1182 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			1182 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| 
 | |
| %%% -*- Mode: Prolog; -*-
 | |
| 
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| %
 | |
| %  $Date: 2011-12-05 14:07:19 +0100 (Mon, 05 Dec 2011) $
 | |
| %  $Revision: 6766 $
 | |
| %
 | |
| %  This file is part of ProbLog
 | |
| %  http://dtai.cs.kuleuven.be/problog
 | |
| %
 | |
| %  ProbLog was developed at Katholieke Universiteit Leuven
 | |
| %
 | |
| %  Copyright 2009
 | |
| %  Angelika Kimmig, Vitor Santos Costa, Bernd Gutmann
 | |
| %
 | |
| %  Main author of this file:
 | |
| %  Bernd Gutmann
 | |
| %
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| %
 | |
| % Artistic License 2.0
 | |
| %
 | |
| % Copyright (c) 2000-2006, The Perl Foundation.
 | |
| %
 | |
| % Everyone is permitted to copy and distribute verbatim copies of this
 | |
| % license document, but changing it is not allowed.  Preamble
 | |
| %
 | |
| % This license establishes the terms under which a given free software
 | |
| % Package may be copied, modified, distributed, and/or
 | |
| % redistributed. The intent is that the Copyright Holder maintains some
 | |
| % artistic control over the development of that Package while still
 | |
| % keeping the Package available as open source and free software.
 | |
| %
 | |
| % You are always permitted to make arrangements wholly outside of this
 | |
| % license directly with the Copyright Holder of a given Package. If the
 | |
| % terms of this license do not permit the full use that you propose to
 | |
| % make of the Package, you should contact the Copyright Holder and seek
 | |
| % a different licensing arrangement.  Definitions
 | |
| %
 | |
| % "Copyright Holder" means the individual(s) or organization(s) named in
 | |
| % the copyright notice for the entire Package.
 | |
| %
 | |
| % "Contributor" means any party that has contributed code or other
 | |
| % material to the Package, in accordance with the Copyright Holder's
 | |
| % procedures.
 | |
| %
 | |
| % "You" and "your" means any person who would like to copy, distribute,
 | |
| % or modify the Package.
 | |
| %
 | |
| % "Package" means the collection of files distributed by the Copyright
 | |
| % Holder, and derivatives of that collection and/or of those files. A
 | |
| % given Package may consist of either the Standard Version, or a
 | |
| % Modified Version.
 | |
| %
 | |
| % "Distribute" means providing a copy of the Package or making it
 | |
| % accessible to anyone else, or in the case of a company or
 | |
| % organization, to others outside of your company or organization.
 | |
| %
 | |
| % "Distributor Fee" means any fee that you charge for Distributing this
 | |
| % Package or providing support for this Package to another party. It
 | |
| % does not mean licensing fees.
 | |
| %
 | |
| % "Standard Version" refers to the Package if it has not been modified,
 | |
| % or has been modified only in ways explicitly requested by the
 | |
| % Copyright Holder.
 | |
| %
 | |
| % "Modified Version" means the Package, if it has been changed, and such
 | |
| % changes were not explicitly requested by the Copyright Holder.
 | |
| %
 | |
| % "Original License" means this Artistic License as Distributed with the
 | |
| % Standard Version of the Package, in its current version or as it may
 | |
| % be modified by The Perl Foundation in the future.
 | |
| %
 | |
| % "Source" form means the source code, documentation source, and
 | |
| % configuration files for the Package.
 | |
| %
 | |
| % "Compiled" form means the compiled bytecode, object code, binary, or
 | |
| % any other form resulting from mechanical transformation or translation
 | |
| % of the Source form.
 | |
| %
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| %
 | |
| % Permission for Use and Modification Without Distribution
 | |
| %
 | |
| % (1) You are permitted to use the Standard Version and create and use
 | |
| % Modified Versions for any purpose without restriction, provided that
 | |
| % you do not Distribute the Modified Version.
 | |
| %
 | |
| % Permissions for Redistribution of the Standard Version
 | |
| %
 | |
| % (2) You may Distribute verbatim copies of the Source form of the
 | |
| % Standard Version of this Package in any medium without restriction,
 | |
| % either gratis or for a Distributor Fee, provided that you duplicate
 | |
| % all of the original copyright notices and associated disclaimers. At
 | |
| % your discretion, such verbatim copies may or may not include a
 | |
| % Compiled form of the Package.
 | |
| %
 | |
| % (3) You may apply any bug fixes, portability changes, and other
 | |
| % modifications made available from the Copyright Holder. The resulting
 | |
| % Package will still be considered the Standard Version, and as such
 | |
| % will be subject to the Original License.
 | |
| %
 | |
| % Distribution of Modified Versions of the Package as Source
 | |
| %
 | |
| % (4) You may Distribute your Modified Version as Source (either gratis
 | |
| % or for a Distributor Fee, and with or without a Compiled form of the
 | |
| % Modified Version) provided that you clearly document how it differs
 | |
| % from the Standard Version, including, but not limited to, documenting
 | |
| % any non-standard features, executables, or modules, and provided that
 | |
| % you do at least ONE of the following:
 | |
| %
 | |
| % (a) make the Modified Version available to the Copyright Holder of the
 | |
| % Standard Version, under the Original License, so that the Copyright
 | |
| % Holder may include your modifications in the Standard Version.  (b)
 | |
| % ensure that installation of your Modified Version does not prevent the
 | |
| % user installing or running the Standard Version. In addition, the
 | |
| % modified Version must bear a name that is different from the name of
 | |
| % the Standard Version.  (c) allow anyone who receives a copy of the
 | |
| % Modified Version to make the Source form of the Modified Version
 | |
| % available to others under (i) the Original License or (ii) a license
 | |
| % that permits the licensee to freely copy, modify and redistribute the
 | |
| % Modified Version using the same licensing terms that apply to the copy
 | |
| % that the licensee received, and requires that the Source form of the
 | |
| % Modified Version, and of any works derived from it, be made freely
 | |
| % available in that license fees are prohibited but Distributor Fees are
 | |
| % allowed.
