602 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
// interface to CUDD Datalog evaluation
 | 
						|
#include "config.h"
 | 
						|
#include "YapInterface.h"
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <string.h>
 | 
						|
#include <inttypes.h>
 | 
						|
#include "pred.h"
 | 
						|
 | 
						|
#define MAXARG 100
 | 
						|
 | 
						|
YAP_Atom AtomEq,
 | 
						|
  AtomGt,
 | 
						|
  AtomLt,
 | 
						|
  AtomGe,
 | 
						|
  AtomLe,
 | 
						|
  AtomDf,
 | 
						|
  AtomNt;
 | 
						|
 | 
						|
predicate *facts[MAXARG]; /*Temporary solution to maintain facts and rules*/
 | 
						|
predicate *rules[MAXARG];
 | 
						|
int32_t cf = 0, cr = 0;
 | 
						|
 | 
						|
char names[1024];
 | 
						|
 | 
						|
// initialize CUDA system
 | 
						|
void Cuda_Initialize( void );
 | 
						|
 | 
						|
// add/replace a set of facts for predicate pred
 | 
						|
int32_t Cuda_NewFacts(predicate *pred);
 | 
						|
 | 
						|
// add/replace a rule for predicate pred
 | 
						|
int32_t Cuda_NewRule(predicate *pred);
 | 
						|
 | 
						|
// erase predicate pred
 | 
						|
int32_t Cuda_Erase(predicate *pred);
 | 
						|
 | 
						|
// evaluate predicate pred, mat is bound to a vector of solutions, and
 | 
						|
// output the count
 | 
						|
//int32_t Cuda_Eval(predicate *pred, int32_t **mat); This functions arguments were changed, please see pred.h
 | 
						|
 | 
						|
void init_cuda( void );
 | 
						|
 | 
						|
//#define DEBUG_INTERFACE 1
 | 
						|
 | 
						|
#ifdef ROCKIT
 | 
						|
static int32_t query[100];
 | 
						|
static int32_t qcont = 0;
 | 
						|
static int cuda_init_query(void)
 | 
						|
{
 | 
						|
	int32_t pname = YAP_AtomToInt(YAP_AtomOfTerm(YAP_ARG1));
 | 
						|
	query[qcont] = pname;
 | 
						|
	qcont++;
 | 
						|
	query[qcont] = 0;
 | 
						|
	return TRUE;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if DEBUG_INTERFACE
 | 
						|
static void
 | 
						|
dump_mat(int32_t mat[], int32_t nrows, int32_t ncols)
 | 
						|
{
 | 
						|
  return;
 | 
						|
  int32_t i, j;
 | 
						|
  for ( i=0; i< nrows; i++) {
 | 
						|
    printf("%d", mat[i*ncols]);
 | 
						|
    for (j=1; j < ncols; j++) {
 | 
						|
      printf(", %d", mat[i*ncols+j]);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dump_vec(int32_t vec[], int32_t rows)
 | 
						|
{
 | 
						|
  int32_t i = 1;
 | 
						|
  int32_t j = 0;
 | 
						|
 | 
						|
  for (j = 0; j < rows; j++) {
 | 
						|
    for ( ; vec[i]; i++ ) {
 | 
						|
      printf(", %d", vec[i]);
 | 
						|
    }
 | 
						|
    printf(", 0");
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
  printf("\n");
 | 
						|
}
 | 
						|
#endif /* DEBUG_INTERFACE */
 | 
						|
 | 
						|
 | 
						|
// stubs, will point at Carlos code.
