1457 lines
38 KiB
Prolog
1457 lines
38 KiB
Prolog
/**
|
|
* @file rbtrees.yap
|
|
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
|
|
* @author Jan Wielemaker
|
|
* @date Wed Nov 18 00:11:41 2015
|
|
*
|
|
* @brief Red-Black trees
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
:- module(rbtrees,
|
|
[rb_new/1,
|
|
rb_empty/1, % ?T
|
|
rb_lookup/3, % +Key, -Value, +T
|
|
rb_update/4, % +T, +Key, +NewVal, -TN
|
|
rb_update/5, % +T, +Key, ?OldVal, +NewVal, -TN
|
|
rb_rewrite/3, % +T, +Key, +NewVal
|
|
rb_rewrite/4, % +T, +Key, ?OldVal, +NewVal
|
|
rb_apply/4, % +T, +Key, :G, -TN
|
|
rb_lookupall/3, % +Key, -Value, +T
|
|
rb_insert/4, % +T0, +Key, ?Value, -TN
|
|
rb_insert_new/4, % +T0, +Key, ?Value, -TN
|
|
rb_delete/3, % +T, +Key, -TN
|
|
rb_delete/4, % +T, +Key, -Val, -TN
|
|
rb_visit/2, % +T, -Pairs
|
|
rb_visit/3,
|
|
rb_keys/2, % +T, +Keys
|
|
rb_keys/3,
|
|
rb_map/2,
|
|
rb_map/3,
|
|
rb_partial_map/4,
|
|
rb_accumulate/4,
|
|
rb_clone/3,
|
|
rb_clone/4,
|
|
rb_min/3,
|
|
rb_max/3,
|
|
rb_del_min/4,
|
|
rb_del_max/4,
|
|
rb_next/4,
|
|
rb_previous/4,
|
|
rb_fold/4,
|
|
rb_key_fold/4,
|
|
list_to_rbtree/2,
|
|
ord_list_to_rbtree/2,
|
|
keys_to_rbtree/2,
|
|
ord_keys_to_rbtree/2,
|
|
is_rbtree/1,
|
|
rb_size/2,
|
|
rb_in/3
|
|
]).
|
|
|
|
/**
|
|
* @defgroup rbtrees Red-Black Trees
|
|
* @ingroup library
|
|
|
|
@{
|
|
Red-Black trees are balanced search binary trees. They are named because
|
|
nodes can be classified as either red or black. The code we include is
|
|
based on "Introduction to Algorithms", second edition, by Cormen,
|
|
Leiserson, Rivest and Stein. The library includes routines to insert,
|
|
lookup and delete elements in the tree.
|
|
|
|
A Red black tree is represented as a term t(Nil, Tree), where Nil is the
|
|
Nil-node, a node shared for each nil-node in the tree. Any node has the
|
|
form colour(Left, Key, Value, Right), where _colour_ is one of =red= or
|
|
=black=.
|
|
|
|
@author Vitor Santos Costa, Jan Wielemaker
|
|
*/
|
|
|
|
:- meta_predicate rb_map(+,2,-),
|
|
rb_partial_map(+,+,2,-),
|
|
rb_apply(+,+,2,-).
|
|
|
|
/*
|
|
:- use_module(library(type_check)).
|
|
|
|
:- type rbtree(K,V) ---> t(tree(K,V),tree(K,V)).
|
|
:- type tree(K,V) ---> black(tree(K,V),K,V,tree(K,V))
|
|
; red(tree(K,V),K,V,tree(K,V))
|
|
; ''.
|
|
:- type cmp ---> (=) ; (<) ; (>).
|
|
|
|
|
|
:- pred rb_new(rbtree(_K,_V)).
|
|
:- pred rb_empty(rbtree(_K,_V)).
|
|
:- pred rb_lookup(K,V,rbtree(K,V)).
|
|
:- pred lookup(K,V, tree(K,V)).
|
|
:- pred lookup(cmp, K, V, tree(K,V)).
|
|
:- pred rb_min(rbtree(K,V),K,V).
|
|
:- pred min(tree(K,V),K,V).
|
|
:- pred rb_max(rbtree(K,V),K,V).
|
|
:- pred max(tree(K,V),K,V).
|
|
:- pred rb_next(rbtree(K,V),K,pair(K,V),V).
|
|
:- pred next(tree(K,V),K,pair(K,V),V,tree(K,V)).
|
|
*/
|
|
|
|
%% @pred rb_new(-T) is det.
|
|
% create an empty tree.
|
|
%
|
|
% Create a new Red-Black tree.
|
|
%
|
|
% @deprecated Use rb_empty/1.
|
|
|
|
rb_new(t(Nil,Nil)) :- Nil = black('',_,_,'').
|
|
|
|
rb_new(K,V,t(Nil,black(Nil,K,V,Nil))) :- Nil = black('',_,_,'').
|
|
|
|
%% @pred rb_empty(?T) is semidet.
|
|
%
|
|
% Succeeds if T is an empty Red-Black tree.
|
|
rb_empty(t(Nil,Nil)) :- Nil = black('',_,_,'').
|
|
|
|
%% @pred rb_lookup(+Key, -Value, +T) is semidet.
|
|
%
|
|
% Backtrack through all elements with key Key in the Red-Black
|
|
% tree T, returning for each the value Value.
|
|
|
|
rb_lookup(Key, Val, t(_,Tree)) :-
|
|
lookup(Key, Val, Tree).
|
|
|
|
lookup(_, _, black('',_,_,'')) :- !, fail.
|
|
lookup(Key, Val, Tree) :-
|
|
arg(2,Tree,KA),
|
|
compare(Cmp,KA,Key),
|
|
lookup(Cmp,Key,Val,Tree).
|
|
|
|
lookup(>, K, V, Tree) :-
|
|
arg(1,Tree,NTree),
|
|
lookup(K, V, NTree).
|
|
lookup(<, K, V, Tree) :-
|
|
arg(4,Tree,NTree),
|
|
lookup(K, V, NTree).
|
|
lookup(=, _, V, Tree) :-
|
|
arg(3,Tree,V).
|
|
|
|
%% @pred rb_min(+T, -Key, -Value) is semidet.
|
|
%
|
|
% Key is the minimum key in T, and is associated with Val.
|
|
|
|
rb_min(t(_,Tree), Key, Val) :-
|
|
min(Tree, Key, Val).
|
|
|
|
min(red(black('',_,_,_),Key,Val,_), Key, Val) :- !.
|
|
min(black(black('',_,_,_),Key,Val,_), Key, Val) :- !.
|
|
min(red(Right,_,_,_), Key, Val) :-
|
|
min(Right,Key,Val).
|
|
min(black(Right,_,_,_), Key, Val) :-
|
|
min(Right,Key,Val).
|
|
|
|
%% @pred rb_max( +T, -Key, -Value) is semidet.
|
|
%
|
|
% Key is the maximal key in T, and is associated with Val.
|
|
|
|
rb_max(t(_,Tree), Key, Val) :-
|
|
max(Tree, Key, Val).
|
|
|
|
max(red(_,Key,Val,black('',_,_,_)), Key, Val) :- !.
|
|
max(black(_,Key,Val,black('',_,_,_)), Key, Val) :- !.
|
|
max(red(_,_,_,Left), Key, Val) :-
|
|
max(Left,Key,Val).
|
|
max(black(_,_,_,Left), Key, Val) :-
|
|
max(Left,Key,Val).
|
|
|
|
%% @pred rb_next(+T, +Key, -Next,-Value) is semidet.
|
|
%
|
|
% Next is the next element after Key in T, and is associated with
|
|
% Val.
|
|
|
|
rb_next(t(_,Tree), Key, Next, Val) :-
|
|
next(Tree, Key, Next, Val, []).
|
|
|
|
next(black('',_,_,''), _, _, _, _) :- !, fail.
|
|
next(Tree, Key, Next, Val, Candidate) :-
|
|
arg(2,Tree,KA),
|
|
arg(3,Tree,VA),
|
|
compare(Cmp,KA,Key),
|
|
next(Cmp, Key, KA, VA, Next, Val, Tree, Candidate).
|
|
|
|
next(>, K, KA, VA, NK, V, Tree, _) :-
|
|
arg(1,Tree,NTree),
|
|
next(NTree,K,NK,V,KA-VA).
