(ppt->Contents+2);
#ifdef COROUTINING
ppt->attachments = 0L;
#endif
return pp;
}
static DBTerm *
CreateDBTermForAtom(Term Tm, UInt extra_size) {
DBTerm *ppt;
ADDR ptr;
ptr = (ADDR)AllocDBSpace(extra_size+sizeof(DBTerm));
if (ptr == NULL) {
return (DBTerm *)generate_dberror_msg(OUT_OF_HEAP_ERROR, 0, "could not allocate space");
}
ppt = (DBTerm *)(ptr+extra_size);
ppt->NOfCells = 0;
ppt->DBRefs = NULL;
#ifdef COROUTINING
ppt->attachments = 0;
#endif
ppt->DBRefs = NULL;
ppt->Entry = Tm;
return ppt;
}
static DBTerm *
CreateDBTermForVar(UInt extra_size)
{
DBTerm *ppt;
ADDR ptr;
ptr = (ADDR)AllocDBSpace(extra_size+sizeof(DBTerm));
if (ptr == NULL) {
return (DBTerm *)generate_dberror_msg(OUT_OF_HEAP_ERROR, 0, "could not allocate space");
}
ppt = (DBTerm *)(ptr+extra_size);
ppt->NOfCells = 0;
ppt->DBRefs = NULL;
#ifdef COROUTINING
ppt->attachments = 0;
#endif
ppt->DBRefs = NULL;
ppt->Entry = (CELL)(&(ppt->Entry));
return ppt;
}
static DBRef
CreateDBRefForAtom(Term Tm, DBProp p, int InFlag, struct db_globs *dbg) {
Register DBRef pp;
SMALLUNSGN flag;
flag = DBAtomic;
if (InFlag & MkIfNot && (dbg->found_one = check_if_cons(p->First, Tm)))
return dbg->found_one;
pp = AllocDBSpace(DBLength(NIL));
if (pp == NIL) {
return generate_dberror_msg(OUT_OF_HEAP_ERROR, 0, "could not allocate space");
}
pp->id = FunctorDBRef;
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
pp->Flags = flag;
pp->Code = NULL;
pp->DBT.Entry = Tm;
pp->DBT.DBRefs = NULL;
pp->DBT.NOfCells = 0;
#ifdef COROUTINING
pp->DBT.attachments = 0;
#endif
return(pp);
}
static DBRef
CreateDBRefForVar(Term Tm, DBProp p, int InFlag, struct db_globs *dbg) {
Register DBRef pp;
if (InFlag & MkIfNot && (dbg->found_one = check_if_var(p->First)))
return dbg->found_one;
pp = AllocDBSpace(DBLength(NULL));
if (pp == NULL) {
return generate_dberror_msg(OUT_OF_HEAP_ERROR, 0, "could not allocate space");
}
pp->id = FunctorDBRef;
pp->Flags = DBVar;
pp->DBT.Entry = (CELL) Tm;
pp->Code = NULL;
pp->DBT.NOfCells = 0;
pp->DBT.DBRefs = NULL;
#ifdef COROUTINING
pp->DBT.attachments = 0;
#endif
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
return(pp);
}
static DBRef
CreateDBStruct(Term Tm, DBProp p, int InFlag, int *pstat, UInt extra_size, struct db_globs *dbg)
{
Register Term tt, *nar = NIL;
SMALLUNSGN flag;
#ifdef IDB_LINK_TABLE
int NOfLinks = 0;
#endif
/* place DBRefs in ConsultStack */
DBRef *TmpRefBase = (DBRef *)Yap_TrailTop;
CELL *CodeAbs; /* how much code did we find */
int vars_found;
Yap_Error_TYPE = YAP_NO_ERROR;
if (p == NULL) {
if (IsVarTerm(Tm)) {
#ifdef COROUTINING
if (!SafeIsAttachedTerm(Tm)) {
#endif
DBRef out = (DBRef)CreateDBTermForVar(extra_size);
*pstat = TRUE;
return out;
#ifdef COROUTINING
}
#endif
} else if (IsAtomOrIntTerm(Tm)) {
DBRef out = (DBRef)CreateDBTermForAtom(Tm, extra_size);
*pstat = FALSE;
return out;
}
} else {
if (IsVarTerm(Tm)
#ifdef COROUTINING
&& !SafeIsAttachedTerm(Tm)
#endif
) {
*pstat = TRUE;
return CreateDBRefForVar(Tm, p, InFlag, dbg);
} else if (IsAtomOrIntTerm(Tm)) {
return CreateDBRefForAtom(Tm, p, InFlag, dbg);
}
}
/* next, let's process a compound term */
{
DBTerm *ppt, *ppt0;
DBRef pp, pp0;
Term *ntp0, *ntp;
unsigned int NOfCells = 0;
#ifdef COROUTINING
CELL attachments = 0;
#endif
dbg->tofref = TmpRefBase;
if (p == NULL) {
ADDR ptr = Yap_PreAllocCodeSpace();
ppt0 = (DBTerm *)(ptr+extra_size);
pp0 = (DBRef)ppt0;
} else {
pp0 = (DBRef)Yap_PreAllocCodeSpace();
ppt0 = &(pp0->DBT);
}
if ((ADDR)ppt0 >= (ADDR)AuxSp-1024) {
Yap_Error_Size = (UInt)(extra_size+sizeof(ppt0));
Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR;
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return NULL;
}
ntp0 = ppt0->Contents;
#ifdef IDB_LINK_TABLE
dbg->lr = dbg->LinkAr = (link_entry *)TR;
#endif
#ifdef COROUTINING
/* attachment */
if (IsVarTerm(Tm)) {
tt = (CELL)(ppt0->Contents);
ntp = MkDBTerm(VarOfTerm(Tm), VarOfTerm(Tm), ntp0, ntp0+1, ntp0-1,
&attachments,
&vars_found,
dbg);
if (ntp == NULL) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return(NULL);
}
} else
#endif
if (IsPairTerm(Tm)) {
/* avoid null pointers!! */
tt = AbsPair(ppt0->Contents);
ntp = MkDBTerm(RepPair(Tm), RepPair(Tm)+1, ntp0, ntp0+2, ntp0-1,
#ifdef COROUTINING
&attachments,
#endif
&vars_found, dbg);
if (ntp == NULL) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return(NULL);
}
}
else {
unsigned int arity;
Functor fun;
tt = AbsAppl(ppt0->Contents);
/* we need to store the functor manually */
fun = FunctorOfTerm(Tm);
if (IsExtensionFunctor(fun)) {
switch((CELL)fun) {
case (CELL)FunctorDouble:
ntp = copy_double(ntp0, RepAppl(Tm));
break;
case (CELL)FunctorDBRef:
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return CreateDBWithDBRef(Tm, p);
#ifdef USE_GMP
case (CELL)FunctorBigInt:
ntp = copy_big_int(ntp0, RepAppl(Tm));
break;
#endif
default: /* LongInt */
ntp = copy_long_int(ntp0, RepAppl(Tm));
break;
}
} else {
*ntp0 = (CELL)fun;
arity = ArityOfFunctor(fun);
ntp = MkDBTerm(RepAppl(Tm)+1,
RepAppl(Tm)+arity,
ntp0+1, ntp0+1+arity, ntp0-1,
#ifdef COROUTINING
&attachments,
#endif
&vars_found, dbg);
if (ntp == NULL) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return(NULL);
}
}
}
CodeAbs = (CELL *)((CELL)ntp-(CELL)ntp0);
if (Yap_Error_TYPE) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return (NULL); /* Error Situation */
}
NOfCells = ntp - ntp0; /* End Of Code Info */
#ifdef IDB_LINK_TABLE
*dbg->lr++ = 0;
NOfLinks = (dbg->lr - dbg->LinkAr);
#endif
if (vars_found || InFlag & InQueue) {
/*
* Take into account the fact that one needs an entry
* for the number of links
*/
flag = DBComplex;
#ifdef IDB_LINK_TABLE
CodeAbs += CellPtr(dbg->lr) - CellPtr(dbg->LinkAr);
if ((CELL *)((char *)ntp0+(CELL)CodeAbs) > AuxSp) {
Yap_Error_Size = (UInt)DBLength(CodeAbs);
Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR;
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return(NULL);
}
#endif
if ((InFlag & MkIfNot) && (dbg->found_one = check_if_wvars(p->First, NOfCells, ntp0))) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return dbg->found_one;
}
} else {
flag = DBNoVars;
if ((InFlag & MkIfNot) && (dbg->found_one = check_if_nvars(p->First, NOfCells, ntp0, dbg))) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return dbg->found_one;
}
}
if (dbg->tofref != TmpRefBase) {
CodeAbs += (TmpRefBase - dbg->tofref) + 1;
if ((CELL *)((char *)ntp0+(CELL)CodeAbs) > AuxSp) {
Yap_Error_Size = (UInt)DBLength(CodeAbs);
Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR;
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return NULL;
}
flag |= DBWithRefs;
}
#ifdef IDB_LINK_TABLE
#if SIZEOF_LINK_ENTRY==2
if (Unsigned(CodeAbs) >= 0x40000) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return generate_dberror_msg(SYSTEM_ERROR, 0, "trying to store term larger than 256KB");
}
#endif
#endif
if (p == NULL) {
ADDR ptr = Yap_AllocCodeSpace((CELL)CodeAbs+extra_size+sizeof(DBTerm));
ppt = (DBTerm *)(ptr+extra_size);
if (ptr == NULL) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return generate_dberror_msg(OUT_OF_HEAP_ERROR, (UInt)DBLength(CodeAbs), "heap crashed against stacks");
}
pp = (DBRef)ppt;
} else {
pp = AllocDBSpace(DBLength(CodeAbs));
if (pp == NULL) {
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return generate_dberror_msg(OUT_OF_HEAP_ERROR, (UInt)DBLength(CodeAbs), "heap crashed against stacks");
}
pp->id = FunctorDBRef;
pp->Flags = flag;
INIT_LOCK(pp->lock);
INIT_DBREF_COUNT(pp);
ppt = &(pp->DBT);
}
if (flag & DBComplex) {
#ifdef IDB_LINK_TABLE
link_entry *woar;
#endif /* IDB_LINK_TABLE */
ppt->NOfCells = NOfCells;
#ifdef COROUTINING
ppt->attachments = attachments;
#endif
if (pp0 != pp) {
nar = ppt->Contents;
#ifdef IDB_LINK_TABLE
nar = (Term *) cpcells(CellPtr(nar), ntp0, Unsigned(NOfCells));
#endif
#ifdef IDB_USE_MBIT
memcpy((void *)nar, (const void *)ntp0,
(size_t)((NOfCells+1)*sizeof(CELL)));
nar += NOfCells+1;
#endif
} else {
nar = ppt->Contents + Unsigned(NOfCells);
}
#ifdef IDB_LINK_TABLE
woar = (link_entry *)nar;
memcpy((void *)woar,(const void *)dbg->LinkAr,(size_t)(NOfLinks*sizeof(link_entry)));
woar += NOfLinks;
#ifdef ALIGN_LONGS
#if SIZEOF_INT_P==8
while ((Unsigned(woar) & 7) != 0)
woar++;
#else
if ((Unsigned(woar) & 3) != 0)
woar++;
#endif
#endif
nar = (Term *) (woar);
#endif
*pstat = TRUE;
} else if (flag & DBNoVars) {
if (pp0 != pp) {
nar = (Term *) cpcells(CellPtr(ppt->Contents), ntp0, Unsigned(NOfCells));
} else {
#ifdef IDB_LINK_TABLE
nar = ppt->Contents + Unsigned(NOfCells);
#endif
#ifdef IDB_USE_MBIT
/* we still need to link */
nar = (Term *) linkcells(ntp0, NOfCells);
#endif
}
ppt->NOfCells = NOfCells;
}
if (ppt != ppt0) {
#ifdef IDB_LINK_TABLE
linkblk(dbg->LinkAr, CellPtr(ppt->Contents-1), (CELL)ppt-(CELL)ppt0);
#endif
ppt->Entry = AdjustIDBPtr(tt,(CELL)ppt-(CELL)ppt0);
#ifdef COROUTINING
if (attachments)
ppt->attachments = AdjustIDBPtr(attachments,(CELL)ppt-(CELL)ppt0);
else
ppt->attachments = 0L;
#endif
} else {
ppt->Entry = tt;
#ifdef COROUTINING
ppt->attachments = attachments;
#endif
}
if (flag & DBWithRefs) {
DBRef *ptr = TmpRefBase, *rfnar = (DBRef *)nar;
*rfnar++ = NULL;
while (ptr != dbg->tofref)
*rfnar++ = *--ptr;
ppt->DBRefs = rfnar;
} else {
ppt->DBRefs = NULL;
}
Yap_ReleasePreAllocCodeSpace((ADDR)pp0);
return pp;
}
}
static DBRef
record(int Flag, Term key, Term t_data, Term t_code)
{
Register Term twork = key;
Register DBProp p;
Register DBRef x;
int needs_vars;
struct db_globs dbg;
s_dbg = &dbg;
dbg.found_one = NULL;
#ifdef SFUNC
FathersPlace = NIL;
#endif
if (EndOfPAEntr(p = FetchDBPropFromKey(twork, Flag & MkCode, TRUE, "record/3"))) {
return(NULL);
}
if ((x = CreateDBStruct(t_data, p, Flag, &needs_vars, 0, &dbg)) == NULL) {
return (NULL);
}
if ((Flag & MkIfNot) && dbg.found_one)
return (NULL);
TRAIL_REF(x);
if (x->Flags & (DBNoVars|DBComplex))
x->Mask = EvalMasks(t_data, &x->Key);
else
x->Mask = x->Key = 0;
if (Flag & MkCode)
x->Flags |= DBCode;
else
x->Flags |= DBNoCode;
x->Parent = p;
#if defined(YAPOR) || defined(THREADS)
x->Flags |= DBClMask;
x->ref_count = 1;
#else
x->Flags |= (InUseMask | DBClMask);
