0e45f242d4
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@2145 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
1118 lines
24 KiB
Prolog
1118 lines
24 KiB
Prolog
/* $Id: nf_q.pl,v 1.1 2008-03-13 17:16:43 vsc Exp $
|
|
|
|
Part of CLP(Q) (Constraint Logic Programming over Rationals)
|
|
|
|
Author: Leslie De Koninck
|
|
E-mail: Leslie.DeKoninck@cs.kuleuven.be
|
|
WWW: http://www.swi-prolog.org
|
|
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
|
|
Copyright (C): 2006, K.U. Leuven and
|
|
1992-1995, Austrian Research Institute for
|
|
Artificial Intelligence (OFAI),
|
|
Vienna, Austria
|
|
|
|
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
|
|
Prolog and distributed under the license details below with permission from
|
|
all mentioned authors.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
As a special exception, if you link this library with other files,
|
|
compiled with a Free Software compiler, to produce an executable, this
|
|
library does not by itself cause the resulting executable to be covered
|
|
by the GNU General Public License. This exception does not however
|
|
invalidate any other reasons why the executable file might be covered by
|
|
the GNU General Public License.
|
|
*/
|
|
|
|
|
|
:- module(nf_q,
|
|
[
|
|
{}/1,
|
|
nf/2,
|
|
entailed/1,
|
|
split/3,
|
|
repair/2,
|
|
nf_constant/2,
|
|
wait_linear/3,
|
|
nf2term/2
|
|
]).
|
|
:- use_module('../clpqr/geler',
|
|
[
|
|
geler/3
|
|
]).
|
|
:- use_module(bv_q,
|
|
[
|
|
log_deref/4,
|
|
solve/1,
|
|
'solve_<'/1,
|
|
'solve_=<'/1,
|
|
'solve_=\\='/1
|
|
]).
|
|
:- use_module(ineq_q,
|
|
[
|
|
ineq_one/4,
|
|
ineq_one_s_p_0/1,
|
|
ineq_one_s_n_0/1,
|
|
ineq_one_n_p_0/1,
|
|
ineq_one_n_n_0/1
|
|
]).
|
|
:- use_module(store_q,
|
|
[
|
|
add_linear_11/3,
|
|
normalize_scalar/2
|
|
]).
|
|
|
|
goal_expansion(geler(X,Y),geler(clpq,X,Y)).
|
|
|
|
% -------------------------------------------------------------------------
|
|
|
|
% {Constraint}
|
|
%
|
|
% Adds the constraint Constraint to the constraint store.
|
|
%
|
|
% First rule is to prevent binding with other rules when a variable is input
|
|
% Constraints are converted to normal form and if necessary, submitted to the linear
|
|
% equality/inequality solver (bv + ineq) or to the non-linear store (geler)
|
|
|
|
{Rel} :-
|
|
var(Rel),
|
|
!,
|
|
throw(instantiation_error({Rel},1)).
|
|
{R,Rs} :-
|
|
!,
|
|
{R},{Rs}.
|
|
{R;Rs} :-
|
|
!,
|
|
({R};{Rs}). % for entailment checking
|
|
{L < R} :-
|
|
!,
|
|
nf(L-R,Nf),
|
|
submit_lt(Nf).
|
|
{L > R} :-
|
|
!,
|
|
nf(R-L,Nf),
|
|
submit_lt(Nf).
|
|
{L =< R} :-
|
|
!,
|
|
nf(L-R,Nf),
|
|
submit_le( Nf).
|
|
{<=(L,R)} :-
|
|
!,
|
|
nf(L-R,Nf),
|
|
submit_le(Nf).
|
|
{L >= R} :-
|
|
!,
|
|
nf(R-L,Nf),
|
|
submit_le(Nf).
|
|
{L =\= R} :-
|
|
!,
|
|
nf(L-R,Nf),
|
|
submit_ne(Nf).
|
|
{L =:= R} :-
|
|
!,
|
|
nf(L-R,Nf),
|
|
submit_eq(Nf).
|
|
{L = R} :-
|
|
!,
|
|
nf(L-R,Nf),
|
|
submit_eq(Nf).
|
|
{Rel} :- throw(type_error({Rel},1,'a constraint',Rel)).
|
|
|
|
% entailed(C)
|
|
%
|
|
% s -> c = ~s v c = ~(s /\ ~c)
|
|
% where s is the store and c is the constraint for which
|
|
% we want to know whether it is entailed.
|
|
% C is negated and added to the store. If this fails, then c is entailed by s
|
|
|
|
entailed(C) :-
|
|
negate(C,Cn),
|
|
\+ {Cn}.
|
|
|
|
% negate(C,Res).
|
|
%
|
|
% Res is the negation of constraint C
|
|
% first rule is to prevent binding with other rules when a variable is input
|
|
|
|
negate(Rel,_) :-
|
|
var(Rel),
|
|
!,
|
|
throw(instantiation_error(entailed(Rel),1)).
|
|
negate((A,B),(Na;Nb)) :-
|
|
!,
|
|
negate(A,Na),
|
|
negate(B,Nb).
|
|
negate((A;B),(Na,Nb)) :-
|
|
!,
|
|
negate(A,Na),
|
|
negate(B,Nb).
|
|
negate(A<B,A>=B) :- !.
|
|
negate(A>B,A=<B) :- !.
|
|
negate(A=<B,A>B) :- !.
|
|
negate(A>=B,A<B) :- !.
|
|
negate(A=:=B,A=\=B) :- !.
|
|
negate(A=B,A=\=B) :- !.
|
|
negate(A=\=B,A=:=B) :- !.
|
|
negate(Rel,_) :- throw( type_error(entailed(Rel),1,'a constraint',Rel)).
|
|
|
|
% submit_eq(Nf)
|
|
%
|
|
% Submits the equality Nf = 0 to the constraint store, where Nf is in normal form.
