which included commits to RCS files with non-trunk default branches. git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@5 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
		
			
				
	
	
		
			137 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| % math-elim.pl================================================================
 | |
| % constraint handling rules for linear polynomial (in)equalitions
 | |
| % thom fruehwirth 910610,911213,920124,930518,931223,940308,950410-11,980312
 | |
| % 961107 Christian Holzbaur, SICStus mods.
 | |
| 
 | |
| % CHOOSE one of the following elim-* named CHRs for variable elimination
 | |
| % and comment out the others!
 | |
| 
 | |
| :- use_module( library(chr)).
 | |
| :- ensure_loaded( 'math-utilities').
 | |
| 
 | |
| handler elim.
 | |
| 
 | |
| % auxiliary constraint to delay a goal G until it is ground
 | |
| constraints check/1.
 | |
| check(G) <=> ground(G) | G.
 | |
| 
 | |
| % handle inequalities (introduces slack variables)
 | |
| 
 | |
| constraints {}/1.
 | |
| 
 | |
| { C,Cs } <=> { C }, { Cs }.
 | |
| 
 | |
| {A =< B}  <=> ground(A),ground(B) | A=<B.
 | |
| {A >= B}  <=> ground(A),ground(B) | A>=B.
 | |
| {A < B}   <=> ground(A),ground(B) | A<B.
 | |
| {A > B}   <=> ground(A),ground(B) | A>B.
 | |
| {A =\= B} <=> ground(A),ground(B) | A=\=B.
 | |
| 
 | |
| % transform inequations into equations by introducing slack variables
 | |
| {A =< B}  <=> {A+slack(X) =:= B}, check(X>=0).
 | |
| {A >= B}  <=> {B+slack(X) =:= A}, check(X>=0).
 | |
| {A < B}   <=> {A+slack(X) =:= B}, check(X>0).
 | |
| {A > B}   <=> {B+slack(X) =:= A}, check(X>0).
 | |
| {A =\= B} <=> {A+      X  =:= B}, check(X=\=0).  
 | |
| 
 | |
| % some quick cases and the general case
 | |
| {A =:= B} <=> ground(A),ground(B) | X is A-B, zero(X).  % handle imprecision
 | |
| {A =:= B} <=> var(A),   ground(B) | A is B.
 | |
| {B =:= A} <=> var(A),   ground(B) | A is B.
 | |
| {A =:= B} <=> unconstrained(A),var(B) | A=B.
 | |
| {B =:= A} <=> unconstrained(A),var(B) | A=B.
 | |
| {A =:= B} <=> normalize(A,B,P,C), equals(P,C).
 | |
| 
 | |
| operator(100,xfx,equals).
 | |
| 
 | |
| constraints (equals)/2. 
 | |
| % Poly equals Const, where Poly is list of monomials Variable*Coefficient 
 | |
| 
 | |
| % simplify single equation --------------------------------------------------
 | |
| empty @ [] equals C1 <=> zero(C1).
 | |
| unify @ [X*C2] equals C1 <=> nonground(X) | is_div(C1,C2,X). % nonzero(X)
 | |
| simplify @ P0 equals C1 <=> delete(X*C2,P0,P), ground(X) |
 | |
| 	is_mul(X,C2,XC2),
 | |
| 	C is XC2+C1, 
 | |
| 	P equals C.
 | |
| /*
 | |
| % use only if you unify variables of equations with each other
 | |
| % if rule is not used: may loop if variables of the equations are unified
 | |
| unified @ P0 equals C1 <=> 
 | |
| 	append(P1,[X*C2|P2],P0),var(X),delete(Y*C3,P2,P3),X==Y 
 | |
| 	|
 | |
| 	C23 is C1+C2,
 | |
| 	append(P1,[X*C23|P3],P4),
 | |
| 	sort1(P4,P5),		% needed ?
