which included commits to RCS files with non-trunk default branches. git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@5 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
		
			
				
	
	
		
			242 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| % Thom Fruehwirth, LMU, 980129ff, 980312, 980611, 980711
 | |
| 
 | |
| :- use_module( library(chr)).
 | |
| 
 | |
| handler interval.
 | |
| 
 | |
| option(debug_compile,off).
 | |
| option(already_in_store, off).
 | |
| option(check_guard_bindings, off).
 | |
| option(already_in_heads, off). 
 | |
| 
 | |
| % for domain constraints
 | |
| operator( 700,xfx,'::').
 | |
| %operator( 600,xfx,':'). % operator already defined in Sicstus Prolog
 | |
| 
 | |
| % for inequality constraints
 | |
| %operator( 700,xfx,lt). % not implemented
 | |
| operator( 700,xfx,le).
 | |
| operator( 700,xfx,ne).
 | |
| operator( 700,xfx,eq). 
 | |
| 
 | |
| constraints (::)/2, le/2, eq/2, ne/2, add/3, mult/3.
 | |
| % X::Min:Max - X is between the numbers Min and Max, inclusively
 | |
| % X must always be a unbound variable (!), and Min and Max evaluable
 | |
| % (i.e. ground) arithmetic expressions (or numbers)
 | |
| constraints int/1.
 | |
| % int(X) says that X is an integer (default is a real)
 | |
| constraints bool/1.
 | |
| % bool(X) says that X is a boolean (default is a real)
 | |
| 
 | |
| constraints browse/1.
 | |
| % watch how domain of X evolves
 | |
| browse(X), X::A:B ==> write((X::A:B)),nl.
 | |
| 
 | |
| % define the smallest intervals you want to get:
 | |
| % the smaller, the more precise, the longer the computation
 | |
|     small(A:B):- A+2.0e-05>=B. 
 | |
| 
 | |
| % Intersection  -------------------------------
 | |
| 
 | |
| redundant @ X::A:B \ X::C:D <=> %var(X),
 | |
| 	(C=<A, B=<D ; A<B,small(A:B), C<D,small(C:D)) 
 | |
|         |   
 | |
|         true.
 | |
| 
 | |
| intersect @ X::A:B , X::C:D <=> %var(X) | 
 | |
|         X::max(A,C):min(B,D).
 | |
| 
 | |
| % Special Cases  -------------------------------
 | |
| 
 | |
| failure @ X::A:B <=> A>B | fail.
 | |
| 
 | |
| compute @ X::A:B <=> \+ (number(A),number(B)) | C is A, D is B, X::C:D.
 | |
| 
 | |
| integer @ int(X), X::A:B ==> \+ (integer(A),integer(B)) | 
 | |
|       C is integer(ceiling(float(A))), D is integer(floor(float(B))), X::C:D.
 | |
| 
 | |
| bool @ bool(X), X::A:B ==> B<1 | X::0:0.
 | |
| bool @ bool(X), X::A:B ==> A>0 | X::1:1.
 | |
| bool @ bool(X) ==> X::0:1.
 | |
| 
 | |
| % Inequality -------------------------------
 | |
| 
 | |
| (le) @ X le Y, X::A:B, Y::C:D ==> Y::A:D, X::A:D.
 | |
| (eq) @ X eq Y, X::A:B, Y::C:D ==> Y::A:B, X::C:D.
 | |
| (ne) @ X ne Y, X::A:A, Y::A:A <=> fail.
 | |
| 
 | |
| (ne_int) @ int(X) \ X ne Y, X::A:B <=> A=Y | X::A+1:B.
 | |
| (ne_int) @ int(X) \ X ne Y, X::A:B <=> B=Y | X::A:B-1.
 | |
| (ne_int) @ int(X) \ Y ne X, X::A:B <=> A=Y | X::A+1:B.
 | |
| (ne_int) @ int(X) \ Y ne X, X::A:B <=> B=Y | X::A:B-1.
 | |
| 
 | |
| % Addition X+Y=Z -------------------------------
 | |
| 
 | |
| add @ add(X,Y,Z), X::A:B, Y::C:D, Z::E:F ==>
 | |
| 	 X::E-D:F-C, Y::E-B:F-A, Z::A+C:B+D.