|
|
% The following cases may apply:
|
|
% a) Nf = []
|
|
% b) Nf = [A]
|
|
% b1) A = k
|
|
% b2) invertible(A)
|
|
% b3) linear -> A = 0
|
|
% b4) nonlinear -> geler
|
|
% c) Nf=[A,B|Rest]
|
|
% c1) A=k
|
|
% c11) (B=c*X^+1 or B=c*X^-1), Rest=[] -> B=-k/c or B=-c/k
|
|
% c12) invertible(A,B)
|
|
% c13) linear(B|Rest)
|
|
% c14) geler
|
|
% c2) linear(Nf)
|
|
% c3) nonlinear -> geler
|
|
|
|
submit_eq([]). % trivial success: case a
|
|
submit_eq([T|Ts]) :-
|
|
submit_eq(Ts,T).
|
|
submit_eq([],A) :- submit_eq_b(A). % case b
|
|
submit_eq([B|Bs],A) :- submit_eq_c(A,B,Bs). % case c
|
|
|
|
% submit_eq_b(A)
|
|
%
|
|
% Handles case b of submit_eq/1
|
|
|
|
% case b1: A is a constant (non-zero)
|
|
submit_eq_b(v(_,[])) :-
|
|
!,
|
|
fail.
|
|
% case b2/b3: A is n*X^P => X = 0
|
|
submit_eq_b(v(_,[X^P])) :-
|
|
var(X),
|
|
P > 0,
|
|
!,
|
|
X = 0.
|
|
% case b2: non-linear is invertible: NL(X) = 0 => X - inv(NL)(0) = 0
|
|
submit_eq_b(v(_,[NL^1])) :-
|
|
nonvar(NL),
|
|
nl_invertible(NL,X,0,Inv),
|
|
!,
|
|
nf(-Inv,S),
|
|
nf_add(X,S,New),
|
|
submit_eq(New).
|
|
% case b4: A is non-linear and not invertible => submit equality to geler
|
|
submit_eq_b(Term) :-
|
|
term_variables(Term,Vs),
|
|
geler(Vs,nf_q:resubmit_eq([Term])).
|
|
|
|
% submit_eq_c(A,B,Rest)
|
|
%
|
|
% Handles case c of submit_eq/1
|
|
|
|
% case c1: A is a constant
|
|
submit_eq_c(v(I,[]),B,Rest) :-
|
|
!,
|
|
submit_eq_c1(Rest,B,I).
|
|
% case c2: A,B and Rest are linear
|
|
submit_eq_c(A,B,Rest) :- % c2
|
|
A = v(_,[X^1]),
|
|
var(X),
|
|
B = v(_,[Y^1]),
|
|
var(Y),
|
|
linear(Rest),
|
|
!,
|
|
Hom = [A,B|Rest],
|
|
% 'solve_='(Hom).
|
|
nf_length(Hom,0,Len),
|
|
log_deref(Len,Hom,[],HomD),
|
|
solve(HomD).
|
|
% case c3: A, B or Rest is non-linear => geler
|
|
submit_eq_c(A,B,Rest) :-
|
|
Norm = [A,B|Rest],
|
|
term_variables(Norm,Vs),
|
|
geler(Vs,nf_q:resubmit_eq(Norm)).
|
|
|
|
% submit_eq_c1(Rest,B,K)
|
|
%
|
|
% Handles case c1 of submit_eq/1
|
|
|
|
% case c11: k+cX^1=0 or k+cX^-1=0
|
|
submit_eq_c1([],v(K,[X^P]),I) :-
|
|
var(X),
|
|
( P = 1,
|
|
!,
|
|
X is -I rdiv K
|
|
; P = -1,
|
|
!,
|
|
X is -K rdiv I
|
|
).
|
|
% case c12: non-linear, invertible: cNL(X)^1+k=0 => inv(NL)(-k/c) = 0 ;
|
|
% cNL(X)^-1+k=0 => inv(NL)(-c/k) = 0
|
|
submit_eq_c1([],v(K,[NL^P]),I) :-
|
|
nonvar(NL),
|
|
( P = 1,
|
|
Y is -I rdiv K
|
|
; P = -1,
|
|
Y is -K rdiv I
|
|
),
|
|
nl_invertible(NL,X,Y,Inv),
|
|
!,
|
|
nf(-Inv,S),
|
|
nf_add(X,S,New),
|
|
submit_eq(New).
|
|
% case c13: linear: X + Y + Z + c = 0 =>
|
|
submit_eq_c1(Rest,B,I) :-
|
|
B = v(_,[Y^1]),
|
|
var(Y),
|
|
linear(Rest),
|
|
!,
|
|
% 'solve_='( [v(I,[]),B|Rest]).
|
|
Hom = [B|Rest],
|
|
nf_length(Hom,0,Len),
|
|
normalize_scalar(I,Nonvar),
|
|
log_deref(Len,Hom,[],HomD),
|
|
add_linear_11(Nonvar,HomD,LinD),
|
|
solve(LinD).
|
|
% case c14: other cases => geler
|
|
submit_eq_c1(Rest,B,I) :-
|
|
Norm = [v(I,[]),B|Rest],
|
|
term_variables(Norm,Vs),
|
|
geler(Vs,nf_q:resubmit_eq(Norm)).
|
|
|
|
% -----------------------------------------------------------------------
|
|
|
|
% submit_lt(Nf)
|
|
%
|
|
% Submits the inequality Nf<0 to the constraint store, where Nf is in normal form.
|
|
|
|
% 0 < 0 => fail
|
|
submit_lt([]) :- fail.
|
|
% A + B < 0
|
|
submit_lt([A|As]) :- submit_lt(As,A).
|
|
|
|
% submit_lt(As,A)
|
|
%
|
|
% Does what submit_lt/1 does where Nf = [A|As]
|
|
|
|
% v(K,P) < 0
|
|
submit_lt([],v(K,P)) :- submit_lt_b(P,K).