|
|
next(<, K, _, _, NK, V, Tree, Candidate) :-
|
|
arg(4,Tree,NTree),
|
|
next(NTree,K,NK,V,Candidate).
|
|
next(=, _, _, _, NK, Val, Tree, Candidate) :-
|
|
arg(4,Tree,NTree),
|
|
(
|
|
min(NTree, NK, Val)
|
|
-> true
|
|
;
|
|
Candidate = (NK-Val)
|
|
).
|
|
|
|
%% @pred rb_previous(+T, +Key, -Previous, -Value) is semidet.
|
|
%
|
|
% Previous is the previous element after Key in T, and is
|
|
% associated with Val.
|
|
|
|
rb_previous(t(_,Tree), Key, Previous, Val) :-
|
|
previous(Tree, Key, Previous, Val, []).
|
|
|
|
previous(black('',_,_,''), _, _, _, _) :- !, fail.
|
|
previous(Tree, Key, Previous, Val, Candidate) :-
|
|
arg(2,Tree,KA),
|
|
arg(3,Tree,VA),
|
|
compare(Cmp,KA,Key),
|
|
previous(Cmp, Key, KA, VA, Previous, Val, Tree, Candidate).
|
|
|
|
previous(>, K, _, _, NK, V, Tree, Candidate) :-
|
|
arg(1,Tree,NTree),
|
|
previous(NTree,K,NK,V,Candidate).
|
|
previous(<, K, KA, VA, NK, V, Tree, _) :-
|
|
arg(4,Tree,NTree),
|
|
previous(NTree,K,NK,V,KA-VA).
|
|
previous(=, _, _, _, K, Val, Tree, Candidate) :-
|
|
arg(1,Tree,NTree),
|
|
(
|
|
max(NTree, K, Val)
|
|
-> true
|
|
;
|
|
Candidate = (K-Val)
|
|
).
|
|
|
|
%% @pred rb_update(+T, +Key, +NewVal, -TN) is semidet.
|
|
%% @pred rb_update(+T, +Key, ?OldVal, +NewVal, -TN) is semidet.
|
|
%
|
|
% Tree TN is tree T, but with value for Key associated with
|
|
% NewVal. Fails if it cannot find Key in T.
|
|
|
|
rb_update(t(Nil,OldTree), Key, OldVal, Val, t(Nil,NewTree)) :-
|
|
update(OldTree, Key, OldVal, Val, NewTree).
|
|
|
|
rb_update(t(Nil,OldTree), Key, Val, t(Nil,NewTree)) :-
|
|
update(OldTree, Key, _, Val, NewTree).
|
|
|
|
update(black(Left,Key0,Val0,Right), Key, OldVal, Val, NewTree) :-
|
|
Left \= [],
|
|
compare(Cmp,Key0,Key),
|
|
(Cmp == (=)
|
|
-> OldVal = Val0,
|
|
NewTree = black(Left,Key0,Val,Right)
|
|
;
|
|
Cmp == (>) ->
|
|
NewTree = black(NewLeft,Key0,Val0,Right),
|
|
update(Left, Key, OldVal, Val, NewLeft)
|
|
;
|
|
NewTree = black(Left,Key0,Val0,NewRight),
|
|
update(Right, Key, OldVal, Val, NewRight)
|
|
).
|
|
update(red(Left,Key0,Val0,Right), Key, OldVal, Val, NewTree) :-
|
|
compare(Cmp,Key0,Key),
|
|
(Cmp == (=)
|
|
-> OldVal = Val0,
|
|
NewTree = red(Left,Key0,Val,Right)
|
|
;
|
|
Cmp == (>)
|
|
-> NewTree = red(NewLeft,Key0,Val0,Right),
|
|
update(Left, Key, OldVal, Val, NewLeft)
|
|
;
|
|
NewTree = red(Left,Key0,Val0,NewRight),
|
|
update(Right, Key, OldVal, Val, NewRight)
|
|
).
|
|
|
|
%% @pred rb_rewrite(+T, +Key, +NewVal) is semidet.
|
|
%% @pred rb_rewrite(+T, +Key, ?OldVal, +NewVal) is semidet.
|
|
%
|
|
% Tree T has value for Key associated with
|
|
% NewVal. Fails if it cannot find Key in T.
|
|
|
|
rb_rewrite(t(_Nil,OldTree), Key, OldVal, Val) :-
|
|
rewrite(OldTree, Key, OldVal, Val).
|
|
|
|
rb_rewrite(t(_Nil,OldTree), Key, Val) :-
|
|
rewrite(OldTree, Key, _, Val).
|
|
|
|
rewrite(Node, Key, OldVal, Val) :-
|
|
Node = black(Left,Key0,Val0,Right),
|
|
Left \= [],
|
|
compare(Cmp,Key0,Key),
|
|
(Cmp == (=)
|
|
-> OldVal = Val0,
|
|
setarg(3, Node, Val)
|
|
;
|
|
Cmp == (>) ->
|
|
rewrite(Left, Key, OldVal, Val)
|
|
;
|
|
rewrite(Right, Key, OldVal, Val)
|
|
).
|
|
rewrite(Node, Key, OldVal, Val) :-
|
|
Node = red(Left,Key0,Val0,Right),
|
|
Left \= [],
|
|
compare(Cmp,Key0,Key),
|
|
(
|
|
Cmp == (=)
|
|
->
|
|
OldVal = Val0,
|
|
setarg(3, Node, Val)
|
|
;
|
|
Cmp == (>)
|
|
->
|
|
rewrite(Left, Key, OldVal, Val)
|
|
;
|
|
rewrite(Right, Key, OldVal, Val)
|
|
).
|
|
|
|
%% @pred rb_apply(+T, +Key, :G, -TN) is semidet.
|
|
%
|
|
% If the value associated with key Key is Val0 in T, and if
|
|
% call(G,Val0,ValF) holds, then TN differs from T only in that Key
|
|
% is associated with value ValF in tree TN. Fails if it cannot
|
|
% find Key in T, or if call(G,Val0,ValF) is not satisfiable.
|
|
|
|
rb_apply(t(Nil,OldTree), Key, Goal, t(Nil,NewTree)) :-
|
|
apply(OldTree, Key, Goal, NewTree).
|
|
|
|
%apply(black('',_,_,''), _, _, _) :- !, fail.
|
|
apply(black(Left,Key0,Val0,Right), Key, Goal,
|
|
black(NewLeft,Key0,Val,NewRight)) :-
|
|
Left \= [],
|
|
compare(Cmp,Key0,Key),
|
|
(Cmp == (=)
|
|
-> NewLeft = Left,
|
|
NewRight = Right,
|
|
call(Goal,Val0,Val)
|
|
; Cmp == (>)
|
|
-> NewRight = Right,
|
|
Val = Val0,
|
|
apply(Left, Key, Goal, NewLeft)
|
|
;
|
|
NewLeft = Left,
|
|
Val = Val0,
|
|
apply(Right, Key, Goal, NewRight)
|
|
).
|
|
apply(red(Left,Key0,Val0,Right), Key, Goal,
|
|
red(NewLeft,Key0,Val,NewRight)) :-
|
|
compare(Cmp,Key0,Key),
|
|
( Cmp == (=)
|
|
-> NewLeft = Left,
|
|
NewRight = Right,
|
|
call(Goal,Val0,Val)
|
|
; Cmp == (>)
|
|
-> NewRight = Right,
|
|
Val = Val0,
|
|
apply(Left, Key, Goal, NewLeft)
|
|
;
|
|
NewLeft = Left,
|
|
Val = Val0,
|
|
apply(Right, Key, Goal, NewRight)
|
|
).
|
|
|
|
%% rb_in(?Key, ?Val, +Tree) is nondet.
|
|
%
|
|
% True if Key-Val appear in Tree. Uses indexing if Key is bound.
|
|
|
|
rb_in(Key, Val, t(_,T)) :-
|
|
var(Key), !,
|
|
enum(Key, Val, T).
|
|
rb_in(Key, Val, t(_,T)) :-
|
|
lookup(Key, Val, T).
|
|
|
|
|
|
enum(Key, Val, black(L,K,V,R)) :-
|
|
L \= '',
|
|
enum_cases(Key, Val, L, K, V, R).
|
|
enum(Key, Val, red(L,K,V,R)) :-
|
|
enum_cases(Key, Val, L, K, V, R).
|
|
|
|
enum_cases(Key, Val, L, _, _, _) :-
|
|
enum(Key, Val, L).