 | |
| 	P5 equals C1.
 | |
| */
 | |
| 
 | |
| % CHOOSE one of the following elim-* CHRs for variable elimination 
 | |
| % and comment out the others
 | |
| 
 | |
| % eliminate a variable ------------------------------------------------------
 | |
| % lazy rule to replace a variable or slack (as used in math-lazy.chr)
 | |
| elim_lazy @ [X*C2X|PX] equals C1X \ [X*C2|P] equals C1 <=> var(X) |
 | |
| 	is_div(C2,C2X,CX), 
 | |
| 	mult_const(eq0(C1X,PX),CX,P2),	
 | |
|         add_eq0(eq0(C1,P),P2,eq0(C3,P3)),
 | |
| 	sort1(P3,P4),
 | |
| 	P4 equals C3.
 | |
| /*
 | |
| % not so lazy rule to replace a variable or slack
 | |
| % should make all variable bindings explicit
 | |
| % maybe even less efficient then eager rule?
 | |
| elim_medium @ [X*C2X|PX] equals C1X \ P0 equals C1 <=> 
 | |
| 	(P0=[Y*C2|P] ; P0=[VC,Y*C2|P1],P=[VC|P1]),
 | |
| 	X==Y
 | |
| 	|
 | |
| 	is_div(C2,C2X,CX), 
 | |
| 	mult_const(eq0(C1X,PX),CX,P2),	
 | |
|         add_eq0(eq0(C1,P),P2,eq0(C3,P3)),
 | |
| 	sort1(P3,P4),
 | |
| 	P4 equals C3.
 | |
| 
 | |
| % eager rule to replace a variable or slack (as used in math-eager.chr)
 | |
| elim_eager @ [X*C2X|PX] equals C1X \ P0 equals C1 <=> %var(X) |
 | |
| 	delete(Y*C2,P0,P),X==Y 
 | |
| 	| 
 | |
| 	is_div(C2,C2X,CX), 
 | |
| 	mult_const(eq0(C1X,PX),CX,P2),	
 | |
|         add_eq0(eq0(C1,P),P2,eq0(C3,P3)),
 | |
| 	P3 equals C3.
 | |
| */
 | |
| /*
 | |
| % handle slack variables, not complete ---------------------------------------
 | |
| all_slacks @ P equals C <=> all_slacks(P,PS),sign(C,CS),(CS=0;CS=PS) | 
 | |
| 	CS=0,all_zeroes(P).
 | |
| */
 | |
| % handle slack variables, complete? ------------------------------------------
 | |
| zero_slacks @ P equals C <=> zero(C),all_slacks(P,_PS) | all_zeroes(P).
 | |
| 
 | |
| first_slack @ [S1*C1|P] equals C <=> nonvar(S1),sign(C,SC),sign(C1,SC1),SC=SC1 |
 | |
| 	(delete(S2*C2,P,P1),sign(C2,SC2),SC2 is -SC ->
 | |
| 	[S2*C2,S1*C1|P1] equals C).
 | |
| 
 | |
| elim_slack @ [X*C2X|PX] equals C1X \ P0 equals C1 <=> % P0 all_slacks, no?
 | |
| 	nonvar(X),  			              % slack variable
 | |
| 	sign(C1X,SC1X),sign(C2X,SC2X),SC2X\==SC1X,    % different sign	
 | |
| 	delete(Y*C2,P0,P),X==Y 
 | |
| 	| 
 | |
| 	is_div(C2,C2X,CX), 
 | |
| 	mult_const(eq0(C1X,PX),CX,P2),	
 | |
|         add_eq0(eq0(C1,P),P2,eq0(C3,P3)),
 | |
| 	P3 equals C3.			% put P0 first slack first, yes?
 | |
| 
 | |
| 
 | |
| % handle nonlinear equations -------------------------------------------------
 | |
| operator(450,xfx,eqnonlin).
 | |
| constraints (eqnonlin)/2.
 | |
| linearize @ X eqnonlin A   <=> ground(A) | A1 is A, {X=:=A1}.
 | |
| linearize @ X eqnonlin A*B <=> ground(A) | A1 is A, {X=:=A1*B}.
 | |
| linearize @ X eqnonlin B*A <=> ground(A) | A1 is A, {X=:=A1*B}.
 | |
| 
 | |
| % pretty-print math-portray for equals/2 is defined in math-utilities.pl -----
 | |
| 
 | |
| /* end of file math-elim.pl -----------------------------------------------*/
 | |
| 
 |