#endif
x->NOfRefsTo = 0;
WRITE_LOCK(p->DBRWLock);
if (p->F0 == NULL) {
p->F0 = p->L0 = x;
x->p = x->n = NULL;
} else {
if (Flag & MkFirst) {
x->n = p->F0;
p->F0->p = x;
p->F0 = x;
x->p = NULL;
} else {
x->p = p->L0;
p->L0->n = x;
p->L0 = x;
x->n = NULL;
}
}
if (p->First == NIL) {
p->First = p->Last = x;
x->Prev = x->Next = NIL;
} else if (Flag & MkFirst) {
x->Prev = NIL;
(p->First)->Prev = x;
x->Next = p->First;
p->First = x;
} else {
x->Next = NIL;
(p->Last)->Next = x;
x->Prev = p->Last;
p->Last = x;
}
if (Flag & MkCode) {
x->Code = (yamop *) IntegerOfTerm(t_code);
}
WRITE_UNLOCK(p->DBRWLock);
return (x);
}
/* add a new entry next to an old one */
static DBRef
record_at(int Flag, DBRef r0, Term t_data, Term t_code)
{
Register DBProp p;
Register DBRef x;
int needs_vars;
struct db_globs dbg;
s_dbg = &dbg;
#ifdef SFUNC
FathersPlace = NIL;
#endif
p = r0->Parent;
if ((x = CreateDBStruct(t_data, p, Flag, &needs_vars, 0, &dbg)) == NULL) {
return (NULL);
}
TRAIL_REF(x);
if (x->Flags & (DBNoVars|DBComplex))
x->Mask = EvalMasks(t_data, &x->Key);
else
x->Mask = x->Key = 0;
if (Flag & MkCode)
x->Flags |= DBCode;
else
x->Flags |= DBNoCode;
x->Parent = p;
#if defined(YAPOR) || defined(THREADS)
x->Flags |= DBClMask;
x->ref_count = 1;
#else
x->Flags |= (InUseMask | DBClMask);
#endif
x->NOfRefsTo = 0;
WRITE_LOCK(p->DBRWLock);
if (Flag & MkFirst) {
x->n = r0;
x->p = r0->p;
if (p->F0 == r0) {
p->F0 = x;
} else {
r0->p->n = x;
}
r0->p = x;
} else {
x->p = r0;
x->n = r0->n;
if (p->L0 == r0) {
p->L0 = x;
} else {
r0->n->p = x;
}
r0->n = x;
}
if (Flag & MkFirst) {
x->Prev = r0->Prev;
x->Next = r0;
if (p->First == r0) {
p->First = x;
} else {
r0->Prev->Next = x;
}
r0->Prev = x;
} else {
x->Next = r0->Next;
x->Prev = r0;
if (p->Last == r0) {
p->Last = x;
} else {
r0->Next->Prev = x;
}
r0->Next = x;
}
if (Flag & WithRef) {
x->Code = (yamop *) IntegerOfTerm(t_code);
}
WRITE_UNLOCK(p->DBRWLock);
return (x);
}
static LogUpdClause *
new_lu_db_entry(Term t, PredEntry *pe)
{
DBTerm *x;
LogUpdClause *cl;
yamop *ipc;
int needs_vars = FALSE;
struct db_globs dbg;
s_dbg = &dbg;
ipc = NEXTOP(((LogUpdClause *)NULL)->ClCode,e);
if ((x = (DBTerm *)CreateDBStruct(t, NULL, 0, &needs_vars, (UInt)ipc, &dbg)) == NULL) {
return NULL; /* crash */
}
cl = (LogUpdClause *)((ADDR)x-(UInt)ipc);
ipc = cl->ClCode;
cl->Id = FunctorDBRef;
cl->ClFlags = LogUpdMask;
cl->ClSource = x;
cl->ClRefCount = 0;
cl->ClPred = pe;
cl->ClExt = NULL;
cl->ClPrev = cl->ClNext = NULL;
cl->ClSize = ((CODEADDR)&(x->Contents)-(CODEADDR)cl)+x->NOfCells*sizeof(CELL);
#if defined(YAPOR) || defined(THREADS)
INIT_LOCK(cl->ClLock);
INIT_CLREF_COUNT(cl);
#endif
if (needs_vars)
ipc->opc = Yap_opcode(_copy_idb_term);
else
ipc->opc = Yap_opcode(_unify_idb_term);
return cl;
}
LogUpdClause *
Yap_new_ludbe(Term t, PredEntry *pe, UInt nargs)
{
LogUpdClause *x;
Yap_Error_Size = 0;
while ((x = new_lu_db_entry(t, pe)) == NULL) {
if (Yap_Error_TYPE == YAP_NO_ERROR) {
break;
} else {
XREGS[nargs+1] = t;
if (recover_from_record_error(nargs+1)) {
t = Deref(XREGS[nargs+1]);
} else {
return FALSE;
}
}
}
return x;
}
static LogUpdClause *
record_lu(PredEntry *pe, Term t, int position)
{
LogUpdClause *cl;
if ((cl = new_lu_db_entry(t, pe)) == NULL) {
return NULL;
}
WRITE_LOCK(pe->PRWLock);
#if defined(YAPOR) || defined(THREADS)
WPP = pe;
#endif
#ifdef LOW_PROF
if (ProfilerOn &&
Yap_OffLineProfiler) {
Yap_inform_profiler_of_clause(cl->ClCode, (yamop *)(cl+cl->ClSize), pe, 0);
}
#endif /* LOW_PROF */
Yap_add_logupd_clause(pe, cl, (position == MkFirst ? 2 : 0));
#if defined(YAPOR) || defined(THREADS)
WPP = NULL;
#endif
WRITE_UNLOCK(pe->PRWLock);
return cl;
}
static LogUpdClause *
record_lu_at(int position, LogUpdClause *ocl, Term t)
{
LogUpdClause *cl;
PredEntry *pe;
LOCK(ocl->ClLock);
pe = ocl->ClPred;
if ((cl = new_lu_db_entry(t,pe)) == NULL) {
return NULL;
}
WRITE_LOCK(pe->PRWLock);
if(pe->cs.p_code.NOfClauses > 1)
Yap_RemoveIndexation(pe);
if (position == MkFirst) {
/* add before current clause */
cl->ClNext = ocl;
if (ocl->ClCode == pe->cs.p_code.FirstClause) {
cl->ClPrev = NULL;
pe->cs.p_code.FirstClause = cl->ClCode;
} else {
cl->ClPrev = ocl->ClPrev;
ocl->ClPrev->ClNext = cl;
}
ocl->ClPrev = cl;
} else {
/* add after current clause */
cl->ClPrev = ocl;
if (ocl->ClCode == pe->cs.p_code.LastClause) {
cl->ClNext = NULL;
pe->cs.p_code.LastClause = cl->ClCode;
} else {
cl->ClNext = ocl->ClNext;
ocl->ClNext->ClPrev = cl;
}
ocl->ClNext = cl;
}
pe->cs.p_code.NOfClauses++;
WRITE_UNLOCK(pe->PRWLock);
UNLOCK(ocl->ClLock);
return cl;
}
/* recorda(+Functor,+Term,-Ref) */
static Int
p_rcda(void)
{
/* Idiotic xlc's cpp does not work with ARG1 within MkDBRefTerm */
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
PredEntry *pe = NULL;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
pe = find_lu_entry(t1);
Yap_Error_Size = 0;
restart_record:
if (pe) {
LogUpdClause *cl;
cl = record_lu(pe, t2, MkFirst);
if (cl != NULL) {
TRAIL_CLREF(cl);
#if defined(YAPOR) || defined(THREADS)
INC_CLREF_COUNT(cl);
#else
cl->ClFlags |= InUseMask;
#endif
TRef = MkDBRefTerm((DBRef)cl);
} else {
TRef = TermNil;
}
} else {
TRef = MkDBRefTerm(record(MkFirst, t1, t2, Unsigned(0)));
}
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(3)) {
t2 = Deref(ARG2);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
/* '$recordap'(+Functor,+Term,-Ref) */
static Int
p_rcdap(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
if (!IsVarTerm(Deref(ARG3)))
return FALSE;
Yap_Error_Size = 0;
restart_record:
TRef = MkDBRefTerm(record(MkFirst | MkCode, t1, t2, Unsigned(0)));
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(3)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
/* recorda_at(+DBRef,+Term,-Ref) */
static Int
p_rcda_at(void)
{
/* Idiotic xlc's cpp does not work with ARG1 within MkDBRefTerm */
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
DBRef dbr;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "recorda_at/3");
return(FALSE);
}
if (!IsDBRefTerm(t1)) {
Yap_Error(TYPE_ERROR_DBREF, t1, "recorda_at/3");
return(FALSE);
}
Yap_Error_Size = 0;
restart_record:
dbr = DBRefOfTerm(t1);
if (dbr->Flags & ErasedMask) {
/* doesn't make sense */
return FALSE;
}
if (dbr->Flags & LogUpdMask) {
TRef = MkDBRefTerm((DBRef)record_lu_at(MkFirst, (LogUpdClause *)dbr, t2));
} else {
TRef = MkDBRefTerm(record_at(MkFirst, DBRefOfTerm(t1), t2, Unsigned(0)));
}
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(3)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
/* recordz(+Functor,+Term,-Ref) */
static Int
p_rcdz(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
PredEntry *pe;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
pe = find_lu_entry(t1);
Yap_Error_Size = 0;
restart_record:
if (pe) {
LogUpdClause *cl = record_lu(pe, t2, MkLast);
if (cl != NULL) {
TRAIL_CLREF(cl);
#if defined(YAPOR) || defined(THREADS)
INC_CLREF_COUNT(cl);
#else
cl->ClFlags |= InUseMask;
#endif
TRef = MkDBRefTerm((DBRef)cl);
} else {
TRef = TermNil;
}
} else {
TRef = MkDBRefTerm(record(MkLast, t1, t2, Unsigned(0)));
}
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(3)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
/* recordz(+Functor,+Term,-Ref) */
Int
Yap_Recordz(Atom at, Term t2)
{
PredEntry *pe;
pe = find_lu_entry(MkAtomTerm(at));
Yap_Error_Size = 0;
restart_record:
if (pe) {
record_lu(pe, t2, MkLast);
} else {
record(MkLast, MkAtomTerm(at), t2, Unsigned(0));
}
if (Yap_Error_TYPE != YAP_NO_ERROR) {
ARG1 = t2;
if (recover_from_record_error(1)) {
t2 = ARG1;
goto restart_record;
} else {
return FALSE;
}
}
return TRUE;
}
/* '$recordzp'(+Functor,+Term,-Ref) */
static Int
p_rcdzp(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
Yap_Error_Size = 0;
restart_record:
TRef = MkDBRefTerm(record(MkLast | MkCode, t1, t2, Unsigned(0)));
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(3)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
/* recordz_at(+Functor,+Term,-Ref) */
static Int
p_rcdz_at(void)
{
/* Idiotic xlc's cpp does not work with ARG1 within MkDBRefTerm */
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2);
DBRef dbr;
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "recordz_at/3");
return(FALSE);
}
if (!IsDBRefTerm(t1)) {
Yap_Error(TYPE_ERROR_DBREF, t1, "recordz_at/3");
return(FALSE);
}
Yap_Error_Size = 0;
restart_record:
dbr = DBRefOfTerm(t1);
if (dbr->Flags & ErasedMask) {
/* doesn't make sense */
return FALSE;
}
if (dbr->Flags & LogUpdMask) {
TRef = MkDBRefTerm((DBRef)record_lu_at(MkLast, (LogUpdClause *)dbr, t2));
} else {
TRef = MkDBRefTerm(record_at(MkLast, dbr, t2, Unsigned(0)));
}
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(3)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
/* '$record_stat_source'(+Functor,+Term) */
static Int
p_rcdstatp(void)
{
Term t1 = Deref(ARG1), t2 = Deref(ARG2), t3 = Deref(ARG3);
int mk_first;
Term TRef;
if (IsVarTerm(t3) || !IsIntTerm(t3))
return (FALSE);
if (IsVarTerm(t3) || !IsIntTerm(t3))
return (FALSE);
mk_first = ((IntOfTerm(t3) % 4) == 2);
Yap_Error_Size = 0;
restart_record:
if (mk_first)
TRef = MkDBRefTerm(record(MkFirst | MkCode, t1, t2, MkIntTerm(0)));
else
TRef = MkDBRefTerm(record(MkLast | MkCode, t1, t2, MkIntTerm(0)));
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(4)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
t3 = Deref(ARG3);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG4, TRef);
}
/* '$recordap'(+Functor,+Term,-Ref,+CRef) */
static Int
p_drcdap(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2), t4 = Deref(ARG4);
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
if (IsVarTerm(t4) || !IsIntegerTerm(t4))
return (FALSE);
Yap_Error_Size = 0;
restart_record:
TRef = MkDBRefTerm(record(MkFirst | MkCode | WithRef,
t1, t2, t4));
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(4)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
t4 = Deref(ARG4);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
/* '$recordzp'(+Functor,+Term,-Ref,+CRef) */
static Int
p_drcdzp(void)
{