|
|
enum_cases(Key, Val, _, Key, Val, _).
|
|
enum_cases(Key, Val, _, _, _, R) :-
|
|
enum(Key, Val, R).
|
|
|
|
|
|
%% rb_lookupall(+Key, -Value, +T)
|
|
%
|
|
% Lookup all elements with key Key in the red-black tree T,
|
|
% returning the value Value.
|
|
|
|
rb_lookupall(Key, Val, t(_,Tree)) :-
|
|
lookupall(Key, Val, Tree).
|
|
|
|
|
|
lookupall(_, _, black('',_,_,'')) :- !, fail.
|
|
lookupall(Key, Val, Tree) :-
|
|
arg(2,Tree,KA),
|
|
compare(Cmp,KA,Key),
|
|
lookupall(Cmp,Key,Val,Tree).
|
|
|
|
lookupall(>, K, V, Tree) :-
|
|
arg(4,Tree,NTree),
|
|
rb_lookupall(K, V, NTree).
|
|
lookupall(=, _, V, Tree) :-
|
|
arg(3,Tree,V).
|
|
lookupall(=, K, V, Tree) :-
|
|
arg(1,Tree,NTree),
|
|
lookupall(K, V, NTree).
|
|
lookupall(<, K, V, Tree) :-
|
|
arg(1,Tree,NTree),
|
|
lookupall(K, V, NTree).
|
|
|
|
/*******************************
|
|
* TREE INSERTION *
|
|
*******************************/
|
|
|
|
% We don't use parent nodes, so we may have to fix the root.
|
|
|
|
%% rb_insert(+T0, +Key, ?Value, -TN) is det.
|
|
%
|
|
% Add an element with key Key and Value to the tree T0 creating a
|
|
% new red-black tree TN. If Key is a key in T0, the associated
|
|
% value is replaced by Value. See also rb_insert_new/4.
|
|
|
|
rb_insert(t(Nil,Tree0),Key,Val,t(Nil,Tree)) :-
|
|
insert(Tree0,Key,Val,Nil,Tree).
|
|
|
|
|
|
insert(Tree0,Key,Val,Nil,Tree) :-
|
|
insert2(Tree0,Key,Val,Nil,TreeI,_),
|
|
fix_root(TreeI,Tree).
|
|
|
|
%
|
|
% Cormen et al present the algorithm as
|
|
% (1) standard tree insertion;
|
|
% (2) from the viewpoint of the newly inserted node:
|
|
% partially fix the tree;
|
|
% move upwards
|
|
% until reaching the root.
|
|
%
|
|
% We do it a little bit different:
|
|
%
|
|
% (1) standard tree insertion;
|
|
% (2) move upwards:
|
|
% when reaching a black node;
|
|
% if the tree below may be broken, fix it.
|
|
% We take advantage of Prolog unification
|
|
% to do several operations in a single go.
|
|
%
|
|
|
|
|
|
|
|
%
|
|
% actual insertion
|
|
%
|
|
insert2(black('',_,_,''), K, V, Nil, T, Status) :- !,
|
|
T = red(Nil,K,V,Nil),
|
|
Status = not_done.
|
|
insert2(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
( K @< K0
|
|
-> NR = R,
|
|
NT = red(NL,K0,V0,R),
|
|
insert2(L, K, V, Nil, NL, Flag)
|
|
; K == K0 ->
|
|
NT = red(L,K0,V,R),
|
|
Flag = done
|
|
;
|
|
NT = red(L,K0,V0,NR),
|
|
insert2(R, K, V, Nil, NR, Flag)
|
|
).
|
|
insert2(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
( K @< K0
|
|
-> insert2(L, K, V, Nil, IL, Flag0),
|
|
fix_left(Flag0, black(IL,K0,V0,R), NT, Flag)
|
|
; K == K0 ->
|
|
NT = black(L,K0,V,R),
|
|
Flag = done
|
|
;
|
|
insert2(R, K, V, Nil, IR, Flag0),
|
|
fix_right(Flag0, black(L,K0,V0,IR), NT, Flag)
|
|
).
|
|
|
|
% We don't use parent nodes, so we may have to fix the root.
|
|
|
|
%% rb_insert_new(+T0, +Key, ?Value, -TN) is semidet.
|
|
%
|
|
% Add a new element with key Key and Value to the tree T0 creating a
|
|
% new red-black tree TN. Fails if Key is a key in T0.
|
|
|
|
rb_insert_new(t(Nil,Tree0),Key,Val,t(Nil,Tree)) :-
|
|
insert_new(Tree0,Key,Val,Nil,Tree).
|
|
|
|
|
|
insert_new(Tree0,Key,Val,Nil,Tree) :-
|
|
insert_new_2(Tree0,Key,Val,Nil,TreeI,_),
|
|
fix_root(TreeI,Tree).
|
|
|
|
%
|
|
% actual insertion, copied from insert2
|
|
%
|
|
insert_new_2(black('',_,_,''), K, V, Nil, T, Status) :- !,
|
|
T = red(Nil,K,V,Nil),
|
|
Status = not_done.
|
|
insert_new_2(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
( K @< K0
|
|
-> NR = R,
|
|
NT = red(NL,K0,V0,R),
|
|
insert_new_2(L, K, V, Nil, NL, Flag)
|
|
; K == K0 ->
|
|
fail
|
|
;
|
|
NT = red(L,K0,V0,NR),
|
|
insert_new_2(R, K, V, Nil, NR, Flag)
|
|
).
|
|
insert_new_2(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
( K @< K0
|
|
-> insert_new_2(L, K, V, Nil, IL, Flag0),
|
|
fix_left(Flag0, black(IL,K0,V0,R), NT, Flag)
|
|
; K == K0 ->
|
|
fail
|
|
;
|
|
insert_new_2(R, K, V, Nil, IR, Flag0),
|
|
fix_right(Flag0, black(L,K0,V0,IR), NT, Flag)
|
|
).
|
|
|
|
%
|
|
% make sure the root is always black.
|
|
%
|
|
fix_root(black(L,K,V,R),black(L,K,V,R)).
|
|
fix_root(red(L,K,V,R),black(L,K,V,R)).
|
|
|
|
|
|
|
|
%
|
|
% How to fix if we have inserted on the left
|
|
%
|
|
fix_left(done,T,T,done) :- !.
|
|
fix_left(not_done,Tmp,Final,Done) :-
|
|
fix_left(Tmp,Final,Done).
|
|
|
|
%
|
|
% case 1 of RB: just need to change colors.
|
|
%
|
|
fix_left(black(red(Al,AK,AV,red(Be,BK,BV,Ga)),KC,VC,red(De,KD,VD,Ep)),
|
|
red(black(Al,AK,AV,red(Be,BK,BV,Ga)),KC,VC,black(De,KD,VD,Ep)),
|
|
not_done) :- !.
|
|
fix_left(black(red(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,red(De,KD,VD,Ep)),
|
|
red(black(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,black(De,KD,VD,Ep)),
|
|
not_done) :- !.
|
|
%
|
|
% case 2 of RB: got a knee so need to do rotations
|
|
%
|
|
fix_left(black(red(Al,KA,VA,red(Be,KB,VB,Ga)),KC,VC,De),
|
|
black(red(Al,KA,VA,Be),KB,VB,red(Ga,KC,VC,De)),
|
|
done) :- !.
|
|
%
|
|
% case 3 of RB: got a line
|
|
%
|
|
fix_left(black(red(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,De),
|
|
black(red(Al,KA,VA,Be),KB,VB,red(Ga,KC,VC,De)),
|
|
done) :- !.
|
|
%
|
|
% case 4 of RB: nothing to do
|
|
%
|
|
fix_left(T,T,done).
|
|
|
|
%
|
|
% How to fix if we have inserted on the right
|
|
%
|
|
fix_right(done,T,T,done) :- !.
|
|
fix_right(not_done,Tmp,Final,Done) :-
|
|
fix_right(Tmp,Final,Done).
|
|
|
|
%
|
|
% case 1 of RB: just need to change colors.
|
|
%
|
|
fix_right(black(red(Ep,KD,VD,De),KC,VC,red(red(Ga,KB,VB,Be),KA,VA,Al)),
|
|
red(black(Ep,KD,VD,De),KC,VC,black(red(Ga,KB,VB,Be),KA,VA,Al)),
|
|
not_done) :- !.