 | |
| %
 | |
| % Distribution of Compiled Forms of the Standard Version or
 | |
| % Modified Versions without the Source
 | |
| %
 | |
| % (5) You may Distribute Compiled forms of the Standard Version without
 | |
| % the Source, provided that you include complete instructions on how to
 | |
| % get the Source of the Standard Version. Such instructions must be
 | |
| % valid at the time of your distribution. If these instructions, at any
 | |
| % time while you are carrying out such distribution, become invalid, you
 | |
| % must provide new instructions on demand or cease further
 | |
| % distribution. If you provide valid instructions or cease distribution
 | |
| % within thirty days after you become aware that the instructions are
 | |
| % invalid, then you do not forfeit any of your rights under this
 | |
| % license.
 | |
| %
 | |
| % (6) You may Distribute a Modified Version in Compiled form without the
 | |
| % Source, provided that you comply with Section 4 with respect to the
 | |
| % Source of the Modified Version.
 | |
| %
 | |
| % Aggregating or Linking the Package
 | |
| %
 | |
| % (7) You may aggregate the Package (either the Standard Version or
 | |
| % Modified Version) with other packages and Distribute the resulting
 | |
| % aggregation provided that you do not charge a licensing fee for the
 | |
| % Package. Distributor Fees are permitted, and licensing fees for other
 | |
| % components in the aggregation are permitted. The terms of this license
 | |
| % apply to the use and Distribution of the Standard or Modified Versions
 | |
| % as included in the aggregation.
 | |
| %
 | |
| % (8) You are permitted to link Modified and Standard Versions with
 | |
| % other works, to embed the Package in a larger work of your own, or to
 | |
| % build stand-alone binary or bytecode versions of applications that
 | |
| % include the Package, and Distribute the result without restriction,
 | |
| % provided the result does not expose a direct interface to the Package.
 | |
| %
 | |
| % Items That are Not Considered Part of a Modified Version
 | |
| %
 | |
| % (9) Works (including, but not limited to, modules and scripts) that
 | |
| % merely extend or make use of the Package, do not, by themselves, cause
 | |
| % the Package to be a Modified Version. In addition, such works are not
 | |
| % considered parts of the Package itself, and are not subject to the
 | |
| % terms of this license.
 | |
| %
 | |
| % General Provisions
 | |
| %
 | |
| % (10) Any use, modification, and distribution of the Standard or
 | |
| % Modified Versions is governed by this Artistic License. By using,
 | |
| % modifying or distributing the Package, you accept this license. Do not
 | |
| % use, modify, or distribute the Package, if you do not accept this
 | |
| % license.
 | |
| %
 | |
| % (11) If your Modified Version has been derived from a Modified Version
 | |
| % made by someone other than you, you are nevertheless required to
 | |
| % ensure that your Modified Version complies with the requirements of
 | |
| % this license.
 | |
| %
 | |
| % (12) This license does not grant you the right to use any trademark,
 | |
| % service mark, tradename, or logo of the Copyright Holder.
 | |
| %
 | |
| % (13) This license includes the non-exclusive, worldwide,
 | |
| % free-of-charge patent license to make, have made, use, offer to sell,
 | |
| % sell, import and otherwise transfer the Package with respect to any
 | |
| % patent claims licensable by the Copyright Holder that are necessarily
 | |
| % infringed by the Package. If you institute patent litigation
 | |
| % (including a cross-claim or counterclaim) against any party alleging
 | |
| % that the Package constitutes direct or contributory patent
 | |
| % infringement, then this Artistic License to you shall terminate on the
 | |
| % date that such litigation is filed.
 | |
| %
 | |
| % (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
 | |
| % HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
 | |
| % WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 | |
| % PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
 | |
| % PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
 | |
| % HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
| % INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
 | |
| % OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| %
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| :-source.
 | |
| :- module(problog_lfi,[do_learning/1,
 | |
| 		       do_learning/2,
 | |
| 		       create_ground_tunable_fact/2,
 | |
| 		       reset_learning/0
 | |
| 		       ]).
 | |
| 
 | |
| 
 | |
| 
 | |
| % switch on all the checks to reduce bug searching time
 | |
| :- style_check(all).
 | |
| :- yap_flag(unknown,error).
 | |
| 
 | |
| % load modules from the YAP library
 | |
| :- use_module(library(lists),[member/2,nth1/3,sum_list/2,min_list/2,max_list/2]).
 | |
| :- use_module(library(system),[file_exists/1,exec/3,wait/2]).
 | |
| 
 | |
| % load our own modules
 | |
| :- use_module('problog').
 | |
| :- use_module('problog/logger').
 | |
| :- use_module('problog/flags').
 | |
| :- use_module('problog/os').
 | |
| :- use_module('problog/completion').
 | |
| :- use_module('problog/print_learning').
 | |
| :- use_module('problog/utils_learning').
 | |
| :- use_module('problog/utils').
 | |
| :- use_module('problog/ad_converter').
 | |
| 
 | |
| 
 | |
| % used to indicate the state of the system
 | |
| :- dynamic(learning_initialized/0).
 | |
| :- dynamic(current_iteration/1).
 | |
| :- dynamic(query_all_scripts/2).
 | |
| :- dynamic(last_llh/1).
 | |
| 
 | |
| :- discontiguous(user:myclause/1).
 | |
| :- discontiguous(user:myclause/2).
 | |
| :- discontiguous(user:known/3).
 | |
| :- discontiguous(user:example/1).
 | |
| :- discontiguous(user:test_example/1).
 | |
| 
 | |
| :- multifile(completion:bdd_cluster/2).
 | |
| %:- multifile(completion:known_count/4).
 | |
| 
 | |
| user:term_expansion(myclause((Head<--Body)), C) :-
 | |
| 	prolog_load_context(module,Module),
 | |
| 	term_expansion_intern_ad((Head<--Body), Module,lfi_learning, C).
 | |
| 
 | |
| %========================================================================
 | |
| %= Hack for Ingo, to allow tunable facts with body
 | |
| %=
 | |
| %= e.g. :- create_ground_tunable_fact( t(_) :: f(X), member(X,[a,b,c])).
 | |
| %=  will create
 | |
| %=   t(_) :: f(a).
 | |
| %=   t(_) :: f(b).
 | |
| %=   t(_) :: f(c).
 | |
| %========================================================================
 | |
| 
 | |
| create_ground_tunable_fact(F,B) :-
 | |
| 	B,
 | |
| 	once(problog_assert(F)),
 | |
| 	fail.
 | |
| create_ground_tunable_fact(_,_).