Term TRef, t1 = Deref(ARG1), t2 = Deref(ARG2), t4 = Deref(ARG4);
if (!IsVarTerm(Deref(ARG3)))
return (FALSE);
if (IsVarTerm(t4) || !IsIntegerTerm(t4))
return (FALSE);
restart_record:
Yap_Error_Size = 0;
TRef = MkDBRefTerm(record(MkLast | MkCode | WithRef,
t1, t2, t4));
if (Yap_Error_TYPE != YAP_NO_ERROR) {
if (recover_from_record_error(4)) {
t1 = Deref(ARG1);
t2 = Deref(ARG2);
t4 = Deref(ARG4);
goto restart_record;
} else {
return FALSE;
}
}
return Yap_unify(ARG3, TRef);
}
static Int
p_still_variant(void)
{
CELL *old_h = B->cp_h;
tr_fr_ptr old_tr = B->cp_tr;
Term t1 = Deref(ARG1), t2 = Deref(ARG2);
DBTerm *dbt;
DBRef dbr;
if (IsVarTerm(t1) || !IsDBRefTerm(t1)) {
return (FALSE);
/* limited sanity checking */
if (dbr->id != FunctorDBRef) {
return FALSE;
}
} else {
dbr = DBRefOfTerm(t1);
}
/* ok, we assume there was a choicepoint before we copied the term */
/* skip binding for argument variable */
old_tr++;
if (dbr->Flags & LogUpdMask) {
LogUpdClause *cl = (LogUpdClause *)dbr;
if (old_tr == TR-1) {
if (TrailTerm(old_tr) != CLREF_TO_TRENTRY(cl))
return FALSE;
} else if (old_tr != TR)
return FALSE;
if (Yap_op_from_opcode(cl->ClCode->opc) == _unify_idb_term) {
return TRUE;
} else {
dbt = cl->ClSource;
}
} else {
if (old_tr == TR-1) {
if (TrailTerm(old_tr) != REF_TO_TRENTRY(dbr))
return FALSE;
} else if (old_tr != TR)
return FALSE;
if (dbr->Flags & (DBNoVars|DBAtomic))
return TRUE;
if (dbr->Flags & DBVar)
return IsVarTerm(t2);
dbt = &(dbr->DBT);
}
#ifdef IDB_LINK_TABLE
/*
we checked the trail, so we are sure only variables in the new term
were bound
*/
{
link_entry *lp = (link_entry *)(dbt->Contents+dbt->NOfCells);
link_entry link;
if (!dbt->NOfCells) {
return IsVarTerm(t2);
}
while ((link = *lp++)) {
Term t2 = Deref(old_h[link-1]);
if (IsUnboundVar(dbt->Contents+(link-1))) {
if (IsVarTerm(t2)) {
Yap_unify(t2,MkAtomTerm(AtomFoundVar));
} else {
return FALSE;
}
}
}
}
#else /* IDB_LINK_TABLE */
not IMPLEMENTED;
#endif
return TRUE;
}
#ifdef COROUTINING
static int
copy_attachments(CELL *ts)
{
/* we will change delayed vars, and that also means the trail */
Term orig = Yap_ReadTimedVar(DelayedVars);
tr_fr_ptr tr0 = TR;
while (TRUE) {
/* store away in case there is an overflow */
if (attas[IntegerOfTerm(ts[2])].term_to_op(ts[1], ts[0]) == FALSE) {
/* oops, we did not have enough space to copy the elements */
/* reset queue of woken up goals */
Yap_UpdateTimedVar(DelayedVars, orig);
TR = tr0;
return FALSE;
}
if (ts[3] == TermNil) return TRUE;
ts = RepAppl(ts[3])+1;
}
}
#endif
static Term
GetDBLUKey(PredEntry *ap)
{
READ_LOCK(ap->PRWLock);
if (ap->PredFlags & NumberDBPredFlag) {
Int id = ap->src.IndxId;
READ_UNLOCK(ap->PRWLock);
return MkIntegerTerm(id);
} else if (ap->PredFlags & AtomDBPredFlag ||
(ap->ModuleOfPred != IDB_MODULE && ap->ArityOfPE == 0)) {
Atom at = (Atom)ap->FunctorOfPred;
READ_UNLOCK(ap->PRWLock);
return MkAtomTerm(at);
} else {
Functor f = ap->FunctorOfPred;
READ_UNLOCK(ap->PRWLock);
return Yap_MkNewApplTerm(f,ArityOfFunctor(f));
}
}
static int
UnifyDBKey(DBRef DBSP, PropFlags flags, Term t)
{
DBProp p = DBSP->Parent;
Term t1, tf;
READ_LOCK(p->DBRWLock);
/* get the key */
if (p->ArityOfDB == 0) {
t1 = MkAtomTerm((Atom)(p->FunctorOfDB));
} else {
t1 = Yap_MkNewApplTerm(p->FunctorOfDB,p->ArityOfDB);
}
if ((p->KindOfPE & CodeDBBit) && (flags & CodeDBBit)) {
Term t[2];
if (p->ModuleOfDB)
t[0] = p->ModuleOfDB;
else
t[0] = TermProlog;
t[1] = t1;
tf = Yap_MkApplTerm(FunctorModule, 2, t);
} else if (!(flags & CodeDBBit)) {
tf = t1;
} else {
return FALSE;
}
READ_UNLOCK(p->DBRWLock);
return(Yap_unify(tf,t));
}
static int
UnifyDBNumber(DBRef DBSP, Term t)
{
DBProp p = DBSP->Parent;
DBRef ref;
Int i = 1;
READ_LOCK(p->DBRWLock);
ref = p->First;
while (ref != NIL) {
if (ref == DBSP) break;
if (!DEAD_REF(ref)) i++;
ref = ref->Next;
}
if (ref == NIL)
return FALSE;
READ_UNLOCK(p->DBRWLock);
return(Yap_unify(MkIntegerTerm(i),t));
}
static Term
GetDBTerm(DBTerm *DBSP)
{
Term t = DBSP->Entry;
if (IsVarTerm(t)
#if COROUTINING
&& !DBSP->attachments
#endif
) {
return MkVarTerm();
} else if (IsAtomOrIntTerm(t)) {
return t;
} else {
CELL *HOld = H;
CELL *HeapPtr;
CELL *pt;
CELL NOf;
if (!(NOf = DBSP->NOfCells)) {
return t;
}
pt = CellPtr(DBSP->Contents);
if (H+NOf > ASP-CalculateStackGap()/sizeof(CELL)) {
if (Yap_PrologMode & InErrorMode) {
if (H+NOf > ASP)
fprintf(Yap_stderr, "\n\n [ FATAL ERROR: No Stack for Error Handling ]\n");
Yap_exit( 1);
} else {
Yap_Error_TYPE = OUT_OF_STACK_ERROR;
Yap_Error_Size = NOf*sizeof(CELL);
return (Term)0;
}
}
HeapPtr = cpcells(HOld, pt, NOf);
pt += HeapPtr - HOld;
H = HeapPtr;
#ifdef IDB_LINK_TABLE
{
link_entry *lp = (link_entry *)pt;
linkblk(lp, HOld-1, (CELL)HOld-(CELL)(DBSP->Contents));
}
#endif
#ifdef COROUTINING
if (DBSP->attachments != 0L) {
if (!copy_attachments((CELL *)AdjustIDBPtr(DBSP->attachments,(CELL)HOld-(CELL)(DBSP->Contents)))) {
H = HOld;
Yap_Error_TYPE = OUT_OF_ATTVARS_ERROR;
Yap_Error_Size = 0;
return (Term)0;
}
}
#endif
return AdjustIDBPtr(t,Unsigned(HOld)-(CELL)(DBSP->Contents));
}
}
static Term
GetDBTermFromDBEntry(DBRef DBSP)
{
if (DBSP->Flags & (DBNoVars | DBAtomic))
return DBSP->DBT.Entry;
return GetDBTerm(&(DBSP->DBT));
}
static void
init_int_keys(void) {
INT_KEYS = (Prop *)Yap_AllocCodeSpace(sizeof(Prop)*INT_KEYS_SIZE);
if (INT_KEYS != NULL) {
UInt i = 0;
Prop *p = INT_KEYS;
for (i = 0; i < INT_KEYS_SIZE; i++) {
p[0] = NIL;
p++;
}
}
}
static void
init_int_lu_keys(void) {
INT_LU_KEYS = (Prop *)Yap_AllocCodeSpace(sizeof(Prop)*INT_KEYS_SIZE);
if (INT_LU_KEYS != NULL) {
UInt i = 0;
Prop *p = INT_LU_KEYS;
for (i = 0; i < INT_KEYS_SIZE; i++) {
p[0] = NULL;
p++;
}
}
}
static int
resize_int_keys(UInt new_size) {
Prop *new;
UInt i;
YAPEnterCriticalSection();
if (INT_KEYS == NULL) {
INT_KEYS_SIZE = new_size;
YAPLeaveCriticalSection();
return(TRUE);
}
new = (Prop *)Yap_AllocCodeSpace(sizeof(Prop)*new_size);
if (new == NULL) {
YAPLeaveCriticalSection();
Yap_Error_TYPE = OUT_OF_HEAP_ERROR;
Yap_Error_Term = TermNil;
Yap_ErrorMessage = "could not allocate space";
return(FALSE);
}
for (i = 0; i < new_size; i++) {
new[i] = NIL;
}
for (i = 0; i < INT_KEYS_SIZE; i++) {
if (INT_KEYS[i] != NIL) {
Prop p0 = INT_KEYS[i];
while (p0 != NIL) {
DBProp p = RepDBProp(p0);
CELL key = (CELL)(p->FunctorOfDB);
UInt hash_key = (CELL)key % new_size;
p0 = p->NextOfPE;
p->NextOfPE = new[hash_key];
new[hash_key] = AbsDBProp(p);
}
}
}
Yap_FreeCodeSpace((char *)INT_KEYS);
INT_KEYS = new;
INT_KEYS_SIZE = new_size;
INT_KEYS_TIMESTAMP++;
if (INT_KEYS_TIMESTAMP == MAX_ABS_INT)
INT_KEYS_TIMESTAMP = 0;
YAPLeaveCriticalSection();
return(TRUE);
}
static PredEntry *
find_lu_int_key(Int key)
{
UInt hash_key = (CELL)key % INT_KEYS_SIZE;
Prop p0;
if (INT_LU_KEYS != NULL) {
p0 = INT_LU_KEYS[hash_key];
while (p0) {
PredEntry *pe = RepPredProp(p0);
if (pe->src.IndxId == key) {
return pe;
}
p0 = pe->NextOfPE;
}
}
if (UPDATE_MODE == UPDATE_MODE_LOGICAL &&
find_int_key(key) == NULL) {
return new_lu_int_key(key);
}
return NULL;
}
static DBProp
find_int_key(Int key)
{
UInt hash_key = (CELL)key % INT_KEYS_SIZE;
Prop p0;
if (INT_KEYS == NULL) {
return NULL;
}
p0 = INT_KEYS[hash_key];
while (p0) {
DBProp p = RepDBProp(p0);
if (p->FunctorOfDB == (Functor)key) return(p);
p0 = p->NextOfPE;
}
return NULL;
}
static PredEntry *
new_lu_int_key(Int key)
{
UInt hash_key = (CELL)key % INT_KEYS_SIZE;
PredEntry *p;
Prop p0;
Functor fe;
if (INT_LU_KEYS == NULL) {
init_int_lu_keys();
if (INT_LU_KEYS == NULL) {
Yap_Error_TYPE = OUT_OF_HEAP_ERROR;
Yap_Error_Term = TermNil;
Yap_ErrorMessage = "could not allocate space";
return NULL;
}
}
fe = Yap_MkFunctor(Yap_FullLookupAtom("$integer"),3);
WRITE_LOCK(fe->FRWLock);
p0 = Yap_NewPredPropByFunctor(fe,IDB_MODULE);
p = RepPredProp(p0);
p->NextOfPE = INT_LU_KEYS[hash_key];
p->src.IndxId = key;
p->PredFlags |= LogUpdatePredFlag|NumberDBPredFlag;
p->ArityOfPE = 3;
p->OpcodeOfPred = Yap_opcode(_op_fail);
p->cs.p_code.TrueCodeOfPred = p->CodeOfPred = FAILCODE;
INT_LU_KEYS[hash_key] = p0;
return p;
}
static PredEntry *
new_lu_entry(Term t)
{
Prop p0;
PredEntry *pe;
if (IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
WRITE_LOCK(f->FRWLock);
p0 = Yap_NewPredPropByFunctor(f,IDB_MODULE);
} else if (IsAtomTerm(t)) {
Atom at = AtomOfTerm(t);
WRITE_LOCK(RepAtom(at)->ARWLock);
p0 = Yap_NewPredPropByAtom(at,IDB_MODULE);
} else {
WRITE_LOCK(FunctorList->FRWLock);
p0 = Yap_NewPredPropByFunctor(FunctorList,IDB_MODULE);
}
pe = RepPredProp(p0);
pe->PredFlags |= LogUpdatePredFlag;
if (IsAtomTerm(t)) {
pe->PredFlags |= AtomDBPredFlag;
}
pe->ArityOfPE = 3;
pe->OpcodeOfPred = Yap_opcode(_op_fail);
pe->cs.p_code.TrueCodeOfPred = pe->CodeOfPred = FAILCODE;
return pe;
}
static DBProp
find_entry(Term t)
{
Atom at;
UInt arity;
if (IsVarTerm(t)) {
return(RepDBProp(NIL));
} else if (IsAtomTerm(t)) {
at = AtomOfTerm(t);
arity = 0;
} else if (IsIntegerTerm(t)) {
return find_int_key(IntegerOfTerm(t));
} else if (IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
at = NameOfFunctor(f);
arity = ArityOfFunctor(f);
} else {
at = AtomDot;
arity = 2;
}
return RepDBProp(FindDBProp(RepAtom(at), 0, arity, 0));
}
static PredEntry *
find_lu_entry(Term t)
{
Prop p;
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "while accessing database key");
return NULL;
}
if (IsIntegerTerm(t)) {
return find_lu_int_key(IntegerOfTerm(t));
} else if (IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
if (IsExtensionFunctor(f)) {
Yap_Error(TYPE_ERROR_KEY, t, "while accessing database key");
return NULL;
}
p = Yap_GetPredPropByFuncInThisModule(FunctorOfTerm(t),IDB_MODULE);
} else if (IsAtomTerm(t)) {
p = Yap_GetPredPropByAtomInThisModule(AtomOfTerm(t),IDB_MODULE);
} else {
p = Yap_GetPredPropByFuncInThisModule(FunctorList,IDB_MODULE);
}
if (p == NIL) {
if (UPDATE_MODE == UPDATE_MODE_LOGICAL && !find_entry(t)) {
return new_lu_entry(t);
} else {
return NULL;
}
}
return RepPredProp(p);
}
static DBProp
FetchIntDBPropFromKey(Int key, int flag, int new, char *error_mssg)
{
Functor fun = (Functor)key;
UInt hash_key = (CELL)key % INT_KEYS_SIZE;
Prop p0;
if (INT_KEYS == NULL) {