|
|
% A + B + Bs < 0
|
|
submit_lt([B|Bs],A) :- submit_lt_c(Bs,A,B).
|
|
|
|
% submit_lt_b(P,K)
|
|
%
|
|
% Does what submit_lt/2 does where A = [v(K,P)] and As = []
|
|
|
|
% c < 0
|
|
submit_lt_b([],I) :-
|
|
!,
|
|
I < 0.
|
|
% cX^1 < 0 : if c < 0 then X > 0, else X < 0
|
|
submit_lt_b([X^1],K) :-
|
|
var(X),
|
|
!,
|
|
( K > 0
|
|
-> ineq_one_s_p_0(X) % X is strictly negative
|
|
; ineq_one_s_n_0(X) % X is strictly positive
|
|
).
|
|
% non-linear => geler
|
|
submit_lt_b(P,K) :-
|
|
term_variables(P,Vs),
|
|
geler(Vs,nf_q:resubmit_lt([v(K,P)])).
|
|
|
|
% submit_lt_c(Bs,A,B)
|
|
%
|
|
% Does what submit_lt/2 does where As = [B|Bs].
|
|
|
|
% c + kX < 0 => kX < c
|
|
submit_lt_c([],A,B) :-
|
|
A = v(I,[]),
|
|
B = v(K,[Y^1]),
|
|
var(Y),
|
|
!,
|
|
ineq_one(strict,Y,K,I).
|
|
% linear < 0 => solve, non-linear < 0 => geler
|
|
submit_lt_c(Rest,A,B) :-
|
|
Norm = [A,B|Rest],
|
|
( linear(Norm)
|
|
-> 'solve_<'(Norm)
|
|
; term_variables(Norm,Vs),
|
|
geler(Vs,nf_q:resubmit_lt(Norm))
|
|
).
|
|
|
|
% submit_le(Nf)
|
|
%
|
|
% Submits the inequality Nf =< 0 to the constraint store, where Nf is in normal form.
|
|
% See also submit_lt/1
|
|
|
|
% 0 =< 0 => success
|
|
submit_le([]).
|
|
% A + B =< 0
|
|
submit_le([A|As]) :- submit_le(As,A).
|
|
|
|
% submit_le(As,A)
|
|
%
|
|
% See submit_lt/2. This handles less or equal.
|
|
|
|
% v(K,P) =< 0
|
|
submit_le([],v(K,P)) :- submit_le_b(P,K).
|
|
% A + B + Bs =< 0
|
|
submit_le([B|Bs],A) :- submit_le_c(Bs,A,B).
|
|
|
|
% submit_le_b(P,K)
|
|
%
|
|
% See submit_lt_b/2. This handles less or equal.
|
|
|
|
% c =< 0
|
|
submit_le_b([],I) :-
|
|
!,
|
|
I =< 0.
|
|
% cX^1 =< 0: if c < 0 then X >= 0, else X =< 0
|
|
submit_le_b([X^1],K) :-
|
|
var(X),
|
|
!,
|
|
( K > 0
|
|
-> ineq_one_n_p_0(X) % X is non-strictly negative
|
|
; ineq_one_n_n_0(X) % X is non-strictly positive
|
|
).
|
|
% cX^P =< 0 => geler
|
|
submit_le_b(P,K) :-
|
|
term_variables(P,Vs),
|
|
geler(Vs,nf_q:resubmit_le([v(K,P)])).
|
|
|
|
% submit_le_c(Bs,A,B)
|
|
%
|
|
% See submit_lt_c/3. This handles less or equal.
|
|
|
|
% c + kX^1 =< 0 => kX =< 0
|
|
submit_le_c([],A,B) :-
|
|
A = v(I,[]),
|
|
B = v(K,[Y^1]),
|
|
var(Y),
|
|
!,
|
|
ineq_one(nonstrict,Y,K,I).
|
|
% A, B & Rest are linear => solve, otherwise => geler
|
|
submit_le_c(Rest,A,B) :-
|
|
Norm = [A,B|Rest],
|
|
( linear(Norm)
|
|
-> 'solve_=<'(Norm)
|
|
; term_variables(Norm,Vs),
|
|
geler(Vs,nf_q:resubmit_le(Norm))
|
|
).
|
|
|
|
% submit_ne(Nf)
|
|
%
|
|
% Submits the inequality Nf =\= 0 to the constraint store, where Nf is in normal form.
|
|
% if Nf is a constant => check constant = 0, else if Nf is linear => solve else => geler
|
|
|
|
submit_ne(Norm1) :-
|
|
( nf_constant(Norm1,K)
|
|
-> K =\= 0
|
|
; linear(Norm1)
|
|
-> 'solve_=\\='(Norm1)
|
|
; term_variables(Norm1,Vs),
|
|
geler(Vs,nf_q:resubmit_ne(Norm1))
|
|
).
|
|
|
|
% linear(A)
|
|
%
|
|
% succeeds when A is linear: all elements are of the form v(_,[]) or v(_,[X^1])
|
|
|
|
linear([]).
|
|
linear(v(_,Ps)) :- linear_ps(Ps).
|
|
linear([A|As]) :-
|
|
linear(A),
|
|
linear(As).
|
|
|
|
% linear_ps(A)
|
|
%
|
|
% Succeeds when A = V^1 with V a variable.
|
|
% This reflects the linearity of v(_,A).
|
|
|
|
linear_ps([]).
|
|
linear_ps([V^1]) :- var(V). % excludes sin(_), ...
|
|
|
|
%
|
|
% Goal delays until Term gets linear.
|
|
% At this time, Var will be bound to the normalform of Term.
|
|
%
|
|
:- meta_predicate wait_linear( ?, ?, :).
|
|
%
|
|
wait_linear(Term,Var,Goal) :-
|
|
nf(Term,Nf),
|
|
( linear(Nf)
|
|
-> Var = Nf,
|
|
call(Goal)
|
|
; term_variables(Nf,Vars),
|
|
geler(Vars,nf_q:wait_linear_retry(Nf,Var,Goal))
|
|
).