 | |
| 
 | |
| % Multiplication X*Y=Z -------------------------------
 | |
| 
 | |
|          mitnull(A:B) :- A=<0, 0=<B.
 | |
| 
 | |
| mult_z @ mult(X,Y,Z), X::A:B, Y::C:D ==> 
 | |
|          M1 is A*C, M2 is A*D, M3 is B*C, M4 is B*D,
 | |
|          Z::min(min(M1,M2),min(M3,M4)):max(max(M1,M2),max(M3,M4)).
 | |
| 
 | |
| mult_y @ mult(X,Y,Z), X::A:B, Z::E:F ==>
 | |
|          \+ mitnull(A:B) |
 | |
|          M1 is E/A, M2 is E/B, M3 is F/A, M4 is F/B,
 | |
|          Y::min(min(M1,M2),min(M3,M4)):max(max(M1,M2),max(M3,M4)).
 | |
| mult_x @ mult(Y,X,Z), X::A:B, Z::E:F ==>
 | |
|          \+ mitnull(A:B) |
 | |
|          M1 is E/A, M2 is E/B, M3 is F/A, M4 is F/B,
 | |
|          Y::min(min(M1,M2),min(M3,M4)):max(max(M1,M2),max(M3,M4)).
 | |
| 
 | |
| mult_xyz @ mult(X,Y,Z), X::A:B, Y::C:D, Z::E:F ==>
 | |
|          mitnull(A:B), mitnull(C:D), \+ mitnull(E:F) |
 | |
|          (A*C<E -> D>0, X::E/D:B ; true),
 | |
|          (B*D<E -> C<0, X::A:E/C ; true),
 | |
|          (F<A*D -> C<0, X::F/C:B ; true),
 | |
|          (F<B*C -> D>0, X::A:F/D ; true).
 | |
| 
 | |
| % Labeling --------------------------------------------------------
 | |
| 
 | |
| constraints split0/1.
 | |
| constraints split/1.
 | |
| % repeated split/1:
 | |
| constraints label/1.
 | |
| 
 | |
| label @ split0(X), X::A:B <=> \+ small(A:B), A<0,0<B |
 | |
| 	       (X::A:0 ; X::0:B). 
 | |
| 
 | |
| label @ split(X), X::A:B <=> \+ small(A:B) |
 | |
| 	       Half is (A+B)/2,
 | |
| 	       (X::A:Half ; X::Half:B).
 | |
| 
 | |
| label @ label(X), X::A:B <=> \+ small(A:B) |
 | |
| 	       Half is (A+B)/2,
 | |
| 	       (X::A:Half ; X::Half:B), 
 | |
| 	       label(X).    
 | |
| 
 | |
| 
 | |
| 
 | |
| % EXAMPLES ================================================================
 | |
| 
 | |
| /*
 | |
| 
 | |
| ?- X::3:5,X::2:4.
 | |
| 
 | |
| X::3:4 ? 
 | |
| 
 | |
| ?- X::3:5, Y::2:4, X=Y.
 | |
| 
 | |
| Y = X,
 | |
| X::3:4 ? 
 | |
| 
 | |
| ?- X::3:3.
 | |
| 
 | |
| X::3:3 ? 
 | |
| 
 | |
| ?- X le Y, X::3:5,X::2:4.
 | |
| 
 | |
| X le Y,
 | |
| X::3:4 ? 
 | |
| 
 | |
| ?- X le Y, X::3:5, Y::3:5.
 | |
| 
 | |
| X le Y,
 | |
| X::3:5,
 | |
| Y::3:5 ? 
 | |
| 
 | |
| ?- X le Y, X::3:5, Y::2:4.
 | |
| 
 | |
| X le Y,
 | |
| Y::3:4,
 | |
| X::3:4 ? 
 | |
| 
 | |
| ?- add(X,Y,Z), X::2:5, Y::3:4, Z::1:7.
 | |
| 
 | |
| Y::3:4,
 | |
| Z::5:7,
 | |
| X::2:4,
 | |
| add(X,Y,Z)?
 | |
| 
 | |
| ?- mult(X,Y,Z), X:: -2:3, Y:: -3:4, Z::7:12.