init_int_keys();
if (INT_KEYS == NULL) {
Yap_Error_TYPE = OUT_OF_HEAP_ERROR;
Yap_Error_Term = TermNil;
Yap_ErrorMessage = "could not allocate space";
return(NULL);
}
}
p0 = INT_KEYS[hash_key];
while (p0 != NIL) {
DBProp p = RepDBProp(p0);
if (p->FunctorOfDB == fun) return(p);
p0 = p->NextOfPE;
}
/* p is NULL, meaning we did not find the functor */
if (new) {
DBProp p;
/* create a new DBProp */
p = (DBProp) Yap_AllocAtomSpace(sizeof(*p));
p->KindOfPE = DBProperty|flag;
p->F0 = p->L0 = NULL;
p->ArityOfDB = 0;
p->First = p->Last = NULL;
p->ModuleOfDB = 0;
p->FunctorOfDB = fun;
p->NextOfPE = INT_KEYS[hash_key];
INIT_RWLOCK(p->DBRWLock);
INT_KEYS[hash_key] = AbsDBProp(p);
return(p);
} else {
return(RepDBProp(NULL));
}
}
static DBProp
FetchDBPropFromKey(Term twork, int flag, int new, char *error_mssg)
{
Atom At;
Int arity;
Term dbmod;
if (flag & MkCode) {
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, error_mssg);
return RepDBProp(NULL);
}
if (!IsApplTerm(twork)) {
Yap_Error(SYSTEM_ERROR, twork, "missing module");
return RepDBProp(NULL);
} else {
Functor f = FunctorOfTerm(twork);
if (f != FunctorModule) {
Yap_Error(SYSTEM_ERROR, twork, "missing module");
return RepDBProp(NULL);
}
dbmod = ArgOfTerm(1, twork);
if (IsVarTerm(dbmod)) {
Yap_Error(INSTANTIATION_ERROR, twork, "var in module");
return(RepDBProp(NIL));
}
if (!IsAtomTerm(dbmod)) {
Yap_Error(TYPE_ERROR_ATOM, twork, "not atom in module");
return(RepDBProp(NIL));
}
twork = ArgOfTerm(2, twork);
}
} else {
dbmod = 0;
}
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, error_mssg);
return(RepDBProp(NIL));
} else if (IsAtomTerm(twork)) {
arity = 0, At = AtomOfTerm(twork);
} else if (IsIntegerTerm(twork)) {
return(FetchIntDBPropFromKey(IntegerOfTerm(twork), flag, new, error_mssg));
} else if (IsApplTerm(twork)) {
Register Functor f = FunctorOfTerm(twork);
if (IsExtensionFunctor(f)) {
Yap_Error(TYPE_ERROR_KEY, twork, error_mssg);
return(RepDBProp(NIL));
}
At = NameOfFunctor(f);
arity = ArityOfFunctor(f);
} else if (IsPairTerm(twork)) {
At = AtomDot;
arity = 2;
} else {
Yap_Error(TYPE_ERROR_KEY, twork,error_mssg);
return(RepDBProp(NIL));
}
if (new) {
DBProp p;
AtomEntry *ae = RepAtom(At);
WRITE_LOCK(ae->ARWLock);
if (EndOfPAEntr(p = RepDBProp(FindDBPropHavingLock(ae, flag, arity, dbmod)))) {
/* create a new DBProp */
int OLD_UPDATE_MODE = UPDATE_MODE;
if (flag & MkCode) {
PredEntry *pp;
pp = RepPredProp(Yap_GetPredPropHavingLock(At, arity, dbmod));
if (!EndOfPAEntr(pp)) {
READ_LOCK(pp->PRWLock);
if(pp->PredFlags & LogUpdatePredFlag)
UPDATE_MODE = UPDATE_MODE_LOGICAL;
READ_UNLOCK(pp->PRWLock);
}
}
p = (DBProp) Yap_AllocAtomSpace(sizeof(*p));
p->KindOfPE = DBProperty|flag;
p->F0 = p->L0 = NULL;
UPDATE_MODE = OLD_UPDATE_MODE;
p->ArityOfDB = arity;
p->First = p->Last = NIL;
p->ModuleOfDB = dbmod;
/* This is NOT standard but is QUITE convenient */
INIT_RWLOCK(p->DBRWLock);
if (arity == 0)
p->FunctorOfDB = (Functor) At;
else
p->FunctorOfDB = Yap_UnlockedMkFunctor(ae,arity);
p->NextOfPE = ae->PropsOfAE;
ae->PropsOfAE = AbsDBProp(p);
}
WRITE_UNLOCK(ae->ARWLock);
return(p);
} else
return(RepDBProp(FindDBProp(RepAtom(At), flag, arity, dbmod)));
}
static Int
lu_nth_recorded(PredEntry *pe, Int Count)
{
LogUpdClause *cl;
XREGS[2] = MkVarTerm();
cl = Yap_NthClause(pe, Count);
if (cl == NULL)
return FALSE;
#if defined(YAPOR) || defined(THREADS)
LOCK(cl->ClLock);
TRAIL_CLREF(cl); /* So that fail will erase it */
INC_CLREF_COUNT(cl);
UNLOCK(cl->ClLock);
#else
if (!(cl->ClFlags & InUseMask)) {
cl->ClFlags |= InUseMask;
TRAIL_CLREF(cl); /* So that fail will erase it */
}
#endif
return Yap_unify(MkDBRefTerm((DBRef)cl),ARG3);
}
/* Finds a term recorded under the key ARG1 */
static Int
nth_recorded(DBProp AtProp, Int Count)
{
Register DBRef ref;
READ_LOCK(AtProp->DBRWLock);
ref = AtProp->First;
Count--;
while (ref != NULL
&& DEAD_REF(ref))
ref = NextDBRef(ref);
if (ref == NULL) {
READ_UNLOCK(AtProp->DBRWLock);
return FALSE;
}
while (Count) {
Count--;
ref = NextDBRef(ref);
while (ref != NULL
&& DEAD_REF(ref))
ref = NextDBRef(ref);
if (ref == NULL) {
READ_UNLOCK(AtProp->DBRWLock);
return FALSE;
}
}
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
READ_UNLOCK(AtProp->DBRWLock);
TRAIL_REF(ref); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(ref); /* So that fail will erase it */
}
READ_UNLOCK(AtProp->DBRWLock);
#endif
return Yap_unify(MkDBRefTerm(ref),ARG3);
}
static Int
p_nth_instance(void)
{
DBProp AtProp;
Term TCount;
Int Count;
PredEntry *pe;
Term t3 = Deref(ARG3);
if (!IsVarTerm(t3)) {
if (!IsDBRefTerm(t3)) {
Yap_Error(TYPE_ERROR_DBREF,t3,"nth_instance/3");
return FALSE;
} else {
DBRef ref = DBRefOfTerm(t3);
if (ref->Flags & LogUpdMask) {
LogUpdClause *cl = (LogUpdClause *)ref;
PredEntry *pe;
LogUpdClause *ocl;
UInt pred_arity, icl = 0;
Functor pred_f;
Term tpred;
Term pred_module;
LOCK(cl->ClLock);
if (cl->ClFlags & ErasedMask) {
UNLOCK(cl->ClLock);
return FALSE;
}
pe = cl->ClPred;
READ_LOCK(pe->PRWLock);
ocl = ClauseCodeToLogUpdClause(pe->cs.p_code.FirstClause);
pred_module = pe->ModuleOfPred;
if (pred_module != IDB_MODULE) {
pred_f = pe->FunctorOfPred;
pred_arity = pe->ArityOfPE;
} else {
if (pe->PredFlags & NumberDBPredFlag) {
pred_f = (Functor)MkIntegerTerm(pe->src.IndxId);
pred_arity = 0;
} else {
pred_f = pe->FunctorOfPred;
if (pe->PredFlags & AtomDBPredFlag) {
pred_arity = 0;
} else {
pred_arity = ArityOfFunctor(pred_f);
}
}
}
do {
icl++;
if (cl == ocl) break;
ocl = ocl->ClNext;
} while (ocl != NULL);
READ_UNLOCK(pe->PRWLock);
UNLOCK(cl->ClLock);
if (ocl == NULL) {
return FALSE;
}
if (!Yap_unify(ARG2,MkIntegerTerm(icl))) {
return FALSE;
}
if (pred_arity) {
tpred = Yap_MkNewApplTerm(pred_f,pred_arity);
} else {
tpred = MkAtomTerm((Atom)pred_f);
}
if (pred_module == IDB_MODULE) {
return Yap_unify(ARG1,tpred);
} else {
Term ttpred, ts[2];
ts[0] = pred_module;
ts[1] = tpred;
ttpred = Yap_MkApplTerm(FunctorModule,pred_arity,ts);
return Yap_unify(ARG1,ttpred);
}
} else {
LOCK(ref->lock);
if (ref == NULL
|| DEAD_REF(ref)
|| !UnifyDBKey(ref,0,ARG1)
|| !UnifyDBNumber(ref,ARG2)) {
UNLOCK(ref->lock);
return FALSE;
} else {
UNLOCK(ref->lock);
return TRUE;
}
}
}
}
TCount = Deref(ARG2);
if (IsVarTerm(TCount)) {
Yap_Error(INSTANTIATION_ERROR, TCount, "nth_instance/3");
return FALSE;
}
if (!IsIntegerTerm(TCount)) {
Yap_Error(TYPE_ERROR_INTEGER, TCount, "nth_instance/3");
return FALSE;
}
Count = IntegerOfTerm(TCount);
if (Count <= 0) {
if (Count)
Yap_Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, TCount, "nth_instance/3");
else
Yap_Error(DOMAIN_ERROR_NOT_ZERO, TCount, "nth_instance/3");
return FALSE;
}
if ((pe = find_lu_entry(Deref(ARG1))) != NULL) {
return lu_nth_recorded(pe,Count);
}
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(Deref(ARG1), 0, FALSE, "nth_instance/3"))) {
return FALSE;
}
return nth_recorded(AtProp,Count);
}
static Int
p_nth_instancep(void)
{
DBProp AtProp;
Term TCount;
Int Count;
Term t3 = Deref(ARG3);
if (!IsVarTerm(t3)) {
if (!IsDBRefTerm(t3)) {
Yap_Error(TYPE_ERROR_DBREF,t3,"nth_instance/3");
return FALSE;
} else {
DBRef ref = DBRefOfTerm(t3);
LOCK(ref->lock);
if (ref == NULL
|| DEAD_REF(ref)
|| !UnifyDBKey(ref,CodeDBBit,ARG1)
|| !UnifyDBNumber(ref,ARG2)) {
UNLOCK(ref->lock);
return(FALSE);
} else {
UNLOCK(ref->lock);
return(TRUE);
}
}
}
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(Deref(ARG1), MkCode, FALSE, "nth_instance/3"))) {
return(FALSE);
}
TCount = Deref(ARG2);
if (IsVarTerm(TCount)) {
Yap_Error(INSTANTIATION_ERROR, TCount, "recorded_at/4");
return (FALSE);
}
if (!IsIntegerTerm(TCount)) {
Yap_Error(TYPE_ERROR_INTEGER, TCount, "recorded_at/4");
return (FALSE);
}
Count = IntegerOfTerm(TCount);
if (Count <= 0) {
if (Count)
Yap_Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, TCount, "recorded_at/4");
else
Yap_Error(DOMAIN_ERROR_NOT_ZERO, TCount, "recorded_at/4");
return (FALSE);
}
return nth_recorded(AtProp,Count);
}
static Int
p_db_key(void)
{
Register Term twork = Deref(ARG1); /* fetch the key */
DBProp AtProp;
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, 0, TRUE, "db_key/3"))) {
/* should never happen */
return(FALSE);
}
return(Yap_unify(ARG2,MkIntegerTerm((Int)AtProp)));
}
/* Finds a term recorded under the key ARG1 */
static Int
i_recorded(DBProp AtProp, Term t3)
{
Term TermDB, TRef;
Register DBRef ref;
Term twork;
READ_LOCK(AtProp->DBRWLock);
ref = AtProp->First;
while (ref != NULL
&& DEAD_REF(ref))
ref = NextDBRef(ref);
READ_UNLOCK(AtProp->DBRWLock);
if (ref == NULL) {
cut_fail();
}
twork = Deref(ARG2); /* now working with ARG2 */
if (IsVarTerm(twork)) {
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(0);
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(0);
B->cp_h = H;
while ((TermDB = GetDBTermFromDBEntry(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 3, ENV, CP)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
Yap_Error_Size = 0;
twork = Deref(ARG2);
t3 = Deref(ARG3);
}
if (!Yap_unify(twork, TermDB)) {
cut_fail();
}
} else if (IsAtomOrIntTerm(twork)) {
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(0);
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm((Int)twork);
B->cp_h = H;
READ_LOCK(AtProp->DBRWLock);
do {
if (((twork == ref->DBT.Entry) || IsVarTerm(ref->DBT.Entry)) &&
!DEAD_REF(ref))
break;
ref = NextDBRef(ref);
if (ref == NIL) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
}
} while (TRUE);
READ_UNLOCK(AtProp->DBRWLock);
} else {
CELL key;
CELL mask = EvalMasks(twork, &key);
B->cp_h = H;
READ_LOCK(AtProp->DBRWLock);
do {
while ((mask & ref->Key) != (key & ref->Mask) && !DEAD_REF(ref)) {
ref = NextDBRef(ref);
if (ref == NULL) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
}
}
if ((TermDB = GetDBTermFromDBEntry(ref)) != (CELL)0) {
if (Yap_unify(TermDB, ARG2)) {
/* success */
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(((Int)mask));
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(((Int)key));
B->cp_h = H;
break;
} else {
while ((ref = NextDBRef(ref)) != NULL
&& DEAD_REF(ref));
if (ref == NULL) {