|
|
%
|
|
% geler clients
|
|
%
|
|
resubmit_eq(N) :-
|
|
repair(N,Norm),
|
|
submit_eq(Norm).
|
|
resubmit_lt(N) :-
|
|
repair(N,Norm),
|
|
submit_lt(Norm).
|
|
resubmit_le(N) :-
|
|
repair(N,Norm),
|
|
submit_le(Norm).
|
|
resubmit_ne(N) :-
|
|
repair(N,Norm),
|
|
submit_ne(Norm).
|
|
wait_linear_retry(Nf0,Var,Goal) :-
|
|
repair(Nf0,Nf),
|
|
( linear(Nf)
|
|
-> Var = Nf,
|
|
call(Goal)
|
|
; term_variables(Nf,Vars),
|
|
geler(Vars,nf_q:wait_linear_retry(Nf,Var,Goal))
|
|
).
|
|
% -----------------------------------------------------------------------
|
|
|
|
% nl_invertible(F,X,Y,Res)
|
|
%
|
|
% Res is the evaluation of the inverse of nonlinear function F in variable X
|
|
% where X is Y
|
|
|
|
nl_invertible(sin(X),X,Y,Res) :- Res is asin(Y).
|
|
nl_invertible(cos(X),X,Y,Res) :- Res is acos(Y).
|
|
nl_invertible(tan(X),X,Y,Res) :- Res is atan(Y).
|
|
nl_invertible(exp(B,C),X,A,Res) :-
|
|
( nf_constant(B,Kb)
|
|
-> A > 0,
|
|
Kb > 0,
|
|
Kb =\= 1,
|
|
X = C, % note delayed unification
|
|
Res is rational(log(A)) rdiv rational(log(Kb))
|
|
; nf_constant(C,Kc),
|
|
A =\= 0,
|
|
Kc > 0,
|
|
X = B, % note delayed unification
|
|
Res is rational(A**(1 rdiv Kc))
|
|
).
|
|
|
|
% -----------------------------------------------------------------------
|
|
|
|
% nf(Exp,Nf)
|
|
%
|
|
% Returns in Nf, the normal form of expression Exp
|
|
%
|
|
% v(A,[B^C,D^E|...]) means A*B^C*D^E*... where A is a scalar (number)
|
|
% v(A,[]) means scalar A
|
|
|
|
% variable X => 1*X^1
|
|
nf(X,Norm) :-
|
|
var(X),
|
|
!,
|
|
Norm = [v(1,[X^1])].
|
|
nf(X,Norm) :-
|
|
number(X),
|
|
!,
|
|
nf_number(X,Norm).
|
|
nf(X,Norm) :-
|
|
rational(X),
|
|
!,
|
|
nf_number(X,Norm).
|
|
%
|
|
nf(-A,Norm) :-
|
|
!,
|
|
nf(A,An),
|
|
nf_mul_factor(v(-1,[]),An,Norm).
|
|
nf(+A,Norm) :-
|
|
!,
|
|
nf(A,Norm).
|
|
%
|
|
nf(A+B,Norm) :-
|
|
!,
|
|
nf(A,An),
|
|
nf(B,Bn),
|
|
nf_add(An,Bn,Norm).
|
|
nf(A-B,Norm) :-
|
|
!,
|
|
nf(A,An),
|
|
nf(-B,Bn),
|
|
nf_add(An,Bn,Norm).
|
|
%
|
|
nf(A*B,Norm) :-
|
|
!,
|
|
nf(A,An),
|
|
nf(B,Bn),
|
|
nf_mul(An,Bn,Norm).
|
|
nf(A/B,Norm) :-
|
|
!,
|
|
nf(A,An),
|
|
nf(B,Bn),
|
|
nf_div(Bn,An,Norm).
|
|
% non-linear function, one argument: Term = f(Arg) equals f'(Sa1) = Skel
|
|
nf(Term,Norm) :-
|
|
nonlin_1(Term,Arg,Skel,Sa1),
|
|
!,
|
|
nf(Arg,An),
|
|
nf_nonlin_1(Skel,An,Sa1,Norm).
|
|
% non-linear function, two arguments: Term = f(A1,A2) equals f'(Sa1,Sa2) = Skel
|
|
nf(Term,Norm) :-
|
|
nonlin_2(Term,A1,A2,Skel,Sa1,Sa2),
|
|
!,
|
|
nf(A1,A1n),
|
|
nf(A2,A2n),
|
|
nf_nonlin_2(Skel,A1n,A2n,Sa1,Sa2,Norm).
|
|
%
|
|
nf(Term,_) :-
|
|
throw(type_error(nf(Term,_),1,'a numeric expression',Term)).
|
|
|
|
% nf_number(N,Res)
|
|
%
|
|
% If N is a number, N is normalized
|
|
|
|
nf_number(N,Res) :-
|
|
Rat is rationalize(N),
|
|
( Rat =:= 0
|
|
-> Res = []
|
|
; Res = [v(Rat,[])]
|
|
).
|
|
|
|
nonlin_1(abs(X),X,abs(Y),Y).
|
|
nonlin_1(sin(X),X,sin(Y),Y).
|
|
nonlin_1(cos(X),X,cos(Y),Y).
|
|
nonlin_1(tan(X),X,tan(Y),Y).
|
|
nonlin_2(min(A,B),A,B,min(X,Y),X,Y).
|
|
nonlin_2(max(A,B),A,B,max(X,Y),X,Y).
|
|
nonlin_2(exp(A,B),A,B,exp(X,Y),X,Y).
|
|
nonlin_2(pow(A,B),A,B,exp(X,Y),X,Y). % pow->exp
|
|
nonlin_2(A^B,A,B,exp(X,Y),X,Y).