 | |
| 
 | |
| Z::7:12,
 | |
| X::1.75:3,
 | |
| Y::2.3333333333333335:4.0,
 | |
| mult(X,Y,Z) ? ;
 | |
| 
 | |
| ?-  mult(X,Y,Z), X:: -2:3, Y:: -3:4, Z:: -12: -9.
 | |
| 
 | |
| ?- A::(-3):3, B::(-3):3, C::4:4,  mult(A,B,C), A eq B.
 | |
| 
 | |
| ?- A::(-3):3, B::(-3):3, C::4:4,  mult(A,B,C), A eq B, split(A).
 | |
| 
 | |
| ?- int(A), A::(-3):3, B::(-3):3, C::4:4,  mult(A,B,C), A eq B, split(A).
 | |
| 
 | |
| ?- A::(-3):3, B::(-3):3, C::4:4,  mult(A,B,C), A eq B, 
 | |
|      split(A),split(A),split(A),split(A).
 | |
| 
 | |
| ?- A::(-3):3, B::(-3):3, C::4:4,  mult(A,B,C), A eq B, label(A).
 | |
| 
 | |
| ?- int(A),int(B),int(C), mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3, 
 | |
|      A le C, B le C, C le A, C le B, A le B, B le A.
 | |
| 
 | |
| ?- int(A),int(B),int(C), mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3, 
 | |
|      A eq B, B eq C.
 | |
| 
 | |
| ?- mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3, A eq B, B eq C.
 | |
| 
 | |
| A eq B,
 | |
| B eq C,
 | |
| C::0.0:4.304672099999998e-9,
 | |
| B::0.0:4.304672099999998e-9,
 | |
| A::0.0:4.304672099999998e-9,
 | |
| mult(A,B,C) ? ;
 | |
| 
 | |
| ?-  mult(A,B,C), A::0:0.3, B::0:0.3, C::0:0.3, A le C.
 | |
| 
 | |
| B::0:0.3,
 | |
| A le C,
 | |
| C::0.0:1.9682999999999995e-5,
 | |
| A::0:1.9682999999999995e-5,
 | |
| mult(A,B,C) ? ;
 | |
| 
 | |
| ?- mult(A,B,C), A::(-0.3):0.3, B::(-0.3):0.3, C::(-0.3):0.3, A eq C.
 | |
| 
 | |
| B:: -0.3:0.3,
 | |
| A eq C,
 | |
| C:: -5.9048999999999996e-6:5.9048999999999996e-6,
 | |
| A:: -5.9048999999999996e-6:5.9048999999999996e-6,
 | |
| mult(A,B,C) ? ;
 | |
| 
 | |
| ?- mult(A,B,C), A::(-3):3, B::(-3):3, C::(-3):3, A eq C.
 | |
| % solutions A=C=0 or B=1, impossible to enumerate
 | |
| 
 | |
| A:: -3:3,
 | |
| B:: -3:3,
 | |
| C:: -3:3,
 | |
| A eq C,
 | |
| mult(A,B,C) ? ;
 | |
| 
 | |
| ?- mult(A,B,AB), A eq B, add(AB,C,F), F::5:5,
 | |
|      mult(C,D,CD), C eq D, add(CD,A,G), G::3:3,
 | |
|      A:: -10:10, B:: -10:10, C:: -10:10, D:: -10:10,
 | |
|      split0(A),split0(C).
 | |
| 
 | |
| ?- int(A),
 | |
|      mult(A,B,AB), A eq B, add(AB,C,F), F::5:5,
 | |
|      mult(C,D,CD), C eq D, add(CD,A,G), G::3:3,
 | |
|      A:: -10:10, B:: -10:10, C:: -10:10, D:: -10:10,
 | |
|      label(A).
 | |
| 
 | |
| ?- mult(A,B,AB), A eq B, add(AB,C,F), F::5:5,
 | |
|      mult(C,D,CD), C eq D, add(CD,A,G), G::3:3,
 | |
|      A:: -10:10, B:: -10:10, C:: -10:10, D:: -10:10,
 | |
|      label(A).
 | |
| 
 | |
| */
 | |
| 
 | |
| % end of handler interval =================================================== |