READ_UNLOCK(AtProp->DBRWLock);
cut_fail();
}
}
} else {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
READ_UNLOCK(AtProp->DBRWLock);
EXTRA_CBACK_ARG(3,2) = MkIntegerTerm(((Int)mask));
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(((Int)key));
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 3, ENV, CP)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
READ_LOCK(AtProp->DBRWLock);
}
} while (TRUE);
READ_UNLOCK(AtProp->DBRWLock);
}
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* This should be after any non-tagged terms, because the routines in grow.c
go from upper to lower addresses */
TRef = MkDBRefTerm(ref);
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(ref); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(ref); /* So that fail will erase it */
}
#endif
return (Yap_unify(ARG3, TRef));
}
static Int
c_recorded(int flags)
{
Term TermDB, TRef;
Register DBRef ref, ref0;
CELL *PreviousHeap = H;
CELL mask, key;
Term t1;
t1 = EXTRA_CBACK_ARG(3,1);
ref0 = (DBRef)t1;
READ_LOCK(ref0->Parent->DBRWLock);
ref = NextDBRef(ref0);
if (ref == NIL) {
if (ref0->Flags & ErasedMask) {
ref = ref0;
while ((ref = ref->n) != NULL) {
if (!(ref->Flags & ErasedMask))
break;
}
/* we have used the DB entry, so we can remove it now, although
first we have to make sure noone is pointing to it */
if (ref == NULL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
}
else
{
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
}
{
Term ttmp = EXTRA_CBACK_ARG(3,2);
if (IsLongIntTerm(ttmp))
mask = (CELL)LongIntOfTerm(ttmp);
else
mask = (CELL)IntOfTerm(ttmp);
}
{
Term ttmp = EXTRA_CBACK_ARG(3,3);
if (IsLongIntTerm(ttmp))
key = (CELL)LongIntOfTerm(ttmp);
else
key = (CELL)IntOfTerm(ttmp);
}
while (ref != NIL
&& DEAD_REF(ref))
ref = NextDBRef(ref);
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
if (mask == 0 && key == 0) { /* ARG2 is a variable */
while ((TermDB = GetDBTermFromDBEntry(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 3, ENV, CP)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
Yap_Error_Size = 0;
PreviousHeap = H;
}
Yap_unify(ARG2, TermDB);
} else if (mask == 0) { /* ARG2 is a constant */
do {
if (((key == Unsigned(ref->DBT.Entry)) || (ref->Flags & DBVar)) &&
!DEAD_REF(ref))
break;
ref = NextDBRef(ref);
} while (ref != NIL);
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
} else
do { /* ARG2 is a structure */
H = PreviousHeap;
while ((mask & ref->Key) != (key & ref->Mask)) {
while ((ref = NextDBRef(ref)) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
}
while ((TermDB = GetDBTermFromDBEntry(ref)) == (CELL)0) {
/* make sure the garbage collector sees what we want it to see! */
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 3, ENV, CP)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
Yap_Error_Size = 0;
PreviousHeap = H;
}
if (Yap_unify(ARG2, TermDB))
break;
while ((ref = NextDBRef(ref)) != NIL
&& DEAD_REF(ref));
if (ref == NIL) {
READ_UNLOCK(ref0->Parent->DBRWLock);
cut_fail();
}
} while (1);
READ_UNLOCK(ref0->Parent->DBRWLock);
TRef = MkDBRefTerm(ref);
EXTRA_CBACK_ARG(3,1) = (CELL)ref;
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(ref); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(ref); /* So that fail will erase it */
}
#endif
return (Yap_unify(ARG3, TRef));
}
/*
* The arguments for this 4 functions are the flags for terms which should be
* skipped
*/
static Int
lu_recorded(PredEntry *pe) {
op_numbers opc = Yap_op_from_opcode(P->opc);
if (opc == _procceed) {
P = pe->CodeOfPred;
} else {
CP = P;
P = pe->CodeOfPred;
ENV = YENV;
YENV = ASP;
YENV[E_CB] = (CELL) B;
}
if (pe->PredFlags & ProfiledPredFlag) {
LOCK(pe->StatisticsForPred.lock);
pe->StatisticsForPred.NOfEntries++;
UNLOCK(pe->StatisticsForPred.lock);
}
return TRUE;
}
/* recorded(+Functor,+Term,-Ref) */
static Int
in_rded_with_key(void)
{
DBProp AtProp = (DBProp)IntegerOfTerm(Deref(ARG1));
return (i_recorded(AtProp,Deref(ARG3)));
}
/* recorded(+Functor,+Term,-Ref) */
static Int
p_recorded(void)
{
DBProp AtProp;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
Term t3 = Deref(ARG3);
PredEntry *pe;
if (!IsVarTerm(t3)) {
DBRef ref = DBRefOfTerm(t3);
if (!IsDBRefTerm(t3)) {
return FALSE;
} else {
ref = DBRefOfTerm(t3);
}
ref = DBRefOfTerm(t3);
if (ref == NULL) return FALSE;
if (DEAD_REF(ref)) {
return FALSE;
}
if (ref->Flags & LogUpdMask) {
LogUpdClause *cl = (LogUpdClause *)ref;
PredEntry *ap = cl->ClPred;
op_numbers opc = Yap_op_from_opcode(P->opc);
if (!Yap_unify(GetDBLUKey(ap), ARG1))
return FALSE;
if (opc == _procceed) {
P = cl->ClCode;
} else {
CP = P;
P = cl->ClCode;
ENV = YENV;
YENV = ASP;
YENV[E_CB] = (CELL) B;
}
return TRUE;
} else {
Term TermDB;
while ((TermDB = GetDBTermFromDBEntry(ref)) == (CELL)0) {
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 3, ENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
}
if (!Yap_unify(ARG2,TermDB)
|| !UnifyDBKey(ref,0,ARG1)) {
return FALSE;
} else {
return TRUE;
}
}
}
if ((pe = find_lu_entry(twork)) != NULL) {
return lu_recorded(pe);
}
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, 0, FALSE, "recorded/3"))) {
return FALSE;
}
ARG1 = MkIntegerTerm((Int)AtProp);
P = PredRecordedWithKey->CodeOfPred;
return (i_recorded(AtProp, t3));
}
static Int
co_rded(void)
{
return (c_recorded(0));
}
/* '$recordedp'(+Functor,+Term,-Ref) */
static Int
in_rdedp(void)
{
DBProp AtProp;
register choiceptr b0=B;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
Term t3 = Deref(ARG3);
if (!IsVarTerm(t3)) {
if (!IsDBRefTerm(t3)) {
cut_fail();
} else {
DBRef ref = DBRefOfTerm(t3);
LOCK(ref->lock);
if (ref == NULL
|| DEAD_REF(ref)
|| !Yap_unify(ARG2,GetDBTermFromDBEntry(ref))
|| !UnifyDBKey(ref,CodeDBBit,ARG1)) {
UNLOCK(ref->lock);
cut_fail();
} else {
UNLOCK(ref->lock);
cut_succeed();
}
}
}
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, MkCode, FALSE, "recorded/3"))) {
if (b0 == B)
cut_fail();
else
return(FALSE);
}
return (i_recorded(AtProp,t3));
}
static Int
co_rdedp(void)
{
return (c_recorded(MkCode));
}
/* '$some_recordedp'(Functor) */
static Int
p_somercdedp(void)
{
Register DBRef ref;
DBProp AtProp;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, MkCode, FALSE, "some_recorded/3"))) {
return(FALSE);
}
READ_LOCK(AtProp->DBRWLock);
ref = FrstDBRef(AtProp);
while (ref != NIL && (ref->Flags & (DBNoCode | ErasedMask)))
ref = NextDBRef(ref);
READ_UNLOCK(AtProp->DBRWLock);
if (ref == NIL)
return (FALSE);
else
return (TRUE);
}
/* Finds the first instance recorded under key ARG1 */
static Int
p_first_instance(void)
{
Term TRef;
Register DBRef ref;
DBProp AtProp;
Register Term twork = Deref(ARG1); /* initially working with
* ARG1 */
Term TermDB;
ARG3 = Deref(ARG3);
if (!IsVarTerm(ARG3)) {
cut_fail();
}
if (EndOfPAEntr(AtProp = FetchDBPropFromKey(twork, 0, FALSE, "first_instance/3"))) {
return(FALSE);
}
READ_LOCK(AtProp->DBRWLock);
ref = AtProp->First;
while (ref != NIL
&& (ref->Flags & (DBCode | ErasedMask)))
ref = NextDBRef(ref);
READ_UNLOCK(AtProp->DBRWLock);
if (ref == NIL) {
cut_fail();
}
TRef = MkDBRefTerm(ref);
/* we have a pointer to the term available */
#if defined(YAPOR) || defined(THREADS)
LOCK(ref->lock);
TRAIL_REF(ref); /* So that fail will erase it */
INC_DBREF_COUNT(ref);
UNLOCK(ref->lock);
#else
if (!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(ref); /* So that fail will erase it */
}
#endif
while ((TermDB = GetDBTermFromDBEntry(ref)) == (CELL)0) {
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 3, ENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
}
if (IsVarTerm(TermDB)) {
Yap_unify(TermDB, ARG2);
} else {
return(Yap_unify(ARG2, TermDB));
}
return(Yap_unify(ARG3, TRef));
}
static UInt
index_sz(LogUpdIndex *x)
{
UInt sz = x->ClSize;
x = x->ChildIndex;
while (x != NULL) {
sz += index_sz(x);
x = x->SiblingIndex;
}
return sz;
}
static Int
lu_statistics(PredEntry *pe)
{
UInt sz = 0, cls = 0, isz = 0;
/* count number of clauses and size */
LogUpdClause *x;
if (pe->cs.p_code.FirstClause == NULL) {
cls = 0;
sz = 0;
} else {
x = ClauseCodeToLogUpdClause(pe->cs.p_code.FirstClause);
while (x != NULL) {
cls++;
sz += x->ClSize;
x = x->ClNext;
}
}
if (pe->PredFlags & IndexedPredFlag) {
isz = index_sz(ClauseCodeToLogUpdIndex(pe->cs.p_code.TrueCodeOfPred));
} else {
isz = 0;
}
return
Yap_unify(ARG2,MkIntegerTerm(cls)) &&
Yap_unify(ARG3,MkIntegerTerm(sz)) &&
Yap_unify(ARG4,MkIntegerTerm(isz));
}
static Int
p_key_statistics(void)
{
Register DBProp p;
Register DBRef x;
UInt sz = 0, cls = 0;
Term twork = Deref(ARG1);
PredEntry *pe;
if ((pe = find_lu_entry(twork)) != NULL) {
return lu_statistics(pe);
}
if (EndOfPAEntr(p = FetchDBPropFromKey(twork, 0, TRUE, "key_statistics/3"))) {
/* This is not a key property */
return(FALSE);
}
/* count number of clauses and size */
x = p->First;
while (x != NULL) {
cls++;
sz += sizeof(DBStruct)+sizeof(CELL)*x->DBT.NOfCells;
if (x->Code) {
DynamicClause *cl = ClauseCodeToDynamicClause(x->Code);
sz += cl->ClSize;
}
x = NextDBRef(x);
}
return
Yap_unify(ARG2,MkIntegerTerm(cls)) &&
Yap_unify(ARG3,MkIntegerTerm(sz)) &&
Yap_unify(ARG4,MkIntTerm(0));
}
#ifdef DEBUG
static Int
p_total_erased(void)
{
UInt sz = 0, cls = 0;
UInt isz = 0, icls = 0;
LogUpdClause *cl = DBErasedList;
LogUpdIndex *icl = DBErasedIList;
/* only for log upds */
while (cl) {
cls++;
sz += cl->ClSize;
cl = cl->ClNext;
}
while (icl) {
icls++;
isz += icl->ClSize;
icl = icl->SiblingIndex;
}
return
Yap_unify(ARG1,MkIntegerTerm(cls)) &&
Yap_unify(ARG2,MkIntegerTerm(sz)) &&
Yap_unify(ARG3,MkIntegerTerm(icls)) &&
Yap_unify(ARG4,MkIntegerTerm(isz));
}
static Int
p_key_erased_statistics(void)
{
UInt sz = 0, cls = 0;
UInt isz = 0, icls = 0;
Term twork = Deref(ARG1);
PredEntry *pe;
LogUpdClause *cl = DBErasedList;
LogUpdIndex *icl = DBErasedIList;
/* only for log upds */
if ((pe = find_lu_entry(twork)) == NULL)
return FALSE;
while (cl) {
if (cl->ClPred == pe) {
cls++;
sz += cl->ClSize;
}
cl = cl->ClNext;
}
while (icl) {
if (pe == icl->ClPred) {
icls++;
isz += icl->ClSize;
}
icl = icl->SiblingIndex;
}
return
Yap_unify(ARG2,MkIntegerTerm(cls)) &&