|
|
fix_right(black(red(Ep,KD,VD,De),KC,VC,red(Ga,Ka,Va,red(Be,KB,VB,Al))),
|
|
red(black(Ep,KD,VD,De),KC,VC,black(Ga,Ka,Va,red(Be,KB,VB,Al))),
|
|
not_done) :- !.
|
|
%
|
|
% case 2 of RB: got a knee so need to do rotations
|
|
%
|
|
fix_right(black(De,KC,VC,red(red(Ga,KB,VB,Be),KA,VA,Al)),
|
|
black(red(De,KC,VC,Ga),KB,VB,red(Be,KA,VA,Al)),
|
|
done) :- !.
|
|
%
|
|
% case 3 of RB: got a line
|
|
%
|
|
fix_right(black(De,KC,VC,red(Ga,KB,VB,red(Be,KA,VA,Al))),
|
|
black(red(De,KC,VC,Ga),KB,VB,red(Be,KA,VA,Al)),
|
|
done) :- !.
|
|
%
|
|
% case 4 of RB: nothing to do.
|
|
%
|
|
fix_right(T,T,done).
|
|
|
|
%
|
|
% simplified processor
|
|
%
|
|
%
|
|
pretty_print(t(_,T)) :-
|
|
pretty_print(T,6).
|
|
|
|
pretty_print(black('',_,_,''),_) :- !.
|
|
pretty_print(red(L,K,_,R),D) :-
|
|
DN is D+6,
|
|
pretty_print(L,DN),
|
|
format("~t~a:~d~*|~n",[r,K,D]),
|
|
pretty_print(R,DN).
|
|
pretty_print(black(L,K,_,R),D) :-
|
|
DN is D+6,
|
|
pretty_print(L,DN),
|
|
format("~t~a:~d~*|~n",[b,K,D]),
|
|
pretty_print(R,DN).
|
|
|
|
|
|
rb_delete(t(Nil,T), K, t(Nil,NT)) :-
|
|
delete(T, K, _, NT, _).
|
|
|
|
%% @pred rb_delete(+T, +Key, -TN).
|
|
%% @pred rb_delete(+T, +Key, -Val, -TN).
|
|
%
|
|
% Delete element with key Key from the tree T, returning the value
|
|
% Val associated with the key and a new tree TN.
|
|
|
|
rb_delete(t(Nil,T), K, V, t(Nil,NT)) :-
|
|
delete(T, K, V0, NT, _),
|
|
V = V0.
|
|
|
|
%
|
|
% I am afraid our representation is not as nice for delete
|
|
%
|
|
delete(red(L,K0,V0,R), K, V, NT, Flag) :-
|
|
K @< K0, !,
|
|
delete(L, K, V, NL, Flag0),
|
|
fixup_left(Flag0,red(NL,K0,V0,R),NT, Flag).
|
|
delete(red(L,K0,V0,R), K, V, NT, Flag) :-
|
|
K @> K0, !,
|
|
delete(R, K, V, NR, Flag0),
|
|
fixup_right(Flag0,red(L,K0,V0,NR),NT, Flag).
|
|
delete(red(L,_,V,R), _, V, OUT, Flag) :-
|
|
% K == K0,
|
|
delete_red_node(L,R,OUT,Flag).
|
|
delete(black(L,K0,V0,R), K, V, NT, Flag) :-
|
|
K @< K0, !,
|
|
delete(L, K, V, NL, Flag0),
|
|
fixup_left(Flag0,black(NL,K0,V0,R),NT, Flag).
|
|
delete(black(L,K0,V0,R), K, V, NT, Flag) :-
|
|
K @> K0, !,
|
|
delete(R, K, V, NR, Flag0),
|
|
fixup_right(Flag0,black(L,K0,V0,NR),NT, Flag).
|
|
delete(black(L,_,V,R), _, V, OUT, Flag) :-
|
|
% K == K0,
|
|
delete_black_node(L,R,OUT,Flag).
|
|
|
|
%% @pred rb_del_min(+T, -Key, -Val, -TN)
|
|
%
|
|
% Delete the least element from the tree T, returning the key Key,
|
|
% the value Val associated with the key and a new tree TN.
|
|
|
|
rb_del_min(t(Nil,T), K, Val, t(Nil,NT)) :-
|
|
del_min(T, K, Val, Nil, NT, _).
|
|
|
|
del_min(red(black('',_,_,_),K,V,R), K, V, Nil, OUT, Flag) :- !,
|
|
delete_red_node(Nil,R,OUT,Flag).
|
|
del_min(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
del_min(L, K, V, Nil, NL, Flag0),
|
|
fixup_left(Flag0,red(NL,K0,V0,R), NT, Flag).
|
|
del_min(black(black('',_,_,_),K,V,R), K, V, Nil, OUT, Flag) :- !,
|
|
delete_black_node(Nil,R,OUT,Flag).
|
|
del_min(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
del_min(L, K, V, Nil, NL, Flag0),
|
|
fixup_left(Flag0,black(NL,K0,V0,R),NT, Flag).
|
|
|
|
|
|
%% @pred rb_del_max( +T, -Key, -Val, -TN)
|
|
%
|
|
% Delete the largest element from the tree T, returning the key
|
|
% Key, the value Val associated with the key and a new tree TN.
|
|
|
|
rb_del_max(t(Nil,T), K, Val, t(Nil,NT)) :-
|
|
del_max(T, K, Val, Nil, NT, _).
|
|
|
|
del_max(red(L,K,V,black('',_,_,_)), K, V, Nil, OUT, Flag) :- !,
|
|
delete_red_node(L,Nil,OUT,Flag).
|
|
del_max(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
del_max(R, K, V, Nil, NR, Flag0),
|
|
fixup_right(Flag0,red(L,K0,V0,NR),NT, Flag).
|
|
del_max(black(L,K,V,black('',_,_,_)), K, V, Nil, OUT, Flag) :- !,
|
|
delete_black_node(L,Nil,OUT,Flag).
|
|
del_max(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
|
|
del_max(R, K, V, Nil, NR, Flag0),
|
|
fixup_right(Flag0,black(L,K0,V0,NR), NT, Flag).
|
|
|
|
|
|
|
|
delete_red_node(L1,L2,L1,done) :- L1 == L2, !.
|
|
delete_red_node(black('',_,_,''),R,R,done) :- !.
|
|
delete_red_node(L,black('',_,_,''),L,done) :- !.
|
|
delete_red_node(L,R,OUT,Done) :-
|
|
delete_next(R,NK,NV,NR,Done0),
|
|
fixup_right(Done0,red(L,NK,NV,NR),OUT,Done).
|
|
|
|
|
|
delete_black_node(L1,L2,L1,not_done) :- L1 == L2, !.
|
|
delete_black_node(black('',_,_,''),red(L,K,V,R),black(L,K,V,R),done) :- !.
|
|
delete_black_node(black('',_,_,''),R,R,not_done) :- !.
|
|
delete_black_node(red(L,K,V,R),black('',_,_,''),black(L,K,V,R),done) :- !.
|
|
delete_black_node(L,black('',_,_,''),L,not_done) :- !.
|
|
delete_black_node(L,R,OUT,Done) :-
|
|
delete_next(R,NK,NV,NR,Done0),
|
|
fixup_right(Done0,black(L,NK,NV,NR),OUT,Done).
|
|
|
|
|
|
delete_next(red(black('',_,_,''),K,V,R),K,V,R,done) :- !.
|
|
delete_next(black(black('',_,_,''),K,V,red(L1,K1,V1,R1)),
|
|
K,V,black(L1,K1,V1,R1),done) :- !.
|
|
delete_next(black(black('',_,_,''),K,V,R),K,V,R,not_done) :- !.
|
|
delete_next(red(L,K,V,R),K0,V0,OUT,Done) :-
|
|
delete_next(L,K0,V0,NL,Done0),
|
|
fixup_left(Done0,red(NL,K,V,R),OUT,Done).
|
|
delete_next(black(L,K,V,R),K0,V0,OUT,Done) :-
|
|
delete_next(L,K0,V0,NL,Done0),
|
|
fixup_left(Done0,black(NL,K,V,R),OUT,Done).
|
|
|
|
|
|
fixup_left(done,T,T,done).
|
|
fixup_left(not_done,T,NT,Done) :-
|
|
fixup2(T,NT,Done).
|
|
|
|
|
|
%
|
|
% case 1: x moves down, so we have to try to fix it again.