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %= store the facts with the learned probabilities to a file
 | |
| %= if F is a variable, a filename based on the current iteration is used
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| save_model:-
 | |
| 	current_iteration(Iteration),
 | |
| 	create_factprobs_file_name(Iteration,Filename),
 | |
| 	open(Filename,'write',Handle),
 | |
| 	forall((current_predicate(user:ad_intern/3),user:ad_intern(Original,ID,Facts)),
 | |
| 	       print_ad_intern(Handle,Original,ID,Facts)
 | |
| 	       ),
 | |
| 	forall(probabilistic_fact(_,Goal,ID),
 | |
| 	       (
 | |
| 		array_element(factprob,ID,P),
 | |
| 		(
 | |
| 		is_mvs_aux_fact(Goal)
 | |
| 	       ->
 | |
| 		format(Handle,'%  ~10f :: ~q.   %ID=~q~n',[P,Goal,ID]);
 | |
| 		format(Handle   ,'~10f :: ~q.   %ID=~q~n',[P,Goal,ID])
 | |
| 	       )
 | |
| 	       )
 | |
| 	      ),
 | |
| 	close(Handle).
 | |
| 
 | |
| is_mvs_aux_fact(A) :-
 | |
| 	functor(A,B,_),
 | |
| 	atomic_concat(mvs_fact_,_,B).
 | |
| 
 | |
| print_ad_intern(Handle,(Head<--Body),_ID,Facts) :-
 | |
| 	format(Handle,'myclause( (',[]),
 | |
| 	print_ad_intern(Head,Facts,0.0,Handle),
 | |
| 	format(Handle,' <-- ~q) ).~n',[Body]).
 | |
| print_ad_intern((A1;B1),[A2|B2],Mass,Handle) :-
 | |
| 	once(print_ad_intern_one(A1,A2,Mass,NewMass,Handle)),
 | |
| 	format(Handle,'; ',[]),
 | |
| 	print_ad_intern(B1,B2,NewMass,Handle).
 | |
| print_ad_intern(_::Fact,[],Mass,Handle) :-
 | |
| 	P2 is 1.0 - Mass,
 | |
| 	format(Handle,'~f :: ~q',[P2,Fact]).
 | |
| print_ad_intern_one(_::Fact,_::AuxFact,Mass,NewMass,Handle) :-
 | |
| 	% ask problog to get the fact_id
 | |
| 	once(probabilistic_fact(_,AuxFact,FactID)),
 | |
| 	% look in our table for the probability
 | |
| 	array_element(factprob,FactID,P),
 | |
| 	P2 is P * (1-Mass),
 | |
| 	NewMass is Mass+P2,
 | |
| 	format(Handle,'~f :: ~q',[P2,Fact]).
 | |
| %========================================================================
 | |
| %= initialize everything and perform Iterations times EM
 | |
| %= can be called several times
 | |
| %========================================================================
 | |
| 
 | |
| do_learning(Iterations) :-
 | |
| 	do_learning(Iterations,-1).
 | |
| 
 | |
| do_learning(Iterations,Epsilon) :-
 | |
| 	integer(Iterations),
 | |
| 	number(Epsilon),
 | |
| 	Iterations>0,
 | |
| 	init_learning,
 | |
| 	!,
 | |
| 	do_learning_intern(Iterations,Epsilon),
 | |
| 	!,
 | |
| 	copy_back_fact_probabilities.
 | |
| 
 | |
| do_learning_intern(0,_) :-
 | |
| 	!.
 | |
| do_learning_intern(Iterations,Epsilon) :-
 | |
| 	Iterations>0,
 | |
| 	logger_start_timer(duration),
 | |
| 
 | |
| 	current_iteration(CurrentIteration),
 | |
| 	!,
 | |
| 	retractall(current_iteration(_)),
 | |
| 	!,
 | |
| 	NextIteration is CurrentIteration+1,
 | |
| 	assertz(current_iteration(NextIteration)),
 | |
| 	EndIteration is CurrentIteration+Iterations-1,
 | |
| 
 | |
| 	format_learning(1,'~nIteration ~d of ~d~n',[CurrentIteration,EndIteration]),
 | |
| 	logger_set_variable(iteration,CurrentIteration),
 | |
| 	write_probabilities_file,
 | |
| 
 | |
| 	once(llh_testset),
 | |
| 
 | |
| 	once(ground_truth_difference),
 | |
| 	once(em_one_iteration),
 | |
| 
 | |
| 	problog_flag(log_frequency,Log_Frequency),
 | |
| 	(
 | |
| 	 ( Log_Frequency>0, 0 =:= CurrentIteration mod Log_Frequency)
 | |
| 	->
 | |
| 	 once(save_model);
 | |
| 	 true
 | |
| 	),
 | |
| 	!,
 | |
| 
 | |
| 	(
 | |
| 	 last_llh(Last_LLH)
 | |
| 	->
 | |
| 	 (
 | |
| 	  retractall(last_llh(_)),
 | |
| 	  logger_get_variable(llh_training_set,Current_LLH),
 | |
| 	  assertz(last_llh(Current_LLH)),
 | |
| 	  !,
 | |
| 	  LLH_Diff is abs(Last_LLH-Current_LLH)
 | |
| 	 );  (
 | |
| 	      logger_get_variable(llh_training_set,Current_LLH),
 | |
| 	      assertz(last_llh(Current_LLH)),
 | |
| 	      LLH_Diff is Epsilon+1
 | |
| 	     )
 | |
| 	),
 | |
| 
 | |
| 	logger_stop_timer(duration),
 | |
| 	logger_write_data,
 | |
| 	RemainingIterations is Iterations-1,
 | |
| 	!,
 | |
| 	garbage_collect,
 | |
| 	!,
 | |
| 
 | |
| 	(
 | |
| 	 LLH_Diff>Epsilon
 | |
| 	->
 | |
| 	 do_learning_intern(RemainingIterations,Epsilon);
 | |
| 	 true
 | |
| 	).