Yap_unify(ARG3,MkIntegerTerm(sz)) &&
Yap_unify(ARG4,MkIntegerTerm(icls)) &&
Yap_unify(ARG5,MkIntegerTerm(isz));
}
static Int
p_heap_space_info(void)
{
return
Yap_unify(ARG1,MkIntegerTerm(HeapUsed)) &&
Yap_unify(ARG2,MkIntegerTerm(HeapMax-HeapUsed)) &&
Yap_unify(ARG3,MkIntegerTerm(Yap_expand_clauses_sz));
}
#endif
/*
* This is called when we are erasing a data base clause, because we may have
* pending references
*/
static void
ErasePendingRefs(DBTerm *entryref)
{
DBRef *cp;
DBRef ref;
cp = entryref->DBRefs;
if (entryref->DBRefs == NULL)
return;
while ((ref = *--cp) != NULL) {
if ((ref->Flags & DBClMask) && (--(ref->NOfRefsTo) == 0)
&& (ref->Flags & ErasedMask))
ErDBE(ref);
}
}
inline static void
RemoveDBEntry(DBRef entryref)
{
ErasePendingRefs(&(entryref->DBT));
/* We may be backtracking back to a deleted entry. If we just remove
the space then the info on the entry may be corrupt. */
if ((B->cp_ap == RETRY_C_RECORDED_K_CODE
|| B->cp_ap == RETRY_C_RECORDEDP_CODE) &&
EXTRA_CBACK_ARG(3,1) == (CELL)entryref) {
/* make it clear the entry has been released */
#if defined(YAPOR) || defined(THREADS)
DEC_DBREF_COUNT(entryref);
#else
entryref->Flags &= ~InUseMask;
#endif
DBErasedMarker->Next = NULL;
DBErasedMarker->Parent = entryref->Parent;
DBErasedMarker->n = entryref->n;
EXTRA_CBACK_ARG(3,1) = (CELL)DBErasedMarker;
}
if (entryref->p != NULL)
entryref->p->n = entryref->n;
else
entryref->Parent->F0 = entryref->n;
if (entryref->n != NULL)
entryref->n->p = entryref->p;
else
entryref->Parent->L0 = entryref->p;
FreeDBSpace((char *) entryref);
}
static yamop *
find_next_clause(DBRef ref0)
{
Register DBRef ref;
yamop *newp;
/* fetch ref0 from the instruction we just started executing */
#ifdef DEBUG
if (!(ref0->Flags & ErasedMask)) {
Yap_Error(SYSTEM_ERROR, TermNil, "find_next_clause (dead clause %x)", ref0);
return(NIL);
}
#endif
/* search for an newer entry that is to the left and points to code */
ref = ref0;
while ((ref = ref->n) != NULL) {
if (!(ref->Flags & ErasedMask))
break;
}
/* no extra alternatives to try, let us leave gracefully */
if (ref == NULL) {
return(NULL);
} else {
/* OK, we found a clause we can jump to, do a bit of hanky pancking with
the choice-point, so that it believes we are actually working from that
clause */
newp = ref->Code;
/* and next let's tell the world this clause is being used, just
like if we were executing a standard retry_and_mark */
#if defined(YAPOR) || defined(THREADS)
{
DynamicClause *cl = ClauseCodeToDynamicClause(newp);
LOCK(cl->ClLock);
TRAIL_CLREF(cl);
INC_CLREF_COUNT(cl);
UNLOCK(cl->ClLock);
}
#else
if (!DynamicFlags(newp) & InUseMask) {
DynamicFlags(newp) |= InUseMask;
TRAIL_CLREF(ClauseCodeToDynamicClause(newp));
}
#endif
return(newp);
}
}
/* This procedure is called when a clause is officialy deleted. Its job
is to find out where the code can go next, if it can go anywhere */
static Int
p_jump_to_next_dynamic_clause(void)
{
DBRef ref = (DBRef)(((yamop *)((CODEADDR)P-(CELL)NEXTOP((yamop *)NULL,sla)))->u.sla.bmap);
yamop *newp = find_next_clause(ref);
if (newp == NULL) {
cut_fail();
}
/* the next alternative to try must be obtained from this clause */
B->cp_ap = newp;
/* and next, enter the clause */
P = NEXTOP(newp,ld);
/* and return like if nothing had happened. */
return(TRUE);
}
static void
complete_lu_erase(LogUpdClause *clau)
{
DBRef *cp;
if (clau->ClSource)
cp = clau->ClSource->DBRefs;
else
cp = NULL;
if (CL_IN_USE(clau)) {
return;
}
if (clau->ClFlags & LogUpdRuleMask &&
clau->ClExt->u.EC.ClRefs > 0) {
return;
}
#ifdef DEBUG
#ifndef THREADS
if (clau->ClNext)
clau->ClNext->ClPrev = clau->ClPrev;
if (clau->ClPrev) {
clau->ClPrev->ClNext = clau->ClNext;
} else {
DBErasedList = clau->ClNext;
}
#endif
#endif
if (cp != NULL) {
DBRef ref;
while ((ref = *--cp) != NIL) {
if (ref->Flags & LogUpdMask) {
LogUpdClause *cl = (LogUpdClause *)ref;
LOCK(cl->ClLock);
cl->ClRefCount--;
if (cl->ClFlags & ErasedMask &&
!(cl->ClFlags & InUseMask) &&
!(cl->ClRefCount)) {
UNLOCK(cl->ClLock);
EraseLogUpdCl(cl);
} else {
UNLOCK(cl->ClLock);
}
} else {
LOCK(ref->lock);
ref->NOfRefsTo--;
if (ref->Flags & ErasedMask &&
!(ref->Flags & InUseMask) &&
ref->NOfRefsTo) {
UNLOCK(ref->lock);
ErDBE(ref);
} else {
UNLOCK(ref->lock);
}
}
}
}
Yap_InformOfRemoval((CODEADDR)clau);
Yap_FreeCodeSpace((char *)clau);
}
static void
EraseLogUpdCl(LogUpdClause *clau)
{
PredEntry *ap;
ap = clau->ClPred;
LOCK(clau->ClLock);
/* no need to erase what has been erased */
if (!(clau->ClFlags & ErasedMask)) {
#if defined(YAPOR) || defined(THREADS)
int i_locked = FALSE;
if (WPP != ap) {
WRITE_LOCK(ap->PRWLock);
if (WPP == NULL) {
i_locked = TRUE;
WPP = ap;
}
}
#endif
/* get ourselves out of the list */
if (clau->ClNext != NULL) {
LOCK(clau->ClNext->ClLock);
clau->ClNext->ClPrev = clau->ClPrev;
UNLOCK(clau->ClNext->ClLock);
}
if (clau->ClPrev != NULL) {
LOCK(clau->ClPrev->ClLock);
clau->ClPrev->ClNext = clau->ClNext;
UNLOCK(clau->ClPrev->ClLock);
}
UNLOCK(clau->ClLock);
if (ap) {
if (clau->ClCode == ap->cs.p_code.FirstClause) {
if (clau->ClNext == NULL) {
ap->cs.p_code.FirstClause = NULL;
} else {
ap->cs.p_code.FirstClause = clau->ClNext->ClCode;
}
}
if (clau->ClCode == ap->cs.p_code.LastClause) {
if (clau->ClPrev == NULL) {
ap->cs.p_code.LastClause = NULL;
} else {
ap->cs.p_code.LastClause = clau->ClPrev->ClCode;
}
}
ap->cs.p_code.NOfClauses--;
}
clau->ClFlags |= ErasedMask;
#ifdef DEBUG
#ifndef THREADS
{
LogUpdClause *er_head = DBErasedList;
if (er_head == NULL) {
clau->ClPrev = clau->ClNext = NULL;
} else {
clau->ClNext = er_head;
er_head->ClPrev = clau;
clau->ClPrev = NULL;
}
DBErasedList = clau;
}
#endif
#endif
/* we are holding a reference to the clause */
clau->ClRefCount++;
if (ap) {
UNLOCK(clau->ClLock);
Yap_RemoveClauseFromIndex(ap, clau->ClCode);
/* release the extra reference */
LOCK(clau->ClLock);
}
clau->ClRefCount--;
#if defined(YAPOR) || defined(THREADS)
if (WPP != ap || i_locked) {
if (i_locked) WPP= NULL;
WRITE_UNLOCK(ap->PRWLock);
}
#endif
}
UNLOCK(clau->ClLock);
complete_lu_erase(clau);
}
static void
MyEraseClause(DynamicClause *clau)
{
DBRef ref;
SMALLUNSGN clmask;
if (CL_IN_USE(clau))
return;
clmask = clau->ClFlags;
/*
I don't need to lock the clause at this point because
I am the last one using it anyway.
*/
ref = (DBRef) NEXTOP(clau->ClCode,ld)->u.sla.bmap;
/* don't do nothing if the reference is still in use */
if (DBREF_IN_USE(ref))
return;
if ( P == clau->ClCode ) {
yamop *np = RTRYCODE;
/* make it the next alternative */
np->u.ld.d = find_next_clause((DBRef)(NEXTOP(P,ld)->u.sla.bmap));
if (np->u.ld.d == NULL)
P = (yamop *)FAILCODE;
else {
/* with same arity as before */
np->u.ld.s = P->u.ld.s;
np->u.ld.p = P->u.ld.p;
/* go ahead and try this code */
P = np;
}
} else {
Yap_InformOfRemoval((CODEADDR)clau);
Yap_FreeCodeSpace((char *)clau);
#ifdef DEBUG
if (ref->NOfRefsTo)
fprintf(Yap_stderr, "Error: references to dynamic clause\n");
#endif
RemoveDBEntry(ref);
}
}
/*
This predicate is supposed to be called with a
lock on the current predicate
*/
void
Yap_ErLogUpdCl(LogUpdClause *clau)
{
EraseLogUpdCl(clau);
}
/*
This predicate is supposed to be called with a
lock on the current predicate
*/
void
Yap_ErCl(DynamicClause *clau)
{
MyEraseClause(clau);
}
static void
PrepareToEraseLogUpdClause(LogUpdClause *clau, DBRef dbr)
{
yamop *code_p = clau->ClCode;
PredEntry *p = clau->ClPred;
yamop *cl = code_p;
if (clau->ClFlags & ErasedMask)
return;
clau->ClFlags |= ErasedMask;
#if defined(YAPOR) || defined(THREADS)
if (WPP != p) {
WRITE_LOCK(p->PRWLock);
}
#endif
if (p->cs.p_code.FirstClause != cl) {
/* we are not the first clause... */
yamop *prev_code_p = (yamop *)(dbr->Prev->Code);
prev_code_p->u.ld.d = code_p->u.ld.d;
/* are we the last? */
if (p->cs.p_code.LastClause == cl)
p->cs.p_code.LastClause = prev_code_p;
} else {
/* we are the first clause, what about the last ? */
if (p->cs.p_code.LastClause == p->cs.p_code.FirstClause) {
p->cs.p_code.LastClause = p->cs.p_code.FirstClause = NULL;
} else {
p->cs.p_code.FirstClause = code_p->u.ld.d;
p->cs.p_code.FirstClause->opc =
Yap_opcode(_try_me);
}
}
dbr->Code = NULL; /* unlink the two now */
if (p->PredFlags & IndexedPredFlag) {
p->cs.p_code.NOfClauses--;
Yap_RemoveIndexation(p);
} else {
EraseLogUpdCl(clau);
}
if (p->cs.p_code.FirstClause == p->cs.p_code.LastClause) {
if (p->cs.p_code.FirstClause != NULL) {
code_p = p->cs.p_code.FirstClause;
code_p->u.ld.d = p->cs.p_code.FirstClause;
p->cs.p_code.TrueCodeOfPred = NEXTOP(code_p, ld);
if (p->PredFlags & SpiedPredFlag) {
p->OpcodeOfPred = Yap_opcode(_spy_pred);
p->CodeOfPred = (yamop *)(&(p->OpcodeOfPred));
} else {
p->CodeOfPred = p->cs.p_code.TrueCodeOfPred;
p->OpcodeOfPred = p->cs.p_code.TrueCodeOfPred->opc;
}
} else {
p->OpcodeOfPred = FAIL_OPCODE;
p->cs.p_code.TrueCodeOfPred = p->CodeOfPred = (yamop *)(&(p->OpcodeOfPred));
}
} else {
if (p->PredFlags & SpiedPredFlag) {
p->OpcodeOfPred = Yap_opcode(_spy_pred);
p->CodeOfPred = (yamop *)(&(p->OpcodeOfPred));
} else {
p->OpcodeOfPred = INDEX_OPCODE;
p->CodeOfPred = (yamop *)(&(p->OpcodeOfPred));
}
}
#if defined(YAPOR) || defined(THREADS)
if (WPP != p) {
WRITE_UNLOCK(p->PRWLock);
}
#endif
}
static void
PrepareToEraseClause(DynamicClause *clau, DBRef dbr)
{
}
static void
ErDBE(DBRef entryref)
{
if ((entryref->Flags & DBCode) && entryref->Code) {
if (entryref->Flags & LogUpdMask) {
LogUpdClause *clau = ClauseCodeToLogUpdClause(entryref->Code);
LOCK(clau->ClLock);
if (CL_IN_USE(clau) || entryref->NOfRefsTo != 0) {
PrepareToEraseLogUpdClause(clau, entryref);
UNLOCK(clau->ClLock);
} else {
if (!(clau->ClFlags & ErasedMask))
PrepareToEraseLogUpdClause(clau, entryref);
UNLOCK(clau->ClLock);
/* the clause must have left the chain */
EraseLogUpdCl(clau);
}
} else {
DynamicClause *clau = ClauseCodeToDynamicClause(entryref->Code);
LOCK(clau->ClLock);
if (CL_IN_USE(clau) || entryref->NOfRefsTo != 0) {
PrepareToEraseClause(clau, entryref);
UNLOCK(clau->ClLock);
} else {
if (!(clau->ClFlags & ErasedMask))
PrepareToEraseClause(clau, entryref);
UNLOCK(clau->ClLock);