|
|
% case 1 -> 2,3,4 -> done
|
|
%
|
|
fixup2(black(black(Al,KA,VA,Be),KB,VB,red(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
|
|
black(T1,KD,VD,black(Ep,KE,VE,Fi)),done) :- !,
|
|
fixup2(red(black(Al,KA,VA,Be),KB,VB,black(Ga,KC,VC,De)),
|
|
T1,
|
|
_).
|
|
%
|
|
% case 2: x moves up, change one to red
|
|
%
|
|
fixup2(red(black(Al,KA,VA,Be),KB,VB,black(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
|
|
black(black(Al,KA,VA,Be),KB,VB,red(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),done) :- !.
|
|
fixup2(black(black(Al,KA,VA,Be),KB,VB,black(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
|
|
black(black(Al,KA,VA,Be),KB,VB,red(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),not_done) :- !.
|
|
%
|
|
% case 3: x stays put, shift left and do a 4
|
|
%
|
|
fixup2(red(black(Al,KA,VA,Be),KB,VB,black(red(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
|
|
red(black(black(Al,KA,VA,Be),KB,VB,Ga),KC,VC,black(De,KD,VD,black(Ep,KE,VE,Fi))),
|
|
done) :- !.
|
|
fixup2(black(black(Al,KA,VA,Be),KB,VB,black(red(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
|
|
black(black(black(Al,KA,VA,Be),KB,VB,Ga),KC,VC,black(De,KD,VD,black(Ep,KE,VE,Fi))),
|
|
done) :- !.
|
|
%
|
|
% case 4: rotate left, get rid of red
|
|
%
|
|
fixup2(red(black(Al,KA,VA,Be),KB,VB,black(C,KD,VD,red(Ep,KE,VE,Fi))),
|
|
red(black(black(Al,KA,VA,Be),KB,VB,C),KD,VD,black(Ep,KE,VE,Fi)),
|
|
done).
|
|
fixup2(black(black(Al,KA,VA,Be),KB,VB,black(C,KD,VD,red(Ep,KE,VE,Fi))),
|
|
black(black(black(Al,KA,VA,Be),KB,VB,C),KD,VD,black(Ep,KE,VE,Fi)),
|
|
done).
|
|
|
|
|
|
fixup_right(done,T,T,done).
|
|
fixup_right(not_done,T,NT,Done) :-
|
|
fixup3(T,NT,Done).
|
|
|
|
|
|
|
|
%
|
|
% case 1: x moves down, so we have to try to fix it again.
|
|
% case 1 -> 2,3,4 -> done
|
|
%
|
|
fixup3(black(red(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
|
|
black(black(Fi,KE,VE,Ep),KD,VD,T1),done) :- !,
|
|
fixup3(red(black(De,KC,VC,Ga),KB,VB,black(Be,KA,VA,Al)),T1,_).
|
|
|
|
%
|
|
% case 2: x moves up, change one to red
|
|
%
|
|
fixup3(red(black(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
|
|
black(red(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
|
|
done) :- !.
|
|
fixup3(black(black(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
|
|
black(red(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
|
|
not_done):- !.
|
|
%
|
|
% case 3: x stays put, shift left and do a 4
|
|
%
|
|
fixup3(red(black(black(Fi,KE,VE,Ep),KD,VD,red(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
|
|
red(black(black(Fi,KE,VE,Ep),KD,VD,De),KC,VC,black(Ga,KB,VB,black(Be,KA,VA,Al))),
|
|
done) :- !.
|
|
fixup3(black(black(black(Fi,KE,VE,Ep),KD,VD,red(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
|
|
black(black(black(Fi,KE,VE,Ep),KD,VD,De),KC,VC,black(Ga,KB,VB,black(Be,KA,VA,Al))),
|
|
done) :- !.
|
|
%
|
|
% case 4: rotate right, get rid of red
|
|
%
|
|
fixup3(red(black(red(Fi,KE,VE,Ep),KD,VD,C),KB,VB,black(Be,KA,VA,Al)),
|
|
red(black(Fi,KE,VE,Ep),KD,VD,black(C,KB,VB,black(Be,KA,VA,Al))),
|
|
done).
|
|
fixup3(black(black(red(Fi,KE,VE,Ep),KD,VD,C),KB,VB,black(Be,KA,VA,Al)),
|
|
black(black(Fi,KE,VE,Ep),KD,VD,black(C,KB,VB,black(Be,KA,VA,Al))),
|
|
done).
|
|
|
|
|
|
%
|
|
% whole list
|
|
%
|
|
|
|
%% rb_visit(+T, -Pairs)
|
|
%
|
|
% Pairs is an infix visit of tree T, where each element of Pairs
|
|
% is of the form K-Val.
|
|
|
|
rb_visit(t(_,T),Lf) :-
|
|
visit(T,[],Lf).
|
|
|
|
rb_visit(t(_,T),L0,Lf) :-
|
|
visit(T,L0,Lf).
|
|
|
|
visit(black('',_,_,_),L,L) :- !.
|
|
visit(red(L,K,V,R),L0,Lf) :-
|
|
visit(L,[K-V|L1],Lf),
|
|
visit(R,L0,L1).
|
|
visit(black(L,K,V,R),L0,Lf) :-
|
|
visit(L,[K-V|L1],Lf),
|
|
visit(R,L0,L1).
|
|
|
|
:- meta_predicate map(?,2,?,?). % this is required.
|
|
|
|
%% rb_map(+T, :Goal) is semidet.
|
|
%
|
|
% True if call(Goal, Value) is true for all nodes in T.
|
|
|
|
rb_map(t(Nil,Tree),Goal,t(Nil,NewTree)) :-
|
|
map(Tree,Goal,NewTree,Nil).
|
|
|
|
|
|
map(black('',_,_,''),_,Nil,Nil) :- !.
|
|
map(red(L,K,V,R),Goal,red(NL,K,NV,NR),Nil) :-
|
|
call(Goal,V,NV), !,
|
|
map(L,Goal,NL,Nil),
|
|
map(R,Goal,NR,Nil).
|
|
map(black(L,K,V,R),Goal,black(NL,K,NV,NR),Nil) :-
|
|
call(Goal,V,NV), !,
|
|
map(L,Goal,NL,Nil),
|
|
map(R,Goal,NR,Nil).
|
|
|
|
:- meta_predicate rb_map(?,1). % this is not strictly required
|
|
:- meta_predicate map(?,1). % this is required.
|
|
|
|
%% rb_map(+T, :G, -TN) is semidet.
|
|
%
|
|
% For all nodes Key in the tree T, if the value associated with
|
|
% key Key is Val0 in tree T, and if call(G,Val0,ValF) holds, then
|
|
% the value associated with Key in TN is ValF. Fails if
|
|
% call(G,Val0,ValF) is not satisfiable for all Var0.
|
|
|
|
rb_map(t(_,Tree),Goal) :-
|
|
map(Tree,Goal).
|
|
|
|
|
|
map(black('',_,_,''),_) :- !.
|
|
map(red(L,_,V,R),Goal) :-
|
|
call(Goal,V), !,
|
|
map(L,Goal),
|
|
map(R,Goal).
|
|
map(black(L,_,V,R),Goal) :-
|
|
call(Goal,V), !,
|
|
map(L,Goal),
|
|
map(R,Goal).
|
|
|
|
:- meta_predicate rb_fold(3,?,?,?). % this is required.
|
|
:- meta_predicate map_acc(?,3,?,?). % this is required.
|
|
|
|
%% rb_fold(+T, :G, +Acc0, -AccF) is semidet.
|
|
%
|
|
% For all nodes Key in the tree T, if the value associated with
|
|
% key Key is V in tree T, if call(G,V,Acc1,Acc2) holds, then
|
|
% if VL is value of the previous node in inorder,
|
|
% call(G,VL,_,Acc0) must hold, and
|
|
% if VR is the value of the next node in inorder,
|
|
% call(G,VR,Acc1,_) must hold.
|
|
|
|
rb_fold(Goal, t(_,Tree), In, Out) :-
|
|
map_acc(Tree, Goal, In, Out).
|
|
|
|
map_acc(black('',_,_,''), _, Acc, Acc) :- !.
|
|
map_acc(red(L,_,V,R), Goal, Left, Right) :-
|
|
map_acc(L,Goal, Left, Left1),
|
|
once(call(Goal,V, Left1, Right1)),
|
|
map_acc(R,Goal, Right1, Right).