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %= find proofs and build bdds for all training and test examples
 | |
| %=
 | |
| %=
 | |
| %========================================================================
 | |
| init_learning :-
 | |
| 	learning_initialized,
 | |
| 	!.
 | |
| init_learning :-
 | |
| 	convert_filename_to_problog_path('simplecudd_lfi', Path),
 | |
| 	(
 | |
| 	 file_exists(Path)
 | |
| 	->
 | |
| 	 true;
 | |
| 	 (
 | |
| 	  problog_path(PD),
 | |
| 	  format(user_error, 'WARNING: Can not find file: simplecudd_lfi. Please place file in problog path: ~q~n',[PD]),
 | |
| 	  fail
 | |
| 	 )
 | |
| 	),
 | |
| 
 | |
| 	check_theory,
 | |
| 
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% Delete the stuff from the previous run
 | |
|         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	problog_flag(reuse_initialized_bdds,Re_Use_Flag),
 | |
| 
 | |
| 	(
 | |
| 	 Re_Use_Flag==false
 | |
| 	->
 | |
| 	 empty_bdd_directory;
 | |
| 	 true
 | |
| 	),
 | |
| 	empty_output_directory,
 | |
| 
 | |
| 
 | |
| 	logger_write_header,
 | |
| 
 | |
| 	format_learning(1,'Initializing everything~n',[]),
 | |
| 
 | |
| 	(
 | |
| 	 current_predicate(user:test_example/1)
 | |
| 	->
 | |
| 	 (
 | |
| 	  succeeds_n_times(user:test_example(_),TestExampleCount),
 | |
| 	  format_learning(3,'~q test example(s)~n',[TestExampleCount])
 | |
| 	 );
 | |
| 	 true
 | |
| 	),
 | |
| 
 | |
| 	succeeds_n_times(user:example(_),TrainingExampleCount),
 | |
| 	format_learning(3,'~q training example(s)~n',[TrainingExampleCount]),
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% Create arrays for probabilities and counting tables
 | |
|         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	once(initialize_fact_probabilities),
 | |
| 	problog:probclause_id(N),
 | |
| 	static_array(factprob_temp,N,float),
 | |
| 	static_array(factusage,N,int),
 | |
| 	static_array(known_count_true_training,N,int),
 | |
| 	static_array(known_count_false_training,N,int),
 | |
| 	static_array(known_count_true_test,N,int),
 | |
| 	static_array(known_count_false_test,N,int),
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% build BDD script for every example
 | |
|         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	once(init_queries),
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% done
 | |
|         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	assertz(current_iteration(0)),
 | |
| 	assertz(learning_initialized),
 | |
|         once(save_model),
 | |
| 
 | |
| 	format_learning(1,'~n',[]),
 | |
| 
 | |
| 	garbage_collect,
 | |
| 	garbage_collect_atoms.
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %= This predicate checks some aspects of the data given by the user.
 | |
| %= You know folks: Garbage in, garbage out.
 | |
| %=
 | |
| %========================================================================
 | |
| check_theory :-
 | |
| 	 (
 | |
| 	  (user:myclause(Head,Body),P :: Head)
 | |
| 	 ->
 | |
| 	  (
 | |
| 	   format(user_error,'===============================================================~n',[]),
 | |
| 	   format(user_error,' The theory contains an atom that appears both as probabilistic~n',[]),
 | |
| 	   format(user_error,' fact and as head of an rule. This is not allowed.~2n',[]),
 | |
| 	   format(user_error,'    ~q~n',[P :: Head]),
 | |
| 	   format(user_error,'    ~q~2n',[myclause(Head,Body)]),
 | |
|    	   format(user_error,'===============================================================~2n',[]),
 | |
| 
 | |
| 	   throw(bad_theory(Head))
 | |
| 	  );
 | |
| 	  true
 | |
| 	 ),
 | |
| 
 | |
| 	 (
 | |
| 	  (current_predicate(user:example/1),user:example(_))
 | |
| 	 ->
 | |
| 	  true;
 | |
| 	  (
 | |
| 	   format(user_error,'===============================================================~n',[]),
 | |
| 	   format(user_error,' No training examples specified.~n',[]),
 | |
|    	   format(user_error,'===============================================================~2n',[]),
 | |
| 	   throw(bad_theory(no_training_examples))
 | |
| 	  )
 | |
| 	 ),
 | |
| 
 | |
| 	 (
 | |
| 	  ( current_predicate(user:test_example/1),user:example(ID), user:test_example(ID) )
 | |
| 	 ->
 | |
| 	  (
 | |
| 	   format(user_error,'===============================================================~n',[]),
 | |
| 	   format(user_error,' The example ~q appears both as test and as training example.~n',[ID]),
 | |
| 	   format(user_error,' Example IDs from test and training examples must be disjoint.~2n',[]),
 | |
| 	   format(user_error,' Do NOT bypass this test, since the implementation yields wrong resuls~n',[]),
 | |
| 	   format(user_error,' when an example ID appears both as test and training example.',[]),
 | |
|    	   format(user_error,'===============================================================~2n',[]),
 | |
| 
 | |
| 	   throw(bad_theory(double_id(ID)))
 | |
| 	  );
 | |
| 	  true
 | |
| 	 ),
 | |
| 
 | |
| 	 (
 | |
| 	  (current_predicate(user:known/3),user:example(ID2),user:known(ID2,_,_))
 | |
| 	 ->
 | |
| 	  true;
 | |
| 	  (
 | |
| 	   format(user_error,'===============================================================~n',[]),
 | |
| 	   format(user_error,' No evidence specified.~n',[]),
 | |
|    	   format(user_error,'===============================================================~2n',[]),
 | |
| 	   throw(bad_theory(no_evidence))
 | |
| 	  )
 | |
| 	 ),
 | |
| 
 | |
| 
 | |
| 	 (
 | |
| 	  (user:known(ID,Foo,Evidence), (Evidence\=true,Evidence\=false))
 | |
| 	 ->
 | |
| 	  (
 | |
| 	   format(user_error,'===============================================================~n',[]),
 | |
| 	   format(user_error,' Bad evidence for training example ~q: ~q.~n',[ID,known(ID,Foo,Evidence)]),
 | |
|    	   format(user_error,'===============================================================~2n',[]),
 | |
| 	   throw(bad_theory(bad_evidence(ID)))
 | |
| 	  );
 | |
| 	  true
 | |
| 	 ),
 | |
| 
 | |
| 	 (
 | |
| 	  (user:known(ID,Foo,true), user:known(ID,Foo,false))
 | |
| 	 ->
 | |
| 	  (
 | |
| 	   format(user_error,'===============================================================~n',[]),
 | |
| 	   format(user_error,' Bad evidence for training example ~q: ~q and ~q~n',[ID,known(ID,Foo,true),known(ID,Foo,false)]),
 | |
|    	   format(user_error,'===============================================================~2n',[]),
 | |
| 	   throw(bad_theory(bad_evidence(ID)))
 | |
| 	  );
 | |
| 	  true
 | |
| 	 ).