/* the clause must have left the chain */
MyEraseClause(clau);
}
}
} else if (!(DBREF_IN_USE(entryref))) {
if (entryref->NOfRefsTo == 0)
RemoveDBEntry(entryref);
else if (!(entryref->Flags & ErasedMask)) {
/* oops, I cannot remove it, but I at least have to tell
the world what's going on */
entryref->Flags |= ErasedMask;
entryref->Next = entryref->Prev = NIL;
}
}
}
void
Yap_ErDBE(DBRef entryref)
{
ErDBE(entryref);
}
static void
EraseEntry(DBRef entryref)
{
DBProp p;
if (entryref->Flags & ErasedMask)
return;
if (entryref->Flags & LogUpdMask &&
!(entryref->Flags & DBClMask)) {
EraseLogUpdCl((LogUpdClause *)entryref);
return;
}
entryref->Flags |= ErasedMask;
/* update FirstNEr */
p = entryref->Parent;
/* exit the db chain */
if (entryref->Next != NIL) {
entryref->Next->Prev = entryref->Prev;
} else {
p->Last = entryref->Prev;
}
if (entryref->Prev != NIL)
entryref->Prev->Next = entryref->Next;
else
p->First = entryref->Next;
/* make sure we know the entry has been removed from the list */
entryref->Next = NIL;
if (!DBREF_IN_USE(entryref)) {
ErDBE(entryref);
} else if ((entryref->Flags & DBCode) && entryref->Code) {
PrepareToEraseClause(ClauseCodeToDynamicClause(entryref->Code), entryref);
}
}
/* erase(+Ref) */
static Int
p_erase(void)
{
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "erase");
return (FALSE);
}
if (!IsDBRefTerm(t1)) {
Yap_Error(TYPE_ERROR_DBREF, t1, "erase");
return (FALSE);
}
EraseEntry(DBRefOfTerm(t1));
return (TRUE);
}
static Int
p_erase_clause(void)
{
Term t1 = Deref(ARG1);
DBRef entryref;
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "erase");
return (FALSE);
}
if (!IsDBRefTerm(t1)) {
if (IsApplTerm(t1)) {
if (FunctorOfTerm(t1) == FunctorStaticClause) {
Yap_EraseStaticClause(Yap_ClauseFromTerm(t1), Deref(ARG2));
return TRUE;
}
if (FunctorOfTerm(t1) == FunctorMegaClause) {
Yap_EraseMegaClause(Yap_MegaClauseFromTerm(t1), Yap_MegaClausePredicateFromTerm(t1));
return TRUE;
}
}
Yap_Error(TYPE_ERROR_DBREF, t1, "erase");
return (FALSE);
} else {
entryref = DBRefOfTerm(t1);
}
EraseEntry(entryref);
return TRUE;
}
/* eraseall(+Key) */
static Int
p_eraseall(void)
{
Register Term twork = Deref(ARG1);
Register DBRef entryref;
DBProp p;
PredEntry *pe;
if ((pe = find_lu_entry(twork)) != NULL) {
LogUpdClause *cl;
if (!pe->cs.p_code.NOfClauses)
return TRUE;
if (pe->PredFlags & IndexedPredFlag)
Yap_RemoveIndexation(pe);
cl = ClauseCodeToLogUpdClause(pe->cs.p_code.FirstClause);
do {
LogUpdClause *ncl = cl->ClNext;
Yap_ErLogUpdCl(cl);
cl = ncl;
} while (cl != NULL);
return TRUE;
}
if (EndOfPAEntr(p = FetchDBPropFromKey(twork, 0, FALSE, "eraseall/3"))) {
return(TRUE);
}
WRITE_LOCK(p->DBRWLock);
entryref = FrstDBRef(p);
do {
DBRef next_entryref;
while (entryref != NIL &&
(entryref->Flags & (DBCode | ErasedMask)))
entryref = NextDBRef(entryref);
if (entryref == NIL)
break;
next_entryref = NextDBRef(entryref);
/* exit the db chain */
if (entryref->Next != NIL) {
entryref->Next->Prev = entryref->Prev;
} else {
p->Last = entryref->Prev;
}
if (entryref->Prev != NIL)
entryref->Prev->Next = entryref->Next;
else
p->First = entryref->Next;
/* make sure we know the entry has been removed from the list */
entryref->Next = entryref->Prev = NIL;
if (!DBREF_IN_USE(entryref))
ErDBE(entryref);
else {
entryref->Flags |= ErasedMask;
}
entryref = next_entryref;
} while (entryref != NIL);
WRITE_UNLOCK(p->DBRWLock);
return (TRUE);
}
/* erased(+Ref) */
static Int
p_erased(void)
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "erased");
return (FALSE);
}
if (!IsDBRefTerm(t)) {
Yap_Error(TYPE_ERROR_DBREF, t, "erased");
return (FALSE);
}
return (DBRefOfTerm(t)->Flags & ErasedMask);
}
static Int
static_instance(StaticClause *cl)
{
if (cl->ClFlags & ErasedMask) {
return FALSE;
}
if (cl->ClFlags & FactMask) {
PredEntry *ap = cl->usc.ClPred;
if (ap->ArityOfPE == 0) {
return Yap_unify(ARG2,MkAtomTerm((Atom)ap->FunctorOfPred));
} else {
Functor f = ap->FunctorOfPred;
UInt arity = ArityOfFunctor(ap->FunctorOfPred), i;
Term t2 = Deref(ARG2);
CELL *ptr;
if (IsVarTerm(t2)) {
Yap_unify(ARG2, (t2 = Yap_MkNewApplTerm(f,arity)));
} else if (!IsApplTerm(t2) || FunctorOfTerm(t2) != f) {
return FALSE;
}
ptr = RepAppl(t2)+1;
for (i=0; i<arity; i++) {
XREGS[i+1] = ptr[i];
}
CP = P;
YENV = ASP;
YENV[E_CB] = (CELL) B;
P = cl->ClCode;
return TRUE;
}
} else {
Term TermDB;
while ((TermDB = GetDBTerm(cl->usc.ClSource)) == 0L) {
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 2, ENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
}
return Yap_unify(ARG2, TermDB);
}
}
static Int
mega_instance(yamop *code, PredEntry *ap)
{
if (ap->ArityOfPE == 0) {
return Yap_unify(ARG2,MkAtomTerm((Atom)ap->FunctorOfPred));
} else {
Functor f = ap->FunctorOfPred;
UInt arity = ArityOfFunctor(ap->FunctorOfPred), i;
Term t2 = Deref(ARG2);
CELL *ptr;
if (IsVarTerm(t2)) {
t2 = Yap_MkNewApplTerm(f,arity);
Yap_unify(ARG2, t2);
} else if (!IsApplTerm(t2) || FunctorOfTerm(t2) != f) {
return FALSE;
}
ptr = RepAppl(t2)+1;
for (i=0; i<arity; i++) {
XREGS[i+1] = ptr[i];
}
CP = P;
YENV = ASP;
YENV[E_CB] = (CELL) B;
P = code;
return TRUE;
}
}
/* instance(+Ref,?Term) */
static Int
p_instance(void)
{
Term t1 = Deref(ARG1);
DBRef dbr;
if (IsVarTerm(t1) || !IsDBRefTerm(t1)) {
if (IsApplTerm(t1)) {
if (FunctorOfTerm(t1) == FunctorStaticClause) {
return static_instance(Yap_ClauseFromTerm(t1));
}
if (FunctorOfTerm(t1) == FunctorMegaClause) {
return mega_instance(Yap_MegaClauseFromTerm(t1),Yap_MegaClausePredicateFromTerm(t1));
}
}
return FALSE;
} else {
dbr = DBRefOfTerm(t1);
}
if (dbr->Flags & LogUpdMask) {
op_numbers opc;
LogUpdClause *cl = (LogUpdClause *)dbr;
if (cl->ClFlags & ErasedMask) {
return FALSE;
}
if (cl->ClSource == NULL) {
PredEntry *ap = cl->ClPred;
if (ap->ArityOfPE == 0) {
return Yap_unify(ARG2,MkAtomTerm((Atom)ap->FunctorOfPred));
} else {
Functor f = ap->FunctorOfPred;
UInt arity = ArityOfFunctor(ap->FunctorOfPred), i;
Term t2 = Deref(ARG2);
CELL *ptr;
if (IsVarTerm(t2)) {
Yap_unify(ARG2, (t2 = Yap_MkNewApplTerm(f,arity)));
} else if (!IsApplTerm(t2) || FunctorOfTerm(t2) != f) {
return FALSE;
}
ptr = RepAppl(t2)+1;
for (i=0; i<arity; i++) {
XREGS[i+1] = ptr[i];
}
CP = P;
YENV = ASP;
YENV[E_CB] = (CELL) B;
P = cl->ClCode;
return TRUE;
}
}
opc = Yap_op_from_opcode(cl->ClCode->opc);
if (opc == _unify_idb_term) {
return Yap_unify(ARG2, cl->ClSource->Entry);
} else {
Term TermDB;
while ((TermDB = GetDBTerm(cl->ClSource)) == 0L) {
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 2, ENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
}
return Yap_unify(ARG2, TermDB);
}
} else {
Term TermDB;
while ((TermDB = GetDBTermFromDBEntry(dbr)) == 0L) {
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 2, ENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return(FALSE);
}
}
t1 = Deref(ARG1);
}
return Yap_unify(ARG2, TermDB);
}
}
Term
Yap_LUInstance(LogUpdClause *cl, UInt arity)
{
Term TermDB;
op_numbers opc = Yap_op_from_opcode(cl->ClCode->opc);
LOCK(cl->ClLock);
if (opc == _unify_idb_term) {
TermDB = cl->ClSource->Entry;
} else {
while ((TermDB = GetDBTerm(cl->ClSource)) == 0L) {
/* oops, we are in trouble, not enough stack space */
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
UNLOCK(cl->ClLock);
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return 0L;
}
LOCK(cl->ClLock);
} else {
UNLOCK(cl->ClLock);
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, arity, ENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return 0L;
}
LOCK(cl->ClLock);
}
}
}
#if defined(YAPOR) || defined(THREADS)
cl->ClRefCount++;
TRAIL_CLREF(cl); /* So that fail will erase it */
#else
if (!(cl->ClFlags & InUseMask)) {
cl->ClFlags |= InUseMask;
TRAIL_CLREF(cl);
}
#endif
UNLOCK(cl->ClLock);
return TermDB;
}
/* instance(+Ref,?Term) */
static Int
p_instance_module(void)
{
Term t1 = Deref(ARG1);
DBRef dbr;
if (IsVarTerm(t1)) {
return FALSE;
}
if (IsDBRefTerm(t1)) {
dbr = DBRefOfTerm(t1);
} else {
return FALSE;
}
if (dbr->Flags & LogUpdMask) {
LogUpdClause *cl = (LogUpdClause *)dbr;
if (cl->ClFlags & ErasedMask) {
return FALSE;
}
if (cl->ClPred->ModuleOfPred)
return Yap_unify(ARG2, cl->ClPred->ModuleOfPred);
else
return Yap_unify(ARG2, TermProlog);
} else {
return Yap_unify(ARG2, dbr->Parent->ModuleOfDB);
}
}
inline static int
NotActiveDB(DBRef my_dbref)
{
while (my_dbref && (my_dbref->Flags & (DBCode | ErasedMask)))
my_dbref = my_dbref->Next;
return (my_dbref == NIL);
}
inline static DBEntry *
NextDBProp(PropEntry *pp)
{
while (!EndOfPAEntr(pp) && (((pp->KindOfPE & ~ 0x1) != DBProperty) ||
NotActiveDB(((DBProp) pp)->First)))
pp = RepProp(pp->NextOfPE);
return ((DBEntry *)pp);
}
static Int
init_current_key(void)
{ /* current_key(+Atom,?key) */
Int i = 0;
DBEntry *pp;
Atom a;
Term t1 = ARG1;
t1 = Deref(ARG1);
if (!IsVarTerm(t1)) {
if (IsAtomTerm(t1))
a = AtomOfTerm(t1);
else {
cut_fail();
}
} else {
/* ask for the first hash line */
while (TRUE) {
READ_LOCK(HashChain[i].AERWLock);
a = HashChain[i].Entry;
if (a != NIL) {
break;
}
READ_UNLOCK(HashChain[i].AERWLock);
i++;
}
READ_UNLOCK(HashChain[i].AERWLock);
}
READ_LOCK(RepAtom(a)->ARWLock);
pp = NextDBProp(RepProp(RepAtom(a)->PropsOfAE));
READ_UNLOCK(RepAtom(a)->ARWLock);
EXTRA_CBACK_ARG(2,3) = MkAtomTerm(a);
EXTRA_CBACK_ARG(2,2) = MkIntTerm(i);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)pp);
return (cont_current_key());
}
static Int
cont_current_key(void)
{
unsigned int arity;
Functor functor;
Term term, AtT;
Atom a;
Int i = IntegerOfTerm(EXTRA_CBACK_ARG(2,2));
Term first = Deref(ARG1);
DBEntry *pp = (DBEntry *) IntegerOfTerm(EXTRA_CBACK_ARG(2,1));
if (IsIntTerm(term = EXTRA_CBACK_ARG(2,3)))
return(cont_current_key_integer());
a = AtomOfTerm(term);
if (EndOfPAEntr(pp) && IsAtomTerm(first)) {
cut_fail();
}
while (EndOfPAEntr(pp)) {
UInt j;
if ((a = RepAtom(a)->NextOfAE) == NIL) {
i++;
while (i < AtomHashTableSize) {
/* protect current hash table line, notice that the current
LOCK/UNLOCK algorithm assumes new entries are added to
the *front* of the list, otherwise I should have locked
earlier.