|
|
map_acc(black(L,_,V,R), Goal, Left, Right) :-
|
|
map_acc(L,Goal, Left, Left1),
|
|
once(call(Goal,V, Left1, Right1)),
|
|
map_acc(R,Goal, Right1, Right).
|
|
|
|
:- meta_predicate rb_key_fold(4,?,?,?). % this is required.
|
|
:- meta_predicate map_key_acc(?,3,?,?). % this is required.
|
|
|
|
%% rb_key_fold(+T, :G, +Acc0, -AccF) is semidet.
|
|
%
|
|
% For all nodes Key in the tree T, if the value associated with
|
|
% key Key is V in tree T, if call(G,Key,V,Acc1,Acc2) holds, then
|
|
% if VL is value of the previous node in inorder,
|
|
% call(G,VL,_,Acc0) must hold, and
|
|
% if VR is the value of the next node in inorder,
|
|
% call(G,VR,Acc1,_) must hold.
|
|
|
|
rb_key_fold(Goal, t(_,Tree), In, Out) :-
|
|
map_key_acc(Tree, Goal, In, Out).
|
|
|
|
map_key_acc(black('',_,_,''), _, Acc, Acc) :- !.
|
|
map_key_acc(red(L,Key,V,R), Goal, Left, Right) :-
|
|
map_key_acc(L,Goal, Left, Left1),
|
|
once(call(Goal, Key, V, Left1, Right1)),
|
|
map_key_acc(R,Goal, Right1, Right).
|
|
map_key_acc(black(L,Key,V,R), Goal, Left, Right) :-
|
|
map_key_acc(L,Goal, Left, Left1),
|
|
once(call(Goal, Key, V, Left1, Right1)),
|
|
map_key_acc(R,Goal, Right1, Right).
|
|
|
|
%% rb_clone(+T, -NT, -Pairs)
|
|
%
|
|
% "Clone" the red-back tree into a new tree with the same keys as
|
|
% the original but with all values set to unbound values. Nodes is
|
|
% a list containing all new nodes as pairs K-V.
|
|
|
|
rb_clone(t(Nil,T),t(Nil,NT),Ns) :-
|
|
clone(T,Nil,NT,Ns,[]).
|
|
|
|
clone(black('',_,_,''),Nil,Nil,Ns,Ns) :- !.
|
|
clone(red(L,K,_,R),Nil,red(NL,K,NV,NR),NsF,Ns0) :-
|
|
clone(L,Nil,NL,NsF,[K-NV|Ns1]),
|
|
clone(R,Nil,NR,Ns1,Ns0).
|
|
clone(black(L,K,_,R),Nil,black(NL,K,NV,NR),NsF,Ns0) :-
|
|
clone(L,Nil,NL,NsF,[K-NV|Ns1]),
|
|
clone(R,Nil,NR,Ns1,Ns0).
|
|
|
|
rb_clone(t(Nil,T),ONs,t(Nil,NT),Ns) :-
|
|
clone(T,Nil,ONs,[],NT,Ns,[]).
|
|
|
|
clone(black('',_,_,''),Nil,ONs,ONs,Nil,Ns,Ns) :- !.
|
|
clone(red(L,K,V,R),Nil,ONsF,ONs0,red(NL,K,NV,NR),NsF,Ns0) :-
|
|
clone(L,Nil,ONsF,[K-V|ONs1],NL,NsF,[K-NV|Ns1]),
|
|
clone(R,Nil,ONs1,ONs0,NR,Ns1,Ns0).
|
|
clone(black(L,K,V,R),Nil,ONsF,ONs0,black(NL,K,NV,NR),NsF,Ns0) :-
|
|
clone(L,Nil,ONsF,[K-V|ONs1],NL,NsF,[K-NV|Ns1]),
|
|
clone(R,Nil,ONs1,ONs0,NR,Ns1,Ns0).
|
|
|
|
%% rb_partial_map(+T, +Keys, :G, -TN)
|
|
%
|
|
% For all nodes Key in Keys, if the value associated with key Key
|
|
% is Val0 in tree T, and if call(G,Val0,ValF) holds, then the
|
|
% value associated with Key in TN is ValF. Fails if or if
|
|
% call(G,Val0,ValF) is not satisfiable for all Var0. Assumes keys
|
|
% are not repeated.
|
|
|
|
rb_partial_map(t(Nil,T0), Map, Goal, t(Nil,TF)) :-
|
|
partial_map(T0, Map, [], Nil, Goal, TF).
|
|
|
|
rb_partial_map(t(Nil,T0), Map, Map0, Goal, t(Nil,TF)) :-
|
|
partial_map(T0, Map, Map0, Nil, Goal, TF).
|
|
|
|
partial_map(T,[],[],_,_,T) :- !.
|
|
partial_map(black('',_,_,_),Map,Map,Nil,_,Nil) :- !.
|
|
partial_map(red(L,K,V,R),Map,MapF,Nil,Goal,red(NL,K,NV,NR)) :-
|
|
partial_map(L,Map,MapI,Nil,Goal,NL),
|
|
(
|
|
MapI == [] ->
|
|
NR = R, NV = V, MapF = []
|
|
;
|
|
MapI = [K1|MapR],
|
|
(
|
|
K == K1
|
|
->
|
|
( call(Goal,V,NV) -> true ; NV = V ),
|
|
MapN = MapR
|
|
;
|
|
NV = V,
|
|
MapN = MapI
|
|
),
|
|
partial_map(R,MapN,MapF,Nil,Goal,NR)
|
|
).
|
|
partial_map(black(L,K,V,R),Map,MapF,Nil,Goal,black(NL,K,NV,NR)) :-
|
|
partial_map(L,Map,MapI,Nil,Goal,NL),
|
|
(
|
|
MapI == [] ->
|
|
NR = R, NV = V, MapF = []
|
|
;
|
|
MapI = [K1|MapR],
|
|
(
|
|
K == K1
|
|
->
|
|
( call(Goal,V,NV) -> true ; NV = V ),
|
|
MapN = MapR
|
|
;
|
|
NV = V,
|
|
MapN = MapI
|
|
),
|
|
partial_map(R,MapN,MapF,Nil,Goal,NR)
|
|
).
|
|
|
|
|
|
%
|
|
% whole keys
|
|
%
|
|
%% rb_keys(+T, -Keys)
|
|
%
|
|
% Keys is unified with an ordered list of all keys in the
|
|
% Red-Black tree T.
|
|
|
|
rb_keys(t(_,T),Lf) :-
|
|
keys(T,[],Lf).
|
|
|
|
rb_keys(t(_,T),L0,Lf) :-
|
|
keys(T,L0,Lf).
|
|
|
|
keys(black('',_,_,''),L,L) :- !.
|
|
keys(red(L,K,_,R),L0,Lf) :-
|
|
keys(L,[K|L1],Lf),
|
|
keys(R,L0,L1).
|
|
keys(black(L,K,_,R),L0,Lf) :-
|
|
keys(L,[K|L1],Lf),
|
|
keys(R,L0,L1).
|
|
|
|
|
|
%% list_to_rbtree(+L, -T) is det.
|
|
%
|
|
% T is the red-black tree corresponding to the mapping in list L.
|
|
|
|
keys_to_rbtree(List, T) :-
|
|
sort(List,Sorted),
|
|
ord_keys_to_rbtree(Sorted, T).
|
|
|
|
%% list_to_rbtree(+L, -T) is det.
|
|
%
|
|
% T is the red-black tree corresponding to the mapping in list L.
|
|
|
|
ord_keys_to_rbtree(List, T) :-
|
|
maplist(paux, List, Sorted),
|
|
ord_list_to_rbtree(Sorted, T).
|
|
|
|
paux(K, K-_).
|
|
|
|
%% list_to_rbtree(+L, -T) is det.
|
|
%
|
|
% T is the red-black tree corresponding to the mapping in list L.
|
|
|
|
list_to_rbtree(List, T) :-
|
|
sort(List,Sorted),
|
|
ord_list_to_rbtree(Sorted, T).
|
|
|
|
%% ord_list_to_rbtree(+L, -T) is det.
|
|
%
|
|
% T is the red-black tree corresponding to the mapping in ordered
|
|
% list L.
|
|
ord_list_to_rbtree([], t(Nil,Nil)) :- !,
|
|
Nil = black('', _, _, '').