 | |
| 
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %= copy fact probabilities to array for speeding up the update
 | |
| %=
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| initialize_fact_probabilities :-
 | |
| 	problog:probclause_id(N),
 | |
| 	static_array(factprob,N,float),
 | |
| 
 | |
| 	forall(get_fact_probability(FactID,P),
 | |
| 	       update_array(factprob,FactID,P)).
 | |
| 
 | |
| copy_back_fact_probabilities :-
 | |
| 	forall(tunable_fact(FactID,_),
 | |
| 	       (
 | |
| 		array_element(factprob,FactID,P),
 | |
| 		set_fact_probability(FactID,P)
 | |
| 	       )
 | |
| 	      ).
 | |
| 
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %= This predicate goes over all training and test examples,
 | |
| %= calls the inference method of ProbLog and stores the resulting
 | |
| %= BDDs
 | |
| %========================================================================
 | |
| 
 | |
| 
 | |
| init_queries :-
 | |
| 	problog_flag(cluster_bdds,Cluster_BDDs),
 | |
| 	format_learning(2,'Build BDDs for examples~n',[]),
 | |
| 	forall(user:example(Training_ID),
 | |
| 	       (
 | |
| 		   format_learning(3,'training example ~q: ',[Training_ID]),
 | |
| 		init_one_query(Training_ID,training)
 | |
| 	       )
 | |
| 	      ),
 | |
| 
 | |
| 	forall(
 | |
| 	       (
 | |
| 		current_predicate(user:test_example/1),
 | |
| 		user:test_example(Test_ID)
 | |
| 	       ),
 | |
| 	       (
 | |
| 		format_learning(3,'test example ~q: ',[Test_ID]),
 | |
| 		init_one_query(Test_ID,test)
 | |
| 	       )
 | |
| 	      ),
 | |
| 
 | |
| 	(
 | |
| 	 Cluster_BDDs==true
 | |
| 	->
 | |
| 	 (
 | |
| 	  format_learning(2,'Calculate MD5s for training example BDD scripts~n',[]),
 | |
| 	  create_training_query_cluster_list(Training_Set_Cluster_List),
 | |
| 	  format_learning(2,'Calculate MD5s for test example BDD scripts~n',[]),
 | |
| 	  create_test_query_cluster_list(Test_Set_Cluster_List)
 | |
| 	 );
 | |
| 	 (
 | |
| 	  findall( a(QueryID,ClusterID,1), (
 | |
| 					   current_predicate(user:test_example/1),
 | |
| 					   user:test_example(QueryID),
 | |
| 					   bdd_cluster(QueryID,ClusterIDs),
 | |
| 					   member(ClusterID,ClusterIDs)
 | |
| 					  ), Test_Set_Cluster_List),
 | |
| 
 | |
| 	  findall( a(QueryID,ClusterID,1), (
 | |
| 					   user:example(QueryID),
 | |
| 					   bdd_cluster(QueryID,ClusterIDs),
 | |
| 					   member(ClusterID,ClusterIDs)
 | |
| 					  ), Training_Set_Cluster_List)
 | |
| 	 )
 | |
| 	),
 | |
| 
 | |
| 	assertz(training_set_cluster_list(Training_Set_Cluster_List)),
 | |
| 	assertz(test_set_cluster_list(Test_Set_Cluster_List)).
 | |
| 
 | |
| %========================================================================
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| init_one_query(QueryID,_Query_Type) :-
 | |
| 	create_known_values_file_name(QueryID,File_Name),
 | |
| 	file_exists(File_Name),
 | |
| 	!,
 | |
| 	format_learning(3,'Will reuse existing BDD script ~q for example ~q.~n',[File_Name,QueryID]),
 | |
| 	consult(File_Name).
 | |
| 
 | |
| 	%FIXME
 | |
| 
 | |
| 	% check whether we can read the BDD script for each cluster
 | |
| 
 | |
| init_one_query(QueryID,Query_Type) :-
 | |
| 	once(propagate_evidence(QueryID,Query_Type)),
 | |
| 	format_learning(3,'~n',[]),
 | |
| 	garbage_collect_atoms,
 | |
| 	garbage_collect.
 | |
| 
 | |
| 
 | |
| create_test_query_cluster_list(L2) :-
 | |
| 	findall( a(QueryID,ClusterID), (
 | |
| 					 current_predicate(user:test_example/1),
 | |
| 					 user:test_example(QueryID),
 | |
| 					 bdd_cluster(QueryID,ClusterIDs),
 | |
| 					 member(ClusterID,ClusterIDs)
 | |
| 				      ), AllCluster),
 | |
| 	calc_all_md5(AllCluster,AllCluster2),
 | |
| 	findall(a(QueryID1,ClusterID1,Len),(bagof(a(QueryID,ClusterID),member(a(QueryID,ClusterID,_MD5),AllCluster2),L),nth1(1,L,a(QueryID1,ClusterID1)),length(L,Len)),L2),
 | |
| 	!,
 | |
| 	length(AllCluster,Len1),
 | |
| 	length(L2,Len2),
 | |
| 	(
 | |
| 	 Len1>0
 | |
| 	->
 | |
| 	 (
 | |
| 	  Reduction is Len2/Len1,
 | |
| 	  format_learning(3,' ~d cluster after splitting, ~d unique cluster ==> reduction factor of ~4f~n',[Len1,Len2,Reduction])
 | |
| 	 );
 | |
| 	 true
 | |
| 	).