 | 
						|
 | 
						|
void Cuda_Initialize( void )
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
int32_t Cuda_NewFacts(predicate *pe)
 | 
						|
{
 | 
						|
#if DEBUG_INTERFACE
 | 
						|
  dump_mat( pe->address_host_table, pe->num_rows, pe->num_columns );
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef ROCKIT
 | 
						|
  if(cf >= 0)
 | 
						|
  {
 | 
						|
  	facts[cf] = pe;
 | 
						|
	cf++;
 | 
						|
  }
 | 
						|
#else
 | 
						|
  facts[cf] = pe;
 | 
						|
  cf++;
 | 
						|
#endif
 | 
						|
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
int32_t Cuda_NewRule(predicate *pe)
 | 
						|
{
 | 
						|
#if DEBUG_INTERFACE
 | 
						|
  dump_vec( pe->address_host_table, pe->num_rows);
 | 
						|
#endif
 | 
						|
  rules[cr] = pe;
 | 
						|
  cr++;
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
int32_t Cuda_Erase(predicate *pe)
 | 
						|
{
 | 
						|
  int i = 0;
 | 
						|
  while ( rules[i] != pe )
 | 
						|
    i++;
 | 
						|
  while (i < cr-1) {
 | 
						|
    rules[i] = rules[i+1];
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
  rules[i] = NULL;
 | 
						|
  cr--;
 | 
						|
  if (pe->address_host_table)
 | 
						|
    free( pe->address_host_table );
 | 
						|
  free( pe );
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
load_facts( void ) {
 | 
						|
 | 
						|
  int32_t nrows = YAP_IntOfTerm(YAP_ARG1);
 | 
						|
  int32_t ncols = YAP_IntOfTerm(YAP_ARG2), i = 0;
 | 
						|
  YAP_Term t3 = YAP_ARG3;
 | 
						|
  int32_t *mat = (int32_t *)malloc(sizeof(int32_t)*nrows*ncols);
 | 
						|
  int32_t pname = YAP_AtomToInt(YAP_NameOfFunctor(YAP_FunctorOfTerm(YAP_HeadOfTerm(t3))));
 | 
						|
  predicate *pred;
 | 
						|
 | 
						|
  while(YAP_IsPairTerm(t3)) {
 | 
						|
    int32_t j = 0;
 | 
						|
    YAP_Term th = YAP_HeadOfTerm(t3);
 | 
						|
 | 
						|
    for (j = 0; j < ncols; j++) {
 | 
						|
      YAP_Term ta = YAP_ArgOfTerm(j+1, th);
 | 
						|
      if (YAP_IsAtomTerm(ta)) {
 | 
						|
	mat[i*ncols+j] = YAP_AtomToInt(YAP_AtomOfTerm(ta));
 | 
						|
      } else {
 | 
						|
	mat[i*ncols+j] = YAP_IntOfTerm(ta);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    t3 = YAP_TailOfTerm( t3 );
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
  if (YAP_IsVarTerm( YAP_ARG4)) {
 | 
						|
    // new 
 | 
						|
    pred = (predicate *)malloc(sizeof(predicate));
 | 
						|
  } else {
 | 
						|
    pred = (predicate *)YAP_IntOfTerm(YAP_ARG4);
 | 
						|
    if (pred->address_host_table)
 | 
						|
      free( pred->address_host_table );
 | 
						|
  }
 | 
						|
  pred->name = pname;
 | 
						|
  pred->num_rows = nrows;
 | 
						|
  pred->num_columns = ncols;
 | 
						|
  pred->is_fact = TRUE;
 | 
						|
  pred->address_host_table =  mat;
 | 
						|
  Cuda_NewFacts(pred);
 | 