|
|
ord_list_to_rbtree([K-V], t(Nil,black(Nil,K,V,Nil))) :- !,
|
|
Nil = black('', _, _, '').
|
|
ord_list_to_rbtree(List, t(Nil,Tree)) :-
|
|
Nil = black('', _, _, ''),
|
|
Ar =.. [seq|List],
|
|
functor(Ar,_,L),
|
|
Height is truncate(log(L)/log(2)),
|
|
construct_rbtree(1, L, Ar, Height, Nil, Tree).
|
|
|
|
construct_rbtree(L, M, _, _, Nil, Nil) :- M < L, !.
|
|
construct_rbtree(L, L, Ar, Depth, Nil, Node) :- !,
|
|
arg(L, Ar, K-Val),
|
|
build_node(Depth, Nil, K, Val, Nil, Node).
|
|
construct_rbtree(I0, Max, Ar, Depth, Nil, Node) :-
|
|
I is (I0+Max)//2,
|
|
arg(I, Ar, K-Val),
|
|
build_node(Depth, Left, K, Val, Right, Node),
|
|
I1 is I-1,
|
|
NewDepth is Depth-1,
|
|
construct_rbtree(I0, I1, Ar, NewDepth, Nil, Left),
|
|
I2 is I+1,
|
|
construct_rbtree(I2, Max, Ar, NewDepth, Nil, Right).
|
|
|
|
build_node( 0, Left, K, Val, Right, red(Left, K, Val, Right)) :- !.
|
|
build_node( _, Left, K, Val, Right, black(Left, K, Val, Right)).
|
|
|
|
|
|
%% rb_size(+T, -Size) is det.
|
|
%
|
|
% Size is the number of elements in T.
|
|
|
|
rb_size(t(_,T),Size) :-
|
|
size(T,0,Size).
|
|
|
|
size(black('',_,_,_),Sz,Sz) :- !.
|
|
size(red(L,_,_,R),Sz0,Szf) :-
|
|
Sz1 is Sz0+1,
|
|
size(L,Sz1,Sz2),
|
|
size(R,Sz2,Szf).
|
|
size(black(L,_,_,R),Sz0,Szf) :-
|
|
Sz1 is Sz0+1,
|
|
size(L,Sz1,Sz2),
|
|
size(R,Sz2,Szf).
|
|
|
|
%% is_rbtree(?Term) is semidet.
|
|
%
|
|
% True if Term is a valid Red-Black tree.
|
|
%
|
|
% @tbd Catch variables.
|
|
is_rbtree(X) :-
|
|
var(X), !, fail.
|
|
is_rbtree(t(Nil,Nil)) :- !.
|
|
is_rbtree(t(_,T)) :-
|
|
catch(rbtree1(T), msg(_,_), fail).
|
|
|
|
is_rbtree(X,_) :-
|
|
var(X), !, fail.
|
|
is_rbtree(T,Goal) :-
|
|
catch(rbtree1(T), msg(S,Args), (once(Goal),format(S,Args))).
|
|
|
|
%
|
|
% This code checks if a tree is ordered and a rbtree
|
|
%
|
|
%
|
|
rbtree(t(_,black('',_,_,''))) :- !.
|
|
rbtree(t(_,T)) :-
|
|
catch(rbtree1(T),msg(S,Args),format(S,Args)).
|
|
|
|
rbtree1(black(L,K,_,R)) :-
|
|
find_path_blacks(L, 0, Bls),
|
|
check_rbtree(L,-inf,K,Bls),
|
|
check_rbtree(R,K,+inf,Bls).
|
|
rbtree1(red(_,_,_,_)) :-
|
|
throw(msg("root should be black",[])).
|
|
|
|
|
|
find_path_blacks(black('',_,_,''), Bls, Bls) :- !.
|
|
find_path_blacks(black(L,_,_,_), Bls0, Bls) :-
|
|
Bls1 is Bls0+1,
|
|
find_path_blacks(L, Bls1, Bls).
|
|
find_path_blacks(red(L,_,_,_), Bls0, Bls) :-
|
|
find_path_blacks(L, Bls0, Bls).
|
|
|
|
check_rbtree(black('',_,_,''),Min,Max,Bls0) :- !,
|
|
check_height(Bls0,Min,Max).
|
|
check_rbtree(red(L,K,_,R),Min,Max,Bls) :-
|
|
check_val(K,Min,Max),
|
|
check_red_child(L),
|
|
check_red_child(R),
|
|
check_rbtree(L,Min,K,Bls),
|
|
check_rbtree(R,K,Max,Bls).
|
|
check_rbtree(black(L,K,_,R),Min,Max,Bls0) :-
|
|
check_val(K,Min,Max),
|
|
Bls is Bls0-1,
|
|
check_rbtree(L,Min,K,Bls),
|
|
check_rbtree(R,K,Max,Bls).
|
|
|
|
check_height(0,_,_) :- !.
|
|
check_height(Bls0,Min,Max) :-
|
|
throw(msg("Unbalance ~d between ~w and ~w~n",[Bls0,Min,Max])).
|
|
|
|
check_val(K, Min, Max) :- ( K @> Min ; Min == -inf), (K @< Max ; Max == +inf), !.
|
|
check_val(K, Min, Max) :-
|
|
throw(msg("not ordered: ~w not between ~w and ~w~n",[K,Min,Max])).
|
|
|
|
check_red_child(black(_,_,_,_)).
|
|
check_red_child(red(_,K,_,_)) :-
|
|
throw(msg("must be red: ~w~n",[K])).
|
|
|
|
|
|
%count(1,16,X), format("deleting ~d~n",[X]), new(1,a,T0), insert(T0,2,b,T1), insert(T1,3,c,T2), insert(T2,4,c,T3), insert(T3,5,c,T4), insert(T4,6,c,T5), insert(T5,7,c,T6), insert(T6,8,c,T7), insert(T7,9,c,T8), insert(T8,10,c,T9),insert(T9,11,c,T10), insert(T10,12,c,T11),insert(T11,13,c,T12),insert(T12,14,c,T13),insert(T13,15,c,T14), insert(T14,16,c,T15),delete(T15,X,T16),pretty_print(T16),rbtree(T16),fail.
|
|
|
|
% count(1,16,X0), X is -X0, format("deleting ~d~n",[X]), new(-1,a,T0), insert(T0,-2,b,T1), insert(T1,-3,c,T2), insert(T2,-4,c,T3), insert(T3,-5,c,T4), insert(T4,-6,c,T5), insert(T5,-7,c,T6), insert(T6,-8,c,T7), insert(T7,-9,c,T8), insert(T8,-10,c,T9),insert(T9,-11,c,T10), insert(T10,-12,c,T11),insert(T11,-13,c,T12),insert(T12,-14,c,T13),insert(T13,-15,c,T14), insert(T14,-16,c,T15),delete(T15,X,T16),pretty_print(T16),rbtree(T16),fail.
|
|
|
|
count(I,_,I).
|
|
count(I,M,L) :-
|
|
I < M, I1 is I+1, count(I1,M,L).
|
|
|
|
test_pos :-
|
|
rb_new(1,a,T0),
|
|
N = 10000,
|
|
build_ptree(2,N,T0,T),
|
|
% pretty_print(T),
|
|
rbtree(T),
|
|
clean_tree(1,N,T,_),
|
|
bclean_tree(N,1,T,_),
|
|
count(1,N,X), ( rb_delete(T,X,TF) -> true ; abort ),
|
|
% pretty_print(TF),
|
|
rbtree(TF),
|
|
% format("done ~d~n",[X]),
|
|
fail.
|
|
test_pos.
|
|
|
|
build_ptree(X,X,T0,TF) :- !,
|
|
rb_insert(T0,X,X,TF).
|
|
build_ptree(X1,X,T0,TF) :-
|
|
rb_insert(T0,X1,X1,TI),
|
|
X2 is X1+1,
|
|
build_ptree(X2,X,TI,TF).
|
|
|
|
|
|
clean_tree(X,X,T0,TF) :- !,
|
|
rb_delete(T0,X,TF),
|
|
( rbtree(TF) -> true ; abort).
|
|
clean_tree(X1,X,T0,TF) :-
|
|
rb_delete(T0,X1,TI),
|
|
X2 is X1+1,
|
|
( rbtree(TI) -> true ; abort),
|
|
clean_tree(X2,X,TI,TF).