 | |
| 
 | |
| calc_all_md5([],[]).
 | |
| calc_all_md5([a(QueryID,ClusterID)|T],[a(QueryID,ClusterID,MD5)|T2]) :-
 | |
| 	create_bdd_file_name(QueryID,ClusterID,File_Name),
 | |
| 	calc_md5(File_Name,MD5),
 | |
| 	calc_all_md5(T,T2).
 | |
| 
 | |
| create_training_query_cluster_list(L2) :-
 | |
| 	findall( a(QueryID,ClusterID), (
 | |
| 					 user:example(QueryID),
 | |
| 					 bdd_cluster(QueryID,ClusterIDs),
 | |
| 					 member(ClusterID,ClusterIDs)
 | |
| 				      ), AllCluster),
 | |
| 
 | |
| 	calc_all_md5(AllCluster,AllCluster2),
 | |
| 	findall(a(QueryID1,ClusterID1,Len),
 | |
| 		(
 | |
| 		 bagof(a(QueryID,ClusterID),member(a(QueryID,ClusterID,_MD5),AllCluster2),L),
 | |
| 		 nth1(1,L,a(QueryID1,ClusterID1)),
 | |
| 		 length(L,Len)
 | |
| 		),L2),
 | |
| 	length(AllCluster,Len1),
 | |
| 	length(L2,Len2),
 | |
| 
 | |
| 	Reduction is Len2/Len1,
 | |
| 
 | |
| 	format_learning(3,' ~d cluster after splitting, ~d unique cluster ==> reduction factor of ~4f~n',[Len1,Len2,Reduction]).
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| reset_learning :-
 | |
| 	(
 | |
| 	 learning_initialized
 | |
| 	->
 | |
| 	 (
 | |
| 	  retractall(current_iteration(_)),
 | |
| 	  retractall(learning_initialized),
 | |
| 
 | |
| 	  retractall(training_set_cluster_list(_)),
 | |
| 	  retractall(test_set_cluster_list(_)),
 | |
| 	  close_static_array(factprob),
 | |
| 	  close_static_array(factprob_temp),
 | |
| 	  close_static_array(factusage),
 | |
| 
 | |
| 	  close_static_array(known_count_true_training),
 | |
| 	  close_static_array(known_count_false_training),
 | |
| 	  close_static_array(known_count_true_test),
 | |
| 	  close_static_array(known_count_false_test),
 | |
| 
 | |
| 	  reset_completion,
 | |
| 	  empty_bdd_directory,
 | |
| 	  empty_output_directory,
 | |
| 
 | |
| 	  logger_reset_all_variables
 | |
| 	 );
 | |
| 	 true
 | |
| 	).
 | |
| 
 | |
| %========================================================================
 | |
| %= calculate the LLH on the test set and set the variable
 | |
| %= in the logger module
 | |
| %========================================================================
 | |
| 
 | |
| llh_testset :-
 | |
| 	current_predicate(user:test_example/1),
 | |
| 	!,
 | |
| 	current_iteration(Iteration),
 | |
| 	create_test_predictions_file_name(Iteration,F),
 | |
| 
 | |
| 	open(F,'write',Handle),
 | |
| 
 | |
| 	catch(
 | |
| 	sum_forall(LProb,
 | |
| 		   (
 | |
| 		    probabilistic_fact(_,_,FactID),
 | |
| 		    array_element(factprob,FactID,PFact),
 | |
| 		    array_element(known_count_true_test,FactID,KK_True),
 | |
| 		    array_element(known_count_false_test,FactID,KK_False),
 | |
| 
 | |
| 		    (
 | |
| 			KK_True>0
 | |
| 		    ->
 | |
| 		        Part1 is KK_True*log(PFact);
 | |
| 			Part1 is 0.0
 | |
| 		    ),
 | |
| 		    (
 | |
| 			KK_False>0
 | |
| 		    ->
 | |
| 		        LProb is Part1+KK_False*log(1-PFact);
 | |
| 			LProb is Part1
 | |
| 		    )
 | |
| 		   ),
 | |
| 		   PropagatedLLH
 | |
| 		  ),_,PropagatedLLH is 0.0/0.0),
 | |
| 	format(Handle,'prob_known_atoms(~15e).~n',[PropagatedLLH]),
 | |
| 
 | |
| 	test_set_cluster_list(AllCluster),
 | |
| 	% deal with test examples where BDD needs to be evaluated
 | |
| 	problog_flag(parallel_processes,Parallel_Processes),
 | |
| 	once(evaluate_bdds(AllCluster,Handle,Parallel_Processes,'d',':',PropagatedLLH,LLH)),
 | |
| 	logger_set_variable(llh_test_set,LLH),
 | |
| 	close(Handle).
 | |
| llh_testset :-
 | |
| 	true.
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %=
 | |
| %=
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| % FIXME
 | |
| ground_truth_difference :-
 | |
| 	findall(Diff,(tunable_fact(FactID,GroundTruth),
 | |
| 		      \+continuous_fact(FactID),
 | |
| 		      \+ var(GroundTruth),
 | |
| 		      array_element(factprob,FactID,Prob),
 | |
| 		      Diff is abs(GroundTruth-Prob)),AllDiffs),
 | |
| 	(
 | |
| 	 AllDiffs==[]
 | |
| 	->
 | |
| 	 (
 | |
| 	  MinDiff=0.0,
 | |
| 	  MaxDiff=0.0,
 | |
| 	  DiffMean=0.0
 | |
| 	 ) ;
 | |
| 	 (
 | |
| 	  length(AllDiffs,Len),
 | |
| 	  sum_list(AllDiffs,AllDiffsSum),
 | |
| 	  min_list(AllDiffs,MinDiff),
 | |
| 	  max_list(AllDiffs,MaxDiff),
 | |
| 	  DiffMean is AllDiffsSum/Len
 | |
| 	 )
 | |
| 	),
 | |
| 
 | |
| 	logger_set_variable(ground_truth_diff,DiffMean),
 | |
| 	logger_set_variable(ground_truth_mindiff,MinDiff),
 | |
| 	logger_set_variable(ground_truth_maxdiff,MaxDiff).