|
|
|
|
nf_nonlin_1(Skel,An,S1,Norm) :-
|
|
( nf_constant(An,S1)
|
|
-> nl_eval(Skel,Res),
|
|
nf_number(Res,Norm)
|
|
; S1 = An,
|
|
Norm = [v(1,[Skel^1])]).
|
|
nf_nonlin_2(Skel,A1n,A2n,S1,S2,Norm) :-
|
|
( nf_constant(A1n,S1),
|
|
nf_constant(A2n,S2)
|
|
-> nl_eval(Skel,Res),
|
|
nf_number(Res,Norm)
|
|
; Skel=exp(_,_),
|
|
nf_constant(A2n,Exp),
|
|
integer(Exp)
|
|
-> nf_power(Exp,A1n,Norm)
|
|
; S1 = A1n,
|
|
S2 = A2n,
|
|
Norm = [v(1,[Skel^1])]
|
|
).
|
|
|
|
% evaluates non-linear functions in one variable where the variable is bound
|
|
nl_eval(abs(X),R) :- R is abs(X).
|
|
nl_eval(sin(X),R) :- R is sin(X).
|
|
nl_eval(cos(X),R) :- R is cos(X).
|
|
nl_eval(tan(X),R) :- R is tan(X).
|
|
% evaluates non-linear functions in two variables where both variables are
|
|
% bound
|
|
nl_eval(min(X,Y),R) :- R is min(X,Y).
|
|
nl_eval(max(X,Y),R) :- R is max(X,Y).
|
|
nl_eval(exp(X,Y),R) :- R is X**Y.
|
|
|
|
%
|
|
% check if a Nf consists of just a constant
|
|
%
|
|
|
|
nf_constant([],Z) :- Z = 0.
|
|
nf_constant([v(K,[])],K).
|
|
|
|
% split(NF,SNF,C)
|
|
%
|
|
% splits a normalform expression NF into two parts:
|
|
% - a constant term C (which might be 0)
|
|
% - the homogene part of the expression
|
|
%
|
|
% this method depends on the polynf ordering, i.e. [] < [X^1] ...
|
|
|
|
split([],[],0).
|
|
split([First|T],H,I) :-
|
|
( First = v(I,[])
|
|
-> H = T
|
|
; I = 0,
|
|
H = [First|T]
|
|
).
|
|
|
|
% nf_add(A,B,C): merges two normalized additions into a new normalized addition
|
|
%
|
|
% a normalized addition is one where the terms are ordered, e.g. X^1 < Y^1, X^1 < X^2 etc.
|
|
% terms in the same variable with the same exponent are added,
|
|
% e.g. when A contains v(5,[X^1]) and B contains v(4,[X^1]) then C contains v(9,[X^1]).
|
|
|
|
nf_add([],Bs,Bs).
|
|
nf_add([A|As],Bs,Cs) :- nf_add(Bs,A,As,Cs).
|
|
|
|
nf_add([],A,As,Cs) :- Cs = [A|As].
|
|
nf_add([B|Bs],A,As,Cs) :-
|
|
A = v(Ka,Pa),
|
|
B = v(Kb,Pb),
|
|
compare(Rel,Pa,Pb),
|
|
nf_add_case(Rel,A,As,Cs,B,Bs,Ka,Kb,Pa).
|
|
|
|
% nf_add_case(Rel,A,As,Cs,B,Bs,Ka,Kb,Pa)
|
|
%
|
|
% merges sorted lists [A|As] and [B|Bs] into new sorted list Cs
|
|
% A = v(Ka,Pa) and B = v(Kb,_)
|
|
% Rel is the ordering relation (<, > or =) between A and B.
|
|
% when Rel is =, Ka and Kb are added to form a new scalar for Pa
|
|
nf_add_case(<,A,As,Cs,B,Bs,_,_,_) :-
|
|
Cs = [A|Rest],
|
|
nf_add(As,B,Bs,Rest).
|
|
nf_add_case(>,A,As,Cs,B,Bs,_,_,_) :-
|
|
Cs = [B|Rest],
|
|
nf_add(Bs,A,As,Rest).
|
|
nf_add_case(=,_,As,Cs,_,Bs,Ka,Kb,Pa) :-
|
|
Kc is Ka + Kb,
|
|
( Kc =:= 0.0
|
|
-> nf_add(As,Bs,Cs)
|
|
; Cs = [v(Kc,Pa)|Rest],
|
|
nf_add(As,Bs,Rest)
|
|
).
|
|
|
|
nf_mul(A,B,Res) :-
|
|
nf_length(A,0,LenA),
|
|
nf_length(B,0,LenB),
|
|
nf_mul_log(LenA,A,[],LenB,B,Res).
|
|
|
|
nf_mul_log(0,As,As,_,_,[]) :- !.
|
|
nf_mul_log(1,[A|As],As,Lb,B,R) :-
|
|
!,
|
|
nf_mul_factor_log(Lb,B,[],A,R).
|
|
nf_mul_log(2,[A1,A2|As],As,Lb,B,R) :-
|
|
!,
|
|
nf_mul_factor_log(Lb,B,[],A1,A1b),
|
|
nf_mul_factor_log(Lb,B,[],A2,A2b),
|
|
nf_add(A1b,A2b,R).
|
|
nf_mul_log(N,A0,A2,Lb,B,R) :-
|
|
P is N>>1,
|
|
Q is N-P,
|
|
nf_mul_log(P,A0,A1,Lb,B,Rp),
|
|
nf_mul_log(Q,A1,A2,Lb,B,Rq),
|
|
nf_add(Rp,Rq,R).
|
|
|
|
|
|
% nf_add_2: does the same thing as nf_add, but only has 2 elements to combine.
|
|
nf_add_2(Af,Bf,Res) :- % unfold: nf_add([Af],[Bf],Res).
|
|
Af = v(Ka,Pa),
|
|
Bf = v(Kb,Pb),
|
|
compare(Rel,Pa,Pb),
|
|
nf_add_2_case(Rel,Af,Bf,Res,Ka,Kb,Pa).