						|
  if (YAP_IsVarTerm( YAP_ARG4)) {
 | 
						|
    return YAP_Unify(YAP_ARG4, YAP_MkIntTerm((YAP_Int)pred));
 | 
						|
  } else {
 | 
						|
    return TRUE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static int currentFact = 0;
 | 
						|
static predicate *currentPred = NULL;
 | 
						|
 | 
						|
static int
 | 
						|
cuda_init_facts( void ) {
 | 
						|
 | 
						|
  int32_t nrows = YAP_IntOfTerm(YAP_ARG1);
 | 
						|
  int32_t ncols = YAP_IntOfTerm(YAP_ARG2);
 | 
						|
  int32_t *mat = (int32_t *)malloc(sizeof(int32_t)*nrows*ncols);
 | 
						|
  int32_t pname = YAP_AtomToInt(YAP_AtomOfTerm(YAP_ARG3));
 | 
						|
  predicate *pred;
 | 
						|
 | 
						|
	strcat(names, YAP_AtomName(YAP_AtomOfTerm(YAP_ARG3)));
 | 
						|
	strcat(names, " ");
 | 
						|
 | 
						|
  if (!mat)
 | 
						|
    return FALSE;
 | 
						|
  if (YAP_IsVarTerm( YAP_ARG4)) {
 | 
						|
    // new 
 | 
						|
    pred = (predicate *)malloc(sizeof(predicate));
 | 
						|
  } else {
 | 
						|
    pred = (predicate *)YAP_IntOfTerm(YAP_ARG4);
 | 
						|
    if (pred->address_host_table)
 | 
						|
      free( pred->address_host_table );
 | 
						|
}
 | 
						|
  pred->name = pname;
 | 
						|
  pred->num_rows = nrows;
 | 
						|
  pred->num_columns = ncols;
 | 
						|
  pred->is_fact = TRUE;
 | 
						|
  pred->address_host_table =  mat;
 | 
						|
  currentPred = pred;
 | 
						|
  currentFact = 0;
 | 
						|
 | 
						|
  if (YAP_IsVarTerm( YAP_ARG4)) {
 | 
						|
    return YAP_Unify(YAP_ARG4, YAP_MkIntTerm((YAP_Int)pred));
 | 
						|
  } else {
 | 
						|
    return TRUE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
cuda_load_fact( void ) {
 | 
						|
 | 
						|
  int i = currentFact;
 | 
						|
 | 
						|
#if defined(DATALOG) || defined(TUFFY)
 | 
						|
  YAP_Term th = YAP_ARG1;
 | 
						|
  int ncols = currentPred->num_columns;
 | 
						|
  int j;
 | 
						|
  int *mat = currentPred->address_host_table;
 | 
						|
  for (j = 0; j < ncols; j++) {
 | 
						|
    YAP_Term ta = YAP_ArgOfTerm(j+1, th);
 | 
						|
    if (YAP_IsAtomTerm(ta)) {
 | 
						|
      mat[i*ncols+j] = YAP_AtomToInt(YAP_AtomOfTerm(ta));
 | 
						|
    } else {
 | 
						|
      mat[i*ncols+j] = YAP_IntOfTerm(ta);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  i++;
 | 
						|
  if (i == currentPred->num_rows) {
 | 
						|
    Cuda_NewFacts(currentPred);
 | 
						|
    currentPred = NULL;
 | 
						|
    currentFact = 0;
 | 
						|
  } else {
 | 
						|
    currentFact = i;
 | 
						|
  }
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
load_rule( void ) {
 | 
						|
  // maximum of 2K symbols per rule, should be enough for ILP
 | 
						|
  int32_t vec[2048], *ptr = vec, *nvec, neg[2048];
 | 
						|
  // qK different variables;
 | 
						|
  YAP_Term vars[1024];
 | 
						|