|
|
|
|
bclean_tree(X,X,T0,TF) :- !,
|
|
format("cleaning ~d~n", [X]),
|
|
rb_delete(T0,X,TF),
|
|
( rbtree(TF) -> true ; abort).
|
|
bclean_tree(X1,X,T0,TF) :-
|
|
format("cleaning ~d~n", [X1]),
|
|
rb_delete(T0,X1,TI),
|
|
X2 is X1-1,
|
|
( rbtree(TI) -> true ; abort),
|
|
bclean_tree(X2,X,TI,TF).
|
|
|
|
|
|
|
|
test_neg :-
|
|
Size = 10000,
|
|
rb_new(-1,a,T0),
|
|
build_ntree(2,Size,T0,T),
|
|
% pretty_print(T),
|
|
rbtree(T),
|
|
MSize is -Size,
|
|
clean_tree(MSize,-1,T,_),
|
|
bclean_tree(-1,MSize,T,_),
|
|
count(1,Size,X), NX is -X, ( rb_delete(T,NX,TF) -> true ; abort ),
|
|
% pretty_print(TF),
|
|
rbtree(TF),
|
|
% format("done ~d~n",[X]),
|
|
fail.
|
|
test_neg.
|
|
|
|
build_ntree(X,X,T0,TF) :- !,
|
|
X1 is -X,
|
|
rb_insert(T0,X1,X1,TF).
|
|
build_ntree(X1,X,T0,TF) :-
|
|
NX1 is -X1,
|
|
rb_insert(T0,NX1,NX1,TI),
|
|
X2 is X1+1,
|
|
build_ntree(X2,X,TI,TF).
|
|
|
|
|
|
|
|
|
|
|
|
/** @pred rb_apply(+ _T_,+ _Key_,+ _G_,- _TN_)
|
|
|
|
|
|
If the value associated with key _Key_ is _Val0_ in _T_, and
|
|
if `call(G,Val0,ValF)` holds, then _TN_ differs from
|
|
_T_ only in that _Key_ is associated with value _ValF_ in
|
|
tree _TN_. Fails if it cannot find _Key_ in _T_, or if
|
|
`call(G,Val0,ValF)` is not satisfiable.
|
|
|
|
|
|
*/
|
|
/** @pred rb_clone(+ _T_,+ _NT_,+ _Nodes_)
|
|
|
|
|
|
=Clone= the red-back tree into a new tree with the same keys as the
|
|
original but with all values set to unbound values. _Nodes_ is a list
|
|
containing all new nodes as pairs _K-V_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_del_max(+ _T_,- _Key_,- _Val_,- _TN_)
|
|
|
|
|
|
Delete the largest element from the tree _T_, returning the key
|
|
_Key_, the value _Val_ associated with the key and a new tree
|
|
_TN_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_del_min(+ _T_,- _Key_,- _Val_,- _TN_)
|
|
|
|
|
|
Delete the least element from the tree _T_, returning the key
|
|
_Key_, the value _Val_ associated with the key and a new tree
|
|
_TN_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_delete(+ _T_,+ _Key_,- _TN_)
|
|
|
|
|
|
Delete element with key _Key_ from the tree _T_, returning a new
|
|
tree _TN_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_delete(+ _T_,+ _Key_,- _Val_,- _TN_)
|
|
|
|
Delete element with key _Key_ from the tree _T_, returning the
|
|
value _Val_ associated with the key and a new tree _TN_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_empty(? _T_)
|
|
|
|
|
|
Succeeds if tree _T_ is empty.
|
|
|
|
|
|
*/
|
|
/** @pred rb_fold(+ _T_,+ _G_,+ _Acc0_, - _AccF_)
|
|
|
|
|
|
For all nodes _Key_ in the tree _T_, if the value
|
|
associated with key _Key_ is _V_ in tree _T_, if
|
|
`call(G,V,Acc1,Acc2)` holds, then if _VL_ is value of the
|
|
previous node in inorder, `call(G,VL,_,Acc0)` must hold, and if
|
|
_VR_ is the value of the next node in inorder,
|
|
`call(G,VR,Acc1,_)` must hold.
|
|
|
|
|
|
*/
|
|
/** @pred rb_insert(+ _T0_,+ _Key_,? _Value_,+ _TF_)
|
|
|
|
|
|
Add an element with key _Key_ and _Value_ to the tree
|
|
_T0_ creating a new red-black tree _TF_. Duplicated elements are not
|
|
allowed.
|
|
|
|
Add a new element with key _Key_ and _Value_ to the tree
|
|
_T0_ creating a new red-black tree _TF_. Fails is an element
|
|
with _Key_ exists in the tree.
|
|
|
|
|
|
*/
|
|
/** @pred rb_key_fold(+ _T_,+ _G_,+ _Acc0_, - _AccF_)
|
|
|
|
|
|
For all nodes _Key_ in the tree _T_, if the value
|
|
associated with key _Key_ is _V_ in tree _T_, if
|
|
`call(G,Key,V,Acc1,Acc2)` holds, then if _VL_ is value of the
|
|
previous node in inorder, `call(G,KeyL,VL,_,Acc0)` must hold, and if
|
|
_VR_ is the value of the next node in inorder,
|
|
`call(G,KeyR,VR,Acc1,_)` must hold.
|
|
|
|
|
|
*/
|
|
/** @pred rb_keys(+ _T_,+ _Keys_)
|
|
|
|
|
|
_Keys_ is an infix visit with all keys in tree _T_. Keys will be
|
|
sorted, but may be duplicate.
|
|
|
|
|
|
*/
|
|
/** @pred rb_lookup(+ _Key_,- _Value_,+ _T_)
|
|
|
|
|
|
Backtrack through all elements with key _Key_ in the red-black tree
|
|
_T_, returning for each the value _Value_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_lookupall(+ _Key_,- _Value_,+ _T_)
|
|
|
|
|
|
Lookup all elements with key _Key_ in the red-black tree
|
|
_T_, returning the value _Value_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_map(+ _T_,+ _G_,- _TN_)
|
|
|
|
|
|
For all nodes _Key_ in the tree _T_, if the value associated with
|
|
key _Key_ is _Val0_ in tree _T_, and if
|
|
`call(G,Val0,ValF)` holds, then the value associated with _Key_
|
|
in _TN_ is _ValF_. Fails if or if `call(G,Val0,ValF)` is not
|
|
satisfiable for all _Var0_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_max(+ _T_,- _Key_,- _Value_)
|
|
|
|
|
|
_Key_ is the maximal key in _T_, and is associated with _Val_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_min(+ _T_,- _Key_,- _Value_)
|
|
|
|
|
|
_Key_ is the minimum key in _T_, and is associated with _Val_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_new(? _T_)
|
|
|
|
|
|
Create a new tree.
|
|
|
|
|
|
*/
|
|
/** @pred rb_next(+ _T_, + _Key_,- _Next_,- _Value_)
|
|
|
|
|
|
_Next_ is the next element after _Key_ in _T_, and is
|
|
associated with _Val_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_partial_map(+ _T_,+ _Keys_,+ _G_,- _TN_)
|
|
|
|
|
|
For all nodes _Key_ in _Keys_, if the value associated with key
|
|
_Key_ is _Val0_ in tree _T_, and if `call(G,Val0,ValF)`
|
|
holds, then the value associated with _Key_ in _TN_ is
|
|
_ValF_. Fails if or if `call(G,Val0,ValF)` is not satisfiable
|
|
for all _Var0_. Assumes keys are not repeated.
|
|
|
|
|
|
*/
|
|
/** @pred rb_previous(+ _T_, + _Key_,- _Previous_,- _Value_)
|
|
|
|
|
|
_Previous_ is the previous element after _Key_ in _T_, and is
|
|
associated with _Val_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_size(+ _T_,- _Size_)
|
|
|
|
|
|
_Size_ is the number of elements in _T_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_update(+ _T_,+ _Key_,+ _NewVal_,- _TN_)
|
|
|
|
|
|
Tree _TN_ is tree _T_, but with value for _Key_ associated
|
|
with _NewVal_. Fails if it cannot find _Key_ in _T_.
|
|
|
|
|
|
*/
|
|
/** @pred rb_visit(+ _T_,- _Pairs_)
|
|
|
|
|
|
_Pairs_ is an infix visit of tree _T_, where each element of
|
|
_Pairs_ is of the form _K_- _Val_.
|
|
|
|
|
|
*/
|
|
|
|
%%! @}
|