*/
READ_LOCK(HashChain[i].AERWLock);
a = HashChain[i].Entry;
if (a != NIL) {
break;
}
/* move to next entry */
READ_UNLOCK(HashChain[i].AERWLock);
i++;
}
if (i == AtomHashTableSize) {
/* we have left the atom hash table */
/* we don't have a lock over the hash table any longer */
if (IsAtomTerm(first)) {
cut_fail();
}
j = 0;
if (INT_KEYS == NULL) {
cut_fail();
}
for(j = 0; j < INT_KEYS_SIZE; j++) {
if (INT_KEYS[j] != NIL) {
DBProp pptr = RepDBProp(INT_KEYS[j]);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)(pptr->NextOfPE));
EXTRA_CBACK_ARG(2,2) = MkIntegerTerm(j+1);
EXTRA_CBACK_ARG(2,3) = MkIntTerm(INT_KEYS_TIMESTAMP);
term = MkIntegerTerm((Int)(pptr->FunctorOfDB));
return(Yap_unify(term,ARG1) && Yap_unify(term,ARG2));
}
}
if (j == INT_KEYS_SIZE) {
cut_fail();
}
return(cont_current_key_integer());
} else {
/* release our lock over the hash table */
READ_UNLOCK(HashChain[i].AERWLock);
EXTRA_CBACK_ARG(2,2) = MkIntTerm(i);
}
}
READ_LOCK(RepAtom(a)->ARWLock);
if (!EndOfPAEntr(pp = NextDBProp(RepProp(RepAtom(a)->PropsOfAE))))
EXTRA_CBACK_ARG(2,3) = (CELL) MkAtomTerm(a);
READ_UNLOCK(RepAtom(a)->ARWLock);
}
READ_LOCK(RepAtom(a)->ARWLock);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)NextDBProp(RepProp(pp->NextOfPE)));
READ_UNLOCK(RepAtom(a)->ARWLock);
arity = (unsigned int)(pp->ArityOfDB);
if (arity == 0) {
term = AtT = MkAtomTerm(a);
} else {
unsigned int j;
CELL *p = H;
for (j = 0; j < arity; j++) {
p[j] = MkVarTerm();
}
functor = Yap_MkFunctor(a, arity);
term = Yap_MkApplTerm(functor, arity, p);
AtT = MkAtomTerm(a);
}
return (Yap_unify_constant(ARG1, AtT) && Yap_unify(ARG2, term));
}
static Int
cont_current_key_integer(void)
{
Term term;
UInt i = IntOfTerm(EXTRA_CBACK_ARG(2,2));
Prop pp = (Prop)IntegerOfTerm(EXTRA_CBACK_ARG(2,1));
UInt tstamp = (UInt)IntOfTerm(EXTRA_CBACK_ARG(2,3));
DBProp pptr;
if (tstamp != INT_KEYS_TIMESTAMP) {
cut_fail();
}
while (pp == NIL) {
for(;i < INT_KEYS_SIZE; i++) {
if (INT_KEYS[i] != NIL) {
EXTRA_CBACK_ARG(2,2) = MkIntTerm(i+1);
pp = INT_KEYS[i];
break;
}
}
if (i == INT_KEYS_SIZE) {
cut_fail();
}
}
pptr = RepDBProp(pp);
EXTRA_CBACK_ARG(2,1) = MkIntegerTerm((Int)(pptr->NextOfPE));
term = MkIntegerTerm((Int)(pptr->FunctorOfDB));
return(Yap_unify(term,ARG1) && Yap_unify(term,ARG2));
}
Term
Yap_FetchTermFromDB(DBTerm *ref)
{
return GetDBTerm(ref);
}
static DBTerm *
StoreTermInDB(Term t, int nargs)
{
DBTerm *x;
int needs_vars;
struct db_globs dbg;
s_dbg = &dbg;
Yap_Error_Size = 0;
while ((x = (DBTerm *)CreateDBStruct(t, (DBProp)NULL,
InQueue, &needs_vars, 0, &dbg)) == NULL) {
if (Yap_Error_TYPE == YAP_NO_ERROR) {
break;
} else {
XREGS[nargs+1] = t;
if (recover_from_record_error(nargs+1)) {
t = Deref(XREGS[nargs+1]);
} else {
return FALSE;
}
}
}
return(x);
}
DBTerm *
Yap_StoreTermInDB(Term t, int nargs) {
return StoreTermInDB(t, nargs);
}
DBTerm *
Yap_StoreTermInDBPlusExtraSpace(Term t, UInt extra_size) {
int needs_vars;
struct db_globs dbg;
s_dbg = &dbg;
return (DBTerm *)CreateDBStruct(t, (DBProp)NULL,
InQueue, &needs_vars, extra_size, &dbg);
}
static Int
p_init_queue(void)
{
db_queue *dbq;
Term t;
while ((dbq = (db_queue *)AllocDBSpace(sizeof(db_queue))) == NULL) {
if (!Yap_growheap(FALSE, sizeof(db_queue), NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, "in findall");
return(FALSE);
}
}
dbq->id = FunctorDBRef;
dbq->Flags = DBClMask;
dbq->FirstInQueue = dbq->LastInQueue = NULL;
INIT_RWLOCK(dbq->QRWLock);
t = MkIntegerTerm((Int)dbq);
return(Yap_unify(ARG1, t));
}
static Int
p_enqueue(void)
{
Term Father = Deref(ARG1);
Term t;
QueueEntry *x;
db_queue *father_key;
if (IsVarTerm(Father)) {
Yap_Error(INSTANTIATION_ERROR, Father, "enqueue");
return(FALSE);
} else if (!IsIntegerTerm(Father)) {
Yap_Error(TYPE_ERROR_INTEGER, Father, "enqueue");
return(FALSE);
} else
father_key = (db_queue *)IntegerOfTerm(Father);
while ((x = (QueueEntry *)AllocDBSpace(sizeof(QueueEntry))) == NULL) {
if (!Yap_growheap(FALSE, sizeof(QueueEntry), NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, "in findall");
return FALSE;
}
}
t = Deref(ARG1);
x->DBT = StoreTermInDB(Deref(ARG2), 2);
if (x->DBT == NULL) {
return FALSE;
}
x->next = NULL;
WRITE_LOCK(father_key->QRWLock);
if (father_key->LastInQueue != NULL)
father_key->LastInQueue->next = x;
father_key->LastInQueue = x;
if (father_key->FirstInQueue == NULL) {
father_key->FirstInQueue = x;
}
WRITE_UNLOCK(father_key->QRWLock);
return(TRUE);
}
/* when reading an entry in the data base we are making it accessible from
the outside. If the entry was removed, and this was the last pointer, the
target entry would be immediately removed, leading to dangling pointers.
We avoid this problem by making every entry accessible.
Note that this could not happen with recorded, because the original db
entry itself is still accessible from a trail entry, so we could not remove
the target entry,
*/
static void
keepdbrefs(DBTerm *entryref)
{
DBRef *cp;
DBRef ref;
cp = entryref->DBRefs;
if (cp == NULL) {
return;
}
while ((ref = *--cp) != NIL) {
if (!(ref->Flags & LogUpdMask)) {
LOCK(ref->lock);
if(!(ref->Flags & InUseMask)) {
ref->Flags |= InUseMask;
TRAIL_REF(ref); /* So that fail will erase it */
}
UNLOCK(ref->lock);
}
}
}
static Int
p_dequeue(void)
{
db_queue *father_key;
QueueEntry *cur_instance;
Term Father = Deref(ARG1);
if (IsVarTerm(Father)) {
Yap_Error(INSTANTIATION_ERROR, Father, "dequeue");
return(FALSE);
} else if (!IsIntegerTerm(Father)) {
Yap_Error(TYPE_ERROR_INTEGER, Father, "dequeue");
return(FALSE);
} else
father_key = (db_queue *)IntegerOfTerm(Father);
WRITE_LOCK(father_key->QRWLock);
if ((cur_instance = father_key->FirstInQueue) == NULL) {
/* an empty queue automatically goes away */
WRITE_UNLOCK(father_key->QRWLock);
FreeDBSpace((char *)father_key);
return(FALSE);
} else {
Term TDB;
if (cur_instance == father_key->LastInQueue)
father_key->FirstInQueue = father_key->LastInQueue = NULL;
else
father_key->FirstInQueue = cur_instance->next;
WRITE_UNLOCK(father_key->QRWLock);
while ((TDB = GetDBTerm(cur_instance->DBT)) == 0L) {
if (Yap_Error_TYPE == OUT_OF_ATTVARS_ERROR) {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_growglobal(NULL)) {
Yap_Error(OUT_OF_ATTVARS_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
} else {
Yap_Error_TYPE = YAP_NO_ERROR;
if (!Yap_gcl(Yap_Error_Size, 2, YENV, P)) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage);
return FALSE;
}
}
}
/* release space for cur_instance */
keepdbrefs(cur_instance->DBT);
ErasePendingRefs(cur_instance->DBT);
FreeDBSpace((char *) cur_instance->DBT);
FreeDBSpace((char *) cur_instance);
return(Yap_unify(ARG2, TDB));
}
}
static Int
p_clean_queues(void)
{
return(TRUE);
}
/* set the logical updates flag */
static Int
p_slu(void)
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "switch_logical_updates/1");
return(FALSE);
}
if (!IsIntTerm(t)) {
Yap_Error(TYPE_ERROR_INTEGER, t, "switch_logical_updates/1");
return(FALSE);
}
UPDATE_MODE = IntOfTerm(t);
return(TRUE);
}
/* check current status for logical updates */
static Int
p_lu(void)
{
return(Yap_unify(ARG1,MkIntTerm(UPDATE_MODE)));
}
/* get a hold over the index table for logical update predicates */
static Int
p_hold_index(void)
{
Yap_Error(SYSTEM_ERROR, TermNil, "hold_index in debugger");
return FALSE;
}
static Int
p_fetch_reference_from_index(void)
{
Term t1 = Deref(ARG1), t2 = Deref(ARG2);
DBRef table, el;
Int pos;
if (IsVarTerm(t1) || !IsDBRefTerm(t1))
return(FALSE);
table = DBRefOfTerm(t1);
if (IsVarTerm(t2) || !IsIntTerm(t2))
return(FALSE);
pos = IntOfTerm(t2);
el = (DBRef)(table->DBT.Contents[pos]);
#if defined(YAPOR) || defined(THREADS)
LOCK(el->lock);
TRAIL_REF(el); /* So that fail will erase it */
INC_DBREF_COUNT(el);
UNLOCK(el->lock);
#else
if (!(el->Flags & InUseMask)) {
el->Flags |= InUseMask;
TRAIL_REF(el);
}
#endif
return(Yap_unify(ARG3, MkDBRefTerm(el)));
}
static Int
p_resize_int_keys(void)
{
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
return(Yap_unify(ARG1,MkIntegerTerm((Int)INT_KEYS_SIZE)));
}
if (!IsIntegerTerm(t1)) {
Yap_Error(TYPE_ERROR_INTEGER, t1, "yap_flag(resize_db_int_keys,T)");
return(FALSE);
}
return(resize_int_keys(IntegerOfTerm(t1)));
}
static void
ReleaseTermFromDB(DBTerm *ref)
{
keepdbrefs(ref);
FreeDBSpace((char *)ref);
}
void
Yap_ReleaseTermFromDB(DBTerm *ref)
{
ReleaseTermFromDB(ref);
}
static Int
p_install_thread_local(void)
{ /* '$is_dynamic'(+P) */
#if THREADS
PredEntry *pe;
Term t = Deref(ARG1);
Term mod = Deref(ARG2);
if (IsVarTerm(t)) {
return (FALSE);
}
if (mod == IDB_MODULE) {
pe = find_lu_entry(t);
if (!pe->cs.p_code.NOfClauses) {
if (IsIntegerTerm(t))
pe->PredFlags |= LogUpdatePredFlag|NumberDBPredFlag;
else if (IsAtomTerm(t))
pe->PredFlags |= LogUpdatePredFlag|AtomDBPredFlag;
else
pe->PredFlags |= LogUpdatePredFlag;
}
} else if (IsAtomTerm(t)) {
Atom at = AtomOfTerm(t);
pe = RepPredProp(PredPropByAtom(at, mod));
} else if (IsApplTerm(t)) {
Functor fun = FunctorOfTerm(t);
pe = RepPredProp(PredPropByFunc(fun, mod));
} else {
return FALSE;
}
WRITE_LOCK(pe->PRWLock);
if (pe->PredFlags & (UserCPredFlag|HiddenPredFlag|CArgsPredFlag|SyncPredFlag|TestPredFlag|AsmPredFlag|StandardPredFlag|CPredFlag|SafePredFlag|IndexedPredFlag|BinaryTestPredFlag) ||
pe->cs.p_code.NOfClauses) {
return FALSE;
}
pe->PredFlags |= ThreadLocalPredFlag;
pe->OpcodeOfPred = Yap_opcode(_thread_local);
pe->CodeOfPred = (yamop *)&pe->OpcodeOfPred;
WRITE_UNLOCK(pe->PRWLock);
#endif
return TRUE;
}
void
Yap_InitDBPreds(void)
{
Yap_InitCPred("recorded", 3, p_recorded, SyncPredFlag);
Yap_InitCPred("recorda", 3, p_rcda, SyncPredFlag);
Yap_InitCPred("recordz", 3, p_rcdz, SyncPredFlag);
Yap_InitCPred("$still_variant", 2, p_still_variant, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("recorda_at", 3, p_rcda_at, SyncPredFlag);
Yap_InitCPred("recordz_at", 3, p_rcdz_at, SyncPredFlag);
Yap_InitCPred("$recordap", 3, p_rcdap, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$recordzp", 3, p_rcdzp, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$recordap", 4, p_drcdap, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$recordzp", 4, p_drcdzp, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("erase", 1, p_erase, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$erase_clause", 2, p_erase_clause, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("erased", 1, p_erased, TestPredFlag | SafePredFlag|SyncPredFlag);
Yap_InitCPred("instance", 2, p_instance, SyncPredFlag);
Yap_InitCPred("$instance_module", 2, p_instance_module, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("eraseall", 1, p_eraseall, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$record_stat_source", 4, p_rcdstatp, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$some_recordedp", 1, p_somercdedp, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$first_instance", 3, p_first_instance, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$init_db_queue", 1, p_init_queue, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$db_key", 2, p_db_key, HiddenPredFlag);
Yap_InitCPred("$db_enqueue", 2, p_enqueue, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$db_dequeue", 2, p_dequeue, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$db_clean_queues", 1, p_clean_queues, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$switch_log_upd", 1, p_slu, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$log_upd", 1, p_lu, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$hold_index", 3, p_hold_index, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$fetch_reference_from_index", 3, p_fetch_reference_from_index, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$resize_int_keys", 1, p_resize_int_keys, SafePredFlag|SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("key_statistics", 4, p_key_statistics, SyncPredFlag);
#ifdef DEBUG
Yap_InitCPred("total_erased", 4, p_total_erased, SyncPredFlag);
Yap_InitCPred("key_erased_statistics", 5, p_key_erased_statistics, SyncPredFlag);
Yap_InitCPred("heap_space_info", 3, p_heap_space_info, SyncPredFlag);
#endif
Yap_InitCPred("$nth_instance", 3, p_nth_instance, SyncPredFlag);
Yap_InitCPred("$nth_instancep", 3, p_nth_instancep, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$jump_to_next_dynamic_clause", 0, p_jump_to_next_dynamic_clause, SyncPredFlag|HiddenPredFlag);
Yap_InitCPred("$install_thread_local", 2, p_install_thread_local, SafePredFlag|HiddenPredFlag);
}
void
Yap_InitBackDB(void)
{
Yap_InitCPredBack("$recorded_with_key", 3, 3, in_rded_with_key, co_rded, SyncPredFlag|HiddenPredFlag);
RETRY_C_RECORDED_K_CODE = NEXTOP(PredRecordedWithKey->cs.p_code.FirstClause,lds);
Yap_InitCPredBack("$recordedp", 3, 3, in_rdedp, co_rdedp, SyncPredFlag|HiddenPredFlag);
RETRY_C_RECORDEDP_CODE = NEXTOP(RepPredProp(PredPropByFunc(Yap_MkFunctor(Yap_LookupAtom("$recordedp"), 3),0))->cs.p_code.FirstClause,lds);
Yap_InitCPredBack("$current_immediate_key", 2, 4, init_current_key, cont_current_key,
SyncPredFlag|HiddenPredFlag);
}