  int32_t nvars = 0, x;
 | 
						|
  int32_t ngoals = YAP_IntOfTerm(YAP_ARG1);   /* gives the number of goals */
 | 
						|
  int32_t ncols = YAP_IntOfTerm(YAP_ARG2);
 | 
						|
  YAP_Term t3 = YAP_ARG3;
 | 
						|
	YAP_Atom name = YAP_NameOfFunctor(YAP_FunctorOfTerm(YAP_HeadOfTerm(t3)));
 | 
						|
  int32_t pname = YAP_AtomToInt(name);
 | 
						|
 | 
						|
	const char *strname = YAP_AtomName(name);
 | 
						|
  predicate *pred;
 | 
						|
  int32_t cont = 0;
 | 
						|
  memset(neg, 0x0, 2048 * sizeof(int32_t));
 | 
						|
 | 
						|
  while(YAP_IsPairTerm(t3)) {
 | 
						|
    int32_t j = 0, m;
 | 
						|
    YAP_Term th = YAP_HeadOfTerm(t3);
 | 
						|
    YAP_Functor f = YAP_FunctorOfTerm( th );
 | 
						|
    int32_t n = YAP_ArityOfFunctor( f ); 
 | 
						|
    YAP_Atom at = YAP_NameOfFunctor( f );
 | 
						|
 | 
						|
    if (at == AtomEq)
 | 
						|
      *ptr++ = SBG_EQ;
 | 
						|
    else if (at == AtomGt)
 | 
						|
      *ptr++ = SBG_GT;
 | 
						|
    else if (at == AtomLt)
 | 
						|
      *ptr++ = SBG_LT;
 | 
						|
    else if (at == AtomGe)
 | 
						|
      *ptr++ = SBG_GE;
 | 
						|
    else if (at == AtomLe)
 | 
						|
      *ptr++ = SBG_LE;
 | 
						|
    else if (at == AtomDf)
 | 
						|
      *ptr++ = SBG_DF;
 | 
						|
    else if (at == AtomNt)
 | 
						|
	{
 | 
						|
      		neg[cont] = 1;
 | 
						|
		cont++;
 | 
						|
	}
 | 
						|
    else
 | 
						|
	{
 | 
						|
      		*ptr++ = YAP_AtomToInt( at );
 | 
						|
		cont++;
 | 
						|
	}
 | 
						|
 | 
						|
    for (j = 0; j < n; j++) {
 | 
						|
      YAP_Term ta = YAP_ArgOfTerm(j+1, th);
 | 
						|
 | 
						|
      if (YAP_IsVarTerm(ta)) {
 | 
						|
	int32_t k;
 | 
						|
	for (k = 0; k< nvars; k++) {
 | 
						|
	  if (vars[k] == ta) {
 | 
						|
	    *ptr++ = k+1;
 | 
						|
	    break;
 | 
						|
	  }
 | 
						|
	}
 | 
						|
	if (k == nvars) {
 | 
						|
	  vars[k] = ta;
 | 
						|
	  *ptr++ = k+1;
 | 
						|
	  nvars++;
 | 
						|
	}
 | 
						|
      } else if (YAP_IsAtomTerm(ta))  {
 | 
						|
	*ptr++ = -YAP_AtomToInt(YAP_AtomOfTerm(ta));
 | 
						|
      } else if (YAP_IsApplTerm(ta))  {
 | 
						|
	f = YAP_FunctorOfTerm( ta );
 | 
						|
	at = YAP_NameOfFunctor( f );
 | 
						|
	m = YAP_ArityOfFunctor( f );
 | 
						|
	*ptr++ = YAP_AtomToInt( at );
 | 
						|
 | 
						|
	for (x = 0; x < m; x++) {
 | 
						|
      		YAP_Term ta2 = YAP_ArgOfTerm(x+1, ta);
 | 
						|
 | 
						|
      		if (YAP_IsVarTerm(ta2)) {
 | 
						|
			int32_t k;
 | 
						|
			for (k = 0; k < nvars; k++) {
 | 
						|
	  			if (vars[k] == ta2) {
 | 
						|
	    				*ptr++ = k+1;
 | 
						|
	    				break;
 | 
						|
	  			}
 | 
						|
			}
 | 
						|
			if (k == nvars) {
 | 
						|
	  			vars[k] = ta2;
 | 
						|
	  			*ptr++ = k+1;
 | 
						|
	  			nvars++;
 | 