|
|
|
|
nf_add_2_case(<,Af,Bf,[Af,Bf],_,_,_).
|
|
nf_add_2_case(>,Af,Bf,[Bf,Af],_,_,_).
|
|
nf_add_2_case(=,_, _,Res,Ka,Kb,Pa) :-
|
|
Kc is Ka + Kb,
|
|
( Kc =:= 0
|
|
-> Res = []
|
|
; Res = [v(Kc,Pa)]
|
|
).
|
|
|
|
% nf_mul_k(A,B,C)
|
|
%
|
|
% C is the result of the multiplication of each element of A (of the form v(_,_)) with scalar B (which shouldn't be 0)
|
|
nf_mul_k([],_,[]).
|
|
nf_mul_k([v(I,P)|Vs],K,[v(Ki,P)|Vks]) :-
|
|
Ki is K*I,
|
|
nf_mul_k(Vs,K,Vks).
|
|
|
|
% nf_mul_factor(A,Sum,Res)
|
|
%
|
|
% multiplies each element of the list Sum with factor A which is of the form v(_,_)
|
|
% and puts the result in the sorted list Res.
|
|
nf_mul_factor(v(K,[]),Sum,Res) :-
|
|
!,
|
|
nf_mul_k(Sum,K,Res).
|
|
nf_mul_factor(F,Sum,Res) :-
|
|
nf_length(Sum,0,Len),
|
|
nf_mul_factor_log(Len,Sum,[],F,Res).
|
|
|
|
% nf_mul_factor_log(Len,[Sum|SumTail],SumTail,F,Res)
|
|
%
|
|
% multiplies each element of Sum with F and puts the result in the sorted list Res
|
|
% Len is the length of Sum
|
|
% Sum is split logarithmically each step
|
|
|
|
nf_mul_factor_log(0,As,As,_,[]) :- !.
|
|
nf_mul_factor_log(1,[A|As],As,F,[R]) :-
|
|
!,
|
|
mult(A,F,R).
|
|
nf_mul_factor_log(2,[A,B|As],As,F,Res) :-
|
|
!,
|
|
mult(A,F,Af),
|
|
mult(B,F,Bf),
|
|
nf_add_2(Af,Bf,Res).
|
|
nf_mul_factor_log(N,A0,A2,F,R) :-
|
|
P is N>>1, % P is rounded(N/2)
|
|
Q is N-P,
|
|
nf_mul_factor_log(P,A0,A1,F,Rp),
|
|
nf_mul_factor_log(Q,A1,A2,F,Rq),
|
|
nf_add(Rp,Rq,R).
|
|
|
|
% mult(A,B,C)
|
|
%
|
|
% multiplies A and B into C each of the form v(_,_)
|
|
|
|
mult(v(Ka,La),v(Kb,Lb),v(Kc,Lc)) :-
|
|
Kc is Ka*Kb,
|
|
pmerge(La,Lb,Lc).
|
|
|
|
% pmerge(A,B,C)
|
|
%
|
|
% multiplies A and B into sorted C, where each is of the form of the second argument of v(_,_)
|
|
|
|
pmerge([],Bs,Bs).
|
|
pmerge([A|As],Bs,Cs) :- pmerge(Bs,A,As,Cs).
|
|
|
|
pmerge([],A,As,Res) :- Res = [A|As].
|
|
pmerge([B|Bs],A,As,Res) :-
|
|
A = Xa^Ka,
|
|
B = Xb^Kb,
|
|
compare(R,Xa,Xb),
|
|
pmerge_case(R,A,As,Res,B,Bs,Ka,Kb,Xa).
|
|
|
|
% pmerge_case(Rel,A,As,Res,B,Bs,Ka,Kb,Xa)
|
|
%
|
|
% multiplies and sorts [A|As] with [B|Bs] into Res where each is of the form of
|
|
% the second argument of v(_,_)
|
|
%
|
|
% A is Xa^Ka and B is Xb^Kb, Rel is ordening relation between Xa and Xb
|
|
|
|
pmerge_case(<,A,As,Res,B,Bs,_,_,_) :-
|
|
Res = [A|Tail],
|
|
pmerge(As,B,Bs,Tail).
|
|
pmerge_case(>,A,As,Res,B,Bs,_,_,_) :-
|
|
Res = [B|Tail],
|
|
pmerge(Bs,A,As,Tail).
|
|
pmerge_case(=,_,As,Res,_,Bs,Ka,Kb,Xa) :-
|
|
Kc is Ka + Kb,
|
|
( Kc =:= 0
|
|
-> pmerge(As,Bs,Res)
|
|
; Res = [Xa^Kc|Tail],
|
|
pmerge(As,Bs,Tail)
|
|
).
|
|
|
|
% nf_div(Factor,In,Out)
|
|
%
|
|
% Out is the result of the division of each element in In (which is of the form v(_,_)) by Factor.
|
|
|
|
% division by zero
|
|
nf_div([],_,_) :-
|
|
!,
|
|
zero_division.
|
|
% division by v(K,P) => multiplication by v(1/K,P^-1)
|
|
nf_div([v(K,P)],Sum,Res) :-
|
|
!,
|
|
Ki is 1 rdiv K,
|
|
mult_exp(P,-1,Pi),
|
|
nf_mul_factor(v(Ki,Pi),Sum,Res).
|
|
nf_div(D,A,[v(1,[(A/D)^1])]).
|
|
|
|
% zero_division
|
|
%
|
|
% called when a division by zero is performed
|
|
zero_division :- fail. % raise_exception(_) ?
|
|
|
|
% mult_exp(In,Factor,Out)
|
|
%
|
|
% Out is the result of the multiplication of the exponents of the elements in In
|
|
% (which are of the form X^Exp by Factor.
|
|
mult_exp([],_,[]).