 | |
| 
 | |
| %========================================================================
 | |
| %=
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| write_probabilities_file :-
 | |
| 	current_iteration(Iteration),
 | |
| 	create_bdd_input_file_name(Iteration,Probabilities_File),
 | |
| 	open(Probabilities_File,'write',Handle),
 | |
| 	forall(get_fact_probability(ID,_),
 | |
| 	       (
 | |
| 		array_element(factprob,ID,Prob),
 | |
| 
 | |
| 		(
 | |
| 		 non_ground_fact(ID)
 | |
| 		->
 | |
| 		 format(Handle,'@x~q_*~n~15e~n1~nx~q~N',[ID,Prob,ID]);
 | |
| 		 format(Handle,'@x~q~n~15e~n1~nx~q~N',[ID,Prob,ID])
 | |
| 		)
 | |
| 	       )
 | |
| 	      ),
 | |
| 	close(Handle).
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %=
 | |
| %=
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| update_query(QueryID,ClusterID ,Method,Command,PID,Output_File_Name) :-
 | |
| 	current_iteration(Iteration),
 | |
| 
 | |
| 	create_bdd_input_file_name(Iteration,Input_File_Name),
 | |
| 	create_bdd_output_file_name(QueryID,ClusterID,Iteration,Output_File_Name),
 | |
| 	create_bdd_file_name(QueryID,ClusterID,BDD_File_Name),
 | |
| 
 | |
| 	convert_filename_to_problog_path('simplecudd_lfi',Absolute_Name),
 | |
| 
 | |
| 	atomic_concat([Absolute_Name,
 | |
| 		       ' -i "', Input_File_Name, '"',
 | |
| 		       ' -l "', BDD_File_Name, '"',
 | |
| 		       ' -m ', Method,
 | |
| 		       ' -id ', QueryID],Command),
 | |
| 	open( Output_File_Name, write, Stream ),
 | |
| 	exec(Command,[std, Stream ,std],PID),
 | |
| 	close( Stream ).
 | |
| 
 | |
| update_query_wait(QueryID,_ClusterID,Count,Symbol,Command,PID,OutputFilename,BDD_Probability) :-
 | |
| 	wait(PID,Error),
 | |
| 	format_learning(4,'~w',[Symbol]),
 | |
| 	(
 | |
| 	 Error \= 0
 | |
| 	->
 | |
| 	   (
 | |
| 	    format(user_error,'SimpleCUDD stopped with error code ~q.~n', [Error]),
 | |
| 	    format(user_error,'The command was~n  ~q~n',[Command]),
 | |
| 	    throw(bdd_error(QueryID,Error))
 | |
| 	   );
 | |
| 	 true
 | |
| 	),
 | |
| 
 | |
| 	once(my_load_allinone(OutputFilename,QueryID,Count,BDD_Probability)),
 | |
| 
 | |
| 	problog_flag(retain_bdd_output,Retain_BDD_Output),
 | |
| 
 | |
| 	(
 | |
| 	 Retain_BDD_Output==true
 | |
| 	->
 | |
| 	 true;
 | |
| 	 delete_file_silently(OutputFilename)
 | |
| 	).
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %=
 | |
| %=
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| 
 | |
| my_load_allinone(File,QueryID,Count,BDD_Probability) :-
 | |
| 	open(File,'read',Handle),
 | |
| 	read(Handle,Atom),
 | |
| 	once(my_load_intern_allinone(Atom,Handle,QueryID,Count,error,BDD_Probability)),
 | |
| 	!,
 | |
| 	close(Handle).
 | |
| 
 | |
| my_load_allinone(File,QueryID,_,_,_,_) :-
 | |
| 	format(user_error,'Error at ~q.~2n',[my_load(File,QueryID)]),
 | |
| 	throw(error(my_load(File,QueryID))).
 | |
| 
 | |
| my_load_intern_allinone(end_of_file,_,_,_,BDD_Probability,BDD_Probability) :-
 | |
| 	!.
 | |
| my_load_intern_allinone(query_probability(QueryID,Prob),Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
 | |
| 	!,
 | |
| 	(
 | |
| 	 Old_BDD_Probability==error
 | |
| 	->
 | |
| 	 true;
 | |
| 	 throw(error(bdd_output_contains_prob_twice(query_probability(QueryID,Prob))))
 | |
| 	),
 | |
| 	Prob2 is Prob*Count,   % this is will throw an exception if simplecudd delivers non-number garbage
 | |
| 	read(Handle,X),
 | |
| 	my_load_intern_allinone(X,Handle,QueryID,Count,Prob2,BDD_Probability).
 | |
| my_load_intern_allinone(ec(QueryID,VarName,Value),Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
 | |
| 	!,
 | |
| 	split_atom_name(VarName,FactID,_GroundID),
 | |
| 	MultValue is Value*Count,
 | |
| 	add_to_array_element(factprob_temp,FactID,MultValue,_NewEC),
 | |
| 	add_to_array_element(factusage,FactID,Count,_NewDiv),
 | |
| 	read(Handle,X),
 | |
| 	my_load_intern_allinone(X,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability).
 | |
| my_load_intern_allinone(X,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
 | |
| 	format(user_error,'Unknown atom ~q in results file.~n',[X]),
 | |
| 	read(Handle,X2),
 | |
| 	my_load_intern_allinone(X2,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability).
 | |
| 
 | |
| %========================================================================
 | |
| %= Perform one iteration of EM
 | |
| %========================================================================
 | |
| 
 | |
| my_reset_static_array(Name) :-
 | |
|   %%% DELETE ME AFTER VITOR FIXED HIS BUG
 | |
|         static_array_properties(Name,Size,Type),
 | |
| 	LastPos is Size-1,
 | |
| 	(
 | |
| 	    Type==int
 | |
| 	->
 | |
| 	 forall(between(0,LastPos,Pos), update_array(Name,Pos,0))
 | |
| 	;
 | |
| 	    Type==float
 | |
| 	->
 | |
|   	    forall(between(0,LastPos,Pos), update_array(Name,Pos,0.0))
 | |
| 	;
 | |
| 	    fail
 | |
| 	).