						|
			}
 | 
						|
      		} else if (YAP_IsAtomTerm(ta2))  {
 | 
						|
			*ptr++ = -YAP_AtomToInt(YAP_AtomOfTerm(ta));
 | 
						|
      		} else {
 | 
						|
			*ptr++ = -YAP_IntOfTerm(ta);
 | 
						|
      		}
 | 
						|
    	}
 | 
						|
      } else {
 | 
						|
	*ptr++ = -YAP_IntOfTerm(ta);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    *ptr++ = 0;
 | 
						|
    t3 = YAP_TailOfTerm( t3 );
 | 
						|
  }
 | 
						|
  if (YAP_IsVarTerm( YAP_ARG4)) {
 | 
						|
    // new 
 | 
						|
    pred = (predicate *)malloc(sizeof(predicate));
 | 
						|
  } else {
 | 
						|
    pred = (predicate *)YAP_IntOfTerm(YAP_ARG4);
 | 
						|
    if (pred->address_host_table)
 | 
						|
      free( pred->address_host_table );
 | 
						|
  }
 | 
						|
  pred->name = pname;
 | 
						|
  pred->num_rows = ngoals;
 | 
						|
  pred->num_columns = ncols;
 | 
						|
  pred->is_fact = FALSE;
 | 
						|
	x = (strlen(strname) + 1) * sizeof(char);
 | 
						|
	pred->predname = (char *)malloc(x);
 | 
						|
	memmove(pred->predname, strname, x);
 | 
						|
  nvec = (int32_t *)malloc(sizeof(int32_t)*(ptr-vec));
 | 
						|
  memmove(nvec, vec, sizeof(int32_t)*(ptr-vec));
 | 
						|
  pred->address_host_table =  nvec;
 | 
						|
  pred->negatives = (int32_t *)malloc(sizeof(int32_t) * cont);
 | 
						|
  memmove(pred->negatives, neg, sizeof(int32_t) * cont);
 | 
						|
  Cuda_NewRule( pred );
 | 
						|
  return YAP_Unify(YAP_ARG4, YAP_MkIntTerm((YAP_Int)pred));
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
cuda_erase( void )
 | 
						|
{
 | 
						|
  predicate *ptr = (predicate *)YAP_IntOfTerm(YAP_ARG1);
 | 
						|
  return Cuda_Erase( ptr );
 | 
						|
}
 | 
						|
 | 
						|
void setQuery(YAP_Term t1, int32_t **res)
 | 
						|
{
 | 
						|
	int32_t *query = (int32_t *)malloc(MAXARG * sizeof(int32_t));
 | 
						|
	int32_t x, y = 0, *itr;
 | 
						|
	predicate *ptr = NULL;
 | 
						|
	if(YAP_IsPairTerm(t1))
 | 
						|
	{
 | 
						|
		while(YAP_IsPairTerm(t1))
 | 
						|
		{
 | 
						|
			ptr = (predicate *)YAP_IntOfTerm(YAP_HeadOfTerm(t1));
 | 
						|
			query[y] = ptr->name;
 | 
						|
			itr = ptr->address_host_table;
 | 
						|
			x = 2;
 | 
						|
			while(itr[x] != 0)
 | 
						|
				x++;
 | 
						|
			query[y+1] = itr[x+1];
 | 
						|
			t1 = YAP_TailOfTerm(t1);
 | 
						|
			y+=2;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		ptr = (predicate *)YAP_IntOfTerm(t1);
 | 
						|
		query[y] = ptr->name;
 | 
						|
		itr = ptr->address_host_table;
 | 
						|
		x = 2;
 | 
						|
		while(itr[x] != 0)
 | 
						|
			x++;
 | 
						|
		query[y+1] = itr[x+1];
 | 
						|
		y += 2;
 | 
						|
	}
 | 
						|
	query[y] = -1;
 | 
						|
	query[y+1] = -1;
 | 
						|
	*res = query;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
cuda_eval( void )
 | 