|
|
mult_exp([X^P|Xs],K,[X^I|Tail]) :-
|
|
I is K*P,
|
|
mult_exp(Xs,K,Tail).
|
|
%
|
|
% raise to integer powers
|
|
%
|
|
% | ?- time({(1+X+Y+Z)^15=0}). (sicstus, try with SWI)
|
|
% Timing 00:00:02.610 2.610 iterative
|
|
% Timing 00:00:00.660 0.660 binomial
|
|
nf_power(N,Sum,Norm) :-
|
|
integer(N),
|
|
compare(Rel,N,0),
|
|
( Rel = (<)
|
|
-> Pn is -N,
|
|
% nf_power_pos(Pn,Sum,Inorm),
|
|
binom(Sum,Pn,Inorm),
|
|
nf_div(Inorm,[v(1,[])],Norm)
|
|
; Rel = (>)
|
|
-> % nf_power_pos(N,Sum,Norm)
|
|
binom(Sum,N,Norm)
|
|
; Rel = (=)
|
|
-> % 0^0 is indeterminate but we say 1
|
|
Norm = [v(1,[])]
|
|
).
|
|
%
|
|
% N>0
|
|
%
|
|
% iterative method: X^N = X*(X^N-1)
|
|
nf_power_pos(1,Sum,Norm) :-
|
|
!,
|
|
Sum = Norm.
|
|
nf_power_pos(N,Sum,Norm) :-
|
|
N1 is N-1,
|
|
nf_power_pos(N1,Sum,Pn1),
|
|
nf_mul(Sum,Pn1,Norm).
|
|
%
|
|
% N>0
|
|
%
|
|
% binomial method
|
|
binom(Sum,1,Power) :-
|
|
!,
|
|
Power = Sum.
|
|
binom([],_,[]).
|
|
binom([A|Bs],N,Power) :-
|
|
( Bs = []
|
|
-> nf_power_factor(A,N,Ap),
|
|
Power = [Ap]
|
|
; Bs = [_|_]
|
|
-> factor_powers(N,A,v(1,[]),Pas),
|
|
sum_powers(N,Bs,[v(1,[])],Pbs,[]),
|
|
combine_powers(Pas,Pbs,0,N,1,[],Power)
|
|
).
|
|
|
|
combine_powers([],[],_,_,_,Pi,Pi).
|
|
combine_powers([A|As],[B|Bs],L,R,C,Pi,Po) :-
|
|
nf_mul(A,B,Ab),
|
|
nf_mul_k(Ab,C,Abc),
|
|
nf_add(Abc,Pi,Pii),
|
|
L1 is L+1,
|
|
R1 is R-1,
|
|
C1 is C*R//L1,
|
|
combine_powers(As,Bs,L1,R1,C1,Pii,Po).
|
|
|
|
nf_power_factor(v(K,P),N,v(Kn,Pn)) :-
|
|
Kn is K**N,
|
|
mult_exp(P,N,Pn).
|
|
|
|
factor_powers(0,_,Prev,[[Prev]]) :- !.
|
|
factor_powers(N,F,Prev,[[Prev]|Ps]) :-
|
|
N1 is N-1,
|
|
mult(Prev,F,Next),
|
|
factor_powers(N1,F,Next,Ps).
|
|
sum_powers(0,_,Prev,[Prev|Lt],Lt) :- !.
|
|
sum_powers(N,S,Prev,L0,Lt) :-
|
|
N1 is N-1,
|
|
nf_mul(S,Prev,Next),
|
|
sum_powers(N1,S,Next,L0,[Prev|Lt]).
|
|
|
|
% ------------------------------------------------------------------------------
|
|
repair(Sum,Norm) :-
|
|
nf_length(Sum,0,Len),
|
|
repair_log(Len,Sum,[],Norm).
|
|
repair_log(0,As,As,[]) :- !.
|
|
repair_log(1,[v(Ka,Pa)|As],As,R) :-
|
|
!,
|
|
repair_term(Ka,Pa,R).
|
|
repair_log(2,[v(Ka,Pa),v(Kb,Pb)|As],As,R) :-
|
|
!,
|
|
repair_term(Ka,Pa,Ar),
|
|
repair_term(Kb,Pb,Br),
|
|
nf_add(Ar,Br,R).
|
|
repair_log(N,A0,A2,R) :-
|
|
P is N>>1,
|
|
Q is N-P,
|
|
repair_log(P,A0,A1,Rp),
|
|
repair_log(Q,A1,A2,Rq),
|
|
nf_add(Rp,Rq,R).
|
|
|
|
repair_term(K,P,Norm) :-
|
|
length(P,Len),
|
|
repair_p_log(Len,P,[],Pr,[v(1,[])],Sum),
|
|
nf_mul_factor(v(K,Pr),Sum,Norm).
|
|
|
|
repair_p_log(0,Ps,Ps,[],L0,L0) :- !.
|
|
repair_p_log(1,[X^P|Ps],Ps,R,L0,L1) :-
|
|
!,
|
|
repair_p(X,P,R,L0,L1).
|
|
repair_p_log(2,[X^Px,Y^Py|Ps],Ps,R,L0,L2) :-
|
|
!,
|
|
repair_p(X,Px,Rx,L0,L1),
|
|
repair_p(Y,Py,Ry,L1,L2),
|
|
pmerge(Rx,Ry,R).
|
|
repair_p_log(N,P0,P2,R,L0,L2) :-
|
|
P is N>>1,
|
|
Q is N-P,
|
|
repair_p_log(P,P0,P1,Rp,L0,L1),
|
|
repair_p_log(Q,P1,P2,Rq,L1,L2),
|
|
pmerge(Rp,Rq,R).
|
|
|
|
repair_p(Term,P,[Term^P],L0,L0) :- var(Term).
|
|
repair_p(Term,P,[],L0,L1) :-
|
|
nonvar(Term),
|
|
repair_p_one(Term,TermN),
|
|
nf_power(P,TermN,TermNP),
|
|
nf_mul(TermNP,L0,L1).