						|
{
 | 
						|
  int32_t *mat;
 | 
						|
 | 
						|
#if defined(DATALOG) || defined(TUFFY)
 | 
						|
	int32_t *query = NULL;
 | 
						|
	setQuery(YAP_ARG1, &query);
 | 
						|
#endif
 | 
						|
 | 
						|
	int32_t finalDR = YAP_IntOfTerm(YAP_ARG3);
 | 
						|
  int32_t n = Cuda_Eval(facts, cf, rules, cr, query, & mat, names, finalDR);
 | 
						|
 | 
						|
#ifdef TUFFY
 | 
						|
	cf = 0;
 | 
						|
#endif
 | 
						|
#ifdef ROCKIT
 | 
						|
	if(cf > 0)
 | 
						|
		cf *= -1;
 | 
						|
#endif
 | 
						|
#if defined(TUFFY) || defined(ROCKIT)
 | 
						|
	cr = 0;
 | 
						|
	names[0] = '\0';
 | 
						|
	return FALSE;
 | 
						|
#else
 | 
						|
  int32_t i;
 | 
						|
  predicate *ptr = (predicate *)YAP_IntOfTerm(YAP_ARG1);
 | 
						|
  int32_t ncols = ptr->num_columns;
 | 
						|
  YAP_Term out = YAP_TermNil();
 | 
						|
  YAP_Functor f = YAP_MkFunctor(YAP_IntToAtom(ptr->name), ncols);
 | 
						|
  YAP_Term vec[256];
 | 
						|
 | 
						|
	YAP_Atom at;
 | 
						|
 | 
						|
  if (n < 0)
 | 
						|
    return FALSE;
 | 
						|
  for (i=0; i<n; i++) {
 | 
						|
    int32_t ni = ((n-1)-i)*ncols, j;
 | 
						|
 | 
						|
	printf("%s(", YAP_AtomName(YAP_IntToAtom(ptr->name)));
 | 
						|
 | 
						|
    for (j=0; j<ncols; j++) {
 | 
						|
      vec[j] = YAP_MkIntTerm(mat[ni+j]);
 | 
						|
 | 
						|
	at = YAP_IntToAtom(mat[ni+j]);
 | 
						|
	if(at != NULL)
 | 
						|
		printf("%s", YAP_AtomName(at));
 | 
						|
	else
 | 
						|
		printf("%d", mat[ni+j]);	
 | 
						|
	if(j < (ncols - 1))
 | 
						|
		printf(",");
 | 
						|
 | 
						|
    }
 | 
						|
    out = YAP_MkPairTerm(YAP_MkApplTerm( f, ncols, vec ), out);
 | 
						|
 | 
						|
	printf(")\n");
 | 
						|
 | 
						|
  }
 | 
						|
  if (n > 0)
 | 
						|
    free( mat );
 | 
						|
  return YAP_Unify(YAP_ARG2, out);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
cuda_coverage( void )
 | 
						|
{
 | 
						|
  int32_t *mat;
 | 
						|
 | 
						|
#if defined(DATALOG) || defined(TUFFY)
 | 
						|
	int32_t *query = NULL;
 | 
						|
	setQuery(YAP_ARG1, &query);
 | 
						|
#endif
 | 
						|
 | 
						|
  int32_t n = Cuda_Eval(facts, cf, rules, cr, query, & mat, 0, 0);
 | 
						|
  int32_t post = YAP_AtomToInt(YAP_AtomOfTerm(YAP_ARG2));
 | 
						|
  int32_t i = n/2, min = 0, max = n-1;
 | 
						|
  int32_t t0, t1;
 | 
						|
 | 
						|
  if (n < 0)
 | 
						|
    return FALSE;
 | 
						|
  if (n == 0) {
 | 
						|
    return YAP_Unify(YAP_ARG4, YAP_MkIntTerm(0)) && 
 | 
						|
      YAP_Unify(YAP_ARG3, YAP_MkIntTerm(0));
 | 
						|
  }
 | 
						|
  t0 = mat[0], t1 = mat[(n-1)*2];
 | 
						|
  if (t0 == t1) { /* all sametype */
 | 
						|
    free( mat );
 | 
						|
    /* all pos */
 | 
						|
    if (t0 == post) 
 | 
						|
      return YAP_Unify(YAP_ARG3, YAP_MkIntTerm(n)) && 
 | 
						|
	YAP_Unify(YAP_ARG4, YAP_MkIntTerm(0));
 | 
						|
    /* all neg */
 | 
						|
    return YAP_Unify(YAP_ARG4, YAP_MkIntTerm(n)) && 
 | 
						|
      YAP_Unify(YAP_ARG3, YAP_MkIntTerm(0));
 | 
						|
  }
 | 
						|
  do {
 | 
						|
    i = (min+max)/2;
 | 
						|
    if (i == min) i++;
 | 
						|
    if (mat[i*2] == t0) {
 | 
						|
      min = i;
 | 
						|
    } else {
 | 
						|
      max = i;
 | 
						|
    }
 | 
						|
    if (min+1 == max) {      
 | 
						|
      free( mat );
 | 
						|
      if (t0 == post) 
 | 
						|
	return YAP_Unify(YAP_ARG3, YAP_MkIntTerm(max)) && 
 | 
						|
	  YAP_Unify(YAP_ARG4, YAP_MkIntTerm(n-max));
 | 
						|
      /* all neg */
 | 
						|
      return YAP_Unify(YAP_ARG4, YAP_MkIntTerm(max)) && 
 | 
						|
	YAP_Unify(YAP_ARG3, YAP_MkIntTerm(n-max));
 | 
						|
    }
 | 
						|
  } while ( TRUE );
 | 
						|
}
 | 
						|
 | 
						|
static int cuda_count( void )
 | 
						|
{
 | 
						|
  int32_t *mat;
 | 
						|
 | 
						|
#if defined(DATALOG) || defined(TUFFY)
 | 
						|
	int32_t *query = NULL;
 | 
						|
	setQuery(YAP_ARG1, &query);
 | 
						|
#endif
 | 
						|
 | 
						|
  int32_t n = Cuda_Eval(facts, cf, rules, cr, query, & mat, 0, 0);
 | 
						|
 | 
						|
  if (n < 0)
 | 
						|
    return FALSE;
 | 
						|
  free( mat );
 | 
						|
  return YAP_Unify(YAP_ARG2, YAP_MkIntTerm(n));
 | 
						|
}
 | 
						|
 | 
						|
static int cuda_statistics( void )
 | 
						|
{
 | 
						|
  Cuda_Statistics();
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
static int first_time = TRUE;
 | 
						|
 | 
						|
void
 | 
						|
init_cuda(void)
 | 
						|
{
 | 
						|
  if (first_time) Cuda_Initialize();
 | 
						|
  first_time = FALSE;
 | 
						|
 | 
						|
  AtomEq = YAP_LookupAtom("=");
 | 
						|
  AtomGt = YAP_LookupAtom(">");
 | 
						|
  AtomLt = YAP_LookupAtom("<");
 | 
						|
  AtomGe = YAP_LookupAtom(">=");
 | 
						|
  AtomLe = YAP_LookupAtom("=<");
 | 
						|
  AtomDf = YAP_LookupAtom("\\=");
 | 
						|
  AtomNt = YAP_LookupAtom("not");
 | 
						|
  YAP_UserCPredicate("load_facts", load_facts, 4);
 | 
						|
  YAP_UserCPredicate("cuda_init_facts", cuda_init_facts, 4);
 | 
						|
  YAP_UserCPredicate("cuda_load_fact", cuda_load_fact, 1);
 | 
						|
  YAP_UserCPredicate("load_rule", load_rule, 4);
 | 
						|
  YAP_UserCPredicate("cuda_erase", cuda_erase, 1);
 | 
						|
  YAP_UserCPredicate("cuda_eval", cuda_eval, 3);
 | 
						|
  YAP_UserCPredicate("cuda_coverage", cuda_coverage, 4);
 | 
						|
  YAP_UserCPredicate("cuda_count", cuda_count, 2);
 | 
						|
  YAP_UserCPredicate("cuda_statistics", cuda_statistics, 0);
 | 
						|
 | 
						|
#ifdef ROCKIT
 | 
						|
  YAP_UserCPredicate("cuda_init_query", cuda_init_query, 1);
 | 
						|
#endif
 | 
						|
 | 
						|
}
 | 
						|
 |