|
|
%
|
|
% An undigested term a/b is distinguished from an
|
|
% digested one by the fact that its arguments are
|
|
% digested -> cuts after repair of args!
|
|
%
|
|
repair_p_one(Term,TermN) :-
|
|
nf_number(Term,TermN), % freq. shortcut for nf/2 case below
|
|
!.
|
|
repair_p_one(A1/A2,TermN) :-
|
|
repair(A1,A1n),
|
|
repair(A2,A2n),
|
|
!,
|
|
nf_div(A2n,A1n,TermN).
|
|
repair_p_one(Term,TermN) :-
|
|
nonlin_1(Term,Arg,Skel,Sa),
|
|
repair(Arg,An),
|
|
!,
|
|
nf_nonlin_1(Skel,An,Sa,TermN).
|
|
repair_p_one(Term,TermN) :-
|
|
nonlin_2(Term,A1,A2,Skel,Sa1,Sa2),
|
|
repair(A1,A1n),
|
|
repair(A2,A2n),
|
|
!,
|
|
nf_nonlin_2(Skel,A1n,A2n,Sa1,Sa2,TermN).
|
|
repair_p_one(Term,TermN) :-
|
|
nf(Term,TermN).
|
|
|
|
nf_length([],Li,Li).
|
|
nf_length([_|R],Li,Lo) :-
|
|
Lii is Li+1,
|
|
nf_length(R,Lii,Lo).
|
|
% ------------------------------------------------------------------------------
|
|
% nf2term(NF,Term)
|
|
%
|
|
% transforms a normal form into a readable term
|
|
|
|
% empty normal form = 0
|
|
nf2term([],0).
|
|
% term is first element (+ next elements)
|
|
nf2term([F|Fs],T) :-
|
|
f02t(F,T0), % first element
|
|
yfx(Fs,T0,T). % next elements
|
|
|
|
yfx([],T0,T0).
|
|
yfx([F|Fs],T0,TN) :-
|
|
fn2t(F,Ft,Op),
|
|
T1 =.. [Op,T0,Ft],
|
|
yfx(Fs,T1,TN).
|
|
|
|
% f02t(v(K,P),T)
|
|
%
|
|
% transforms the first element of the normal form (something of the form v(K,P))
|
|
% into a readable term
|
|
f02t(v(K,P),T) :-
|
|
( % just a constant
|
|
P = []
|
|
-> T = K
|
|
; K =:= 1
|
|
-> p2term(P,T)
|
|
; K =:= -1
|
|
-> T = -Pt,
|
|
p2term(P,Pt)
|
|
; T = K*Pt,
|
|
p2term(P,Pt)
|
|
).
|
|
|
|
% f02t(v(K,P),T,Op)
|
|
%
|
|
% transforms a next element of the normal form (something of the form v(K,P))
|
|
% into a readable term
|
|
fn2t(v(K,P),Term,Op) :-
|
|
( K =:= 1
|
|
-> Term = Pt,
|
|
Op = +
|
|
; K =:= -1
|
|
-> Term = Pt,
|
|
Op = -
|
|
; K < 0
|
|
-> Kf is -K,
|
|
Term = Kf*Pt,
|
|
Op = -
|
|
; Term = K*Pt,
|
|
Op = +
|
|
),
|
|
p2term(P,Pt).
|
|
|
|
% transforms the P part in v(_,P) into a readable term
|
|
p2term([X^P|Xs],Term) :-
|
|
( Xs = []
|
|
-> pe2term(X,Xt),
|
|
exp2term(P,Xt,Term)
|
|
; Xs = [_|_]
|
|
-> Term = Xst*Xtp,
|
|
pe2term(X,Xt),
|
|
exp2term(P,Xt,Xtp),
|
|
p2term(Xs,Xst)
|
|
).
|
|
|
|
%
|
|
exp2term(1,X,X) :- !.
|
|
exp2term(-1,X,1/X) :- !.
|
|
exp2term(P,X,Term) :-
|
|
% Term = exp(X,Pn)
|
|
Term = X^P.
|
|
|
|
pe2term(X,Term) :-
|
|
var(X),
|
|
Term = X.
|
|
pe2term(X,Term) :-
|
|
nonvar(X),
|
|
X =.. [F|Args],
|
|
pe2term_args(Args,Argst),
|
|
Term =.. [F|Argst].
|
|
|
|
pe2term_args([],[]).
|
|
pe2term_args([A|As],[T|Ts]) :-
|
|
nf2term(A,T),
|
|
pe2term_args(As,Ts).
|
|
|
|
% transg(Goal,[OutList|OutListTail],OutListTail)
|
|
%
|
|
% puts the equalities and inequalities that are implied by the elements in Goal
|
|
% in the difference list OutList
|
|
%
|
|
% called by geler.pl for project.pl
|
|
|
|
transg(resubmit_eq(Nf)) -->
|
|
{
|
|
nf2term([],Z),
|
|
nf2term(Nf,Term)
|
|
},
|
|
[clpq:{Term=Z}].
|
|
transg(resubmit_lt(Nf)) -->
|
|
{
|
|
nf2term([],Z),
|
|
nf2term(Nf,Term)
|
|
},
|
|
[clpq:{Term<Z}].
|
|
transg(resubmit_le(Nf)) -->
|
|
{
|
|
nf2term([],Z),
|
|
nf2term(Nf,Term)
|
|
},
|
|
[clpq:{Term=<Z}].
|
|
transg(resubmit_ne(Nf)) -->
|
|
{
|
|
nf2term([],Z),
|
|
nf2term(Nf,Term)
|
|
},
|
|
[clpq:{Term=\=Z}].
|
|
transg(wait_linear_retry(Nf,Res,Goal)) -->
|
|
{
|
|
nf2term(Nf,Term)
|
|
},
|
|
[clpq:{Term=Res},Goal]. |