 | |
| 
 | |
| em_one_iteration :-
 | |
| 	write_probabilities_file,
 | |
| 	my_reset_static_array(factprob_temp),
 | |
| 	my_reset_static_array(factusage),
 | |
| 
 | |
| 	current_iteration(Iteration),
 | |
| 	create_training_predictions_file_name(Iteration,Name),
 | |
| 
 | |
| 	open(Name,'write',Handle),
 | |
| 
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% start calculate new values
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| 	% process known_count information
 | |
| 	bb_put(dummy,0.0),
 | |
| 	(
 | |
| 			% go over all tunable facts and get their current probability
 | |
| 		    tunable_fact(FactID,_),
 | |
| 		    array_element(factprob,FactID,P),
 | |
| 		    % get known counts
 | |
| 
 | |
| 		    array_element(known_count_true_training,FactID,KK_True),
 | |
| 		    array_element(known_count_false_training,FactID,KK_False),
 | |
| 		    KK_Sum is KK_True+KK_False,
 | |
| 
 | |
| 		    KK_Sum>0,
 | |
| 
 | |
| 		    % add counts
 | |
| 		    add_to_array_element(factprob_temp,FactID,KK_True,_NewValue),
 | |
| 		    add_to_array_element(factusage,FactID,KK_Sum,_NewCount),
 | |
| 
 | |
| 		    % for LLH training set
 | |
| 
 | |
| 		    (
 | |
| 			KK_True>0
 | |
| 		    ->
 | |
| 		        Part1 is KK_True*log(P);
 | |
| 			Part1 is 0.0
 | |
| 		    ),
 | |
| 		    (
 | |
| 			KK_False>0
 | |
| 		    ->
 | |
| 		        LProb is Part1 + KK_False*log(1-P);
 | |
| 			LProb is Part1
 | |
| 		    ),
 | |
| 
 | |
| 		    bb_get(dummy,Old),
 | |
| 	            New is Old+LProb,
 | |
| 		    bb_put(dummy,New),
 | |
| 
 | |
| 	            fail;
 | |
| 	            true
 | |
| 	),
 | |
| 	bb_delete(dummy,LLH_From_True_BDDs),
 | |
| 
 | |
| 	format(Handle,'propagatedprob(~15e).~n',[LLH_From_True_BDDs]),
 | |
| 
 | |
| 	training_set_cluster_list(AllCluster),
 | |
| 
 | |
| 	problog_flag(parallel_processes,Parallel_Processes),
 | |
| 	evaluate_bdds(AllCluster,Handle,Parallel_Processes,'e','.',LLH_From_True_BDDs,LLH),
 | |
| 
 | |
| 	logger_set_variable(llh_training_set,LLH),
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% stop calculate new values
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	format_learning(2,'~n',[]),
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% start copy new values
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| 	problog_flag(pc_numerator,Pseudo_Counts_Numerator),
 | |
| 	problog_flag(pc_denominator,Pseudo_Counts_Denominator),
 | |
| 
 | |
| 	forall(
 | |
| 	       (
 | |
| 		tunable_fact(FactID,_),
 | |
| 		array_element(factusage,FactID,Used),
 | |
| 		Used>0		% only update relevant facts
 | |
| 	       ),
 | |
| 	       (
 | |
| 		array_element(factprob_temp,FactID,NewValue),
 | |
| 		NewP is (NewValue+ Pseudo_Counts_Numerator) / (Used+Pseudo_Counts_Denominator),
 | |
| 		update_array(factprob,FactID,NewP)
 | |
| 	       )
 | |
| 	      ),
 | |
| 
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 	% stop copy new values
 | |
| 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| 	close(Handle).
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %= Call SimpleCUDD for each BDD Cluster script
 | |
| %=   L      : a list containing 3-tuples a(QueryID,ClusterID,Count)
 | |
| %=   H      : file handle for the log file
 | |
| %=   P      : number of parallel SimpleCUDD processes
 | |
| %=   T      : type of evaluation, either 'd' or 'e'
 | |
| %=   S      : symbol to print after a process finished
 | |
| %=   OldLLH : accumulator for LLH
 | |
| %=   LLH    : resulting LLH
 | |
| %=
 | |
| %=  evaluate_bdds(+L,+H,+P,+T,+S,+OldLLH,-LLH)
 | |
| %========================================================================
 | |
| 
 | |
| evaluate_bdds([],_,_,_,_,LLH,LLH).
 | |
| evaluate_bdds([H|T],Handle,Parallel_Processes,Type,Symbol,OldLLH,LLH) :-
 | |
| 	once(slice_n([H|T],Parallel_Processes,ForNow,Later)),
 | |
| 	logger_start_timer(bdd_evaluation),
 | |
| 	once(evaluate_bdds_start(ForNow,Type,ForNow_Jobs)),
 | |
| 	once(evaluate_bdds_stop(ForNow_Jobs,Handle,Symbol,OldLLH,NewLLH)),
 | |
| 	logger_stop_timer(bdd_evaluation),
 | |
| 	evaluate_bdds(Later,Handle,Parallel_Processes,Type,Symbol,NewLLH,LLH).
 | |
| 
 | |
| evaluate_bdds_start([],_,[]).
 | |
| evaluate_bdds_start([a(QueryID,ClusterID,Count)|T],Type,[job(QueryID,ClusterID,Count,Command,PID,OutputFilename)|T2]) :-
 | |
| 	once(update_query(QueryID,ClusterID,Type,Command,PID,OutputFilename)),
 | |
| 	evaluate_bdds_start(T,Type,T2).
 | |
| evaluate_bdds_stop([],_,_,LLH,LLH).
 | |
| evaluate_bdds_stop([job(ID,ClusterID,Count,Command,PID,OutputFilename)|T],Handle,Symbol,OldLLH,LLH) :-
 | |
| 	once(update_query_wait(ID,ClusterID,Count,Symbol,Command,PID,OutputFilename,BDD_Prob)),
 | |
| 	format(Handle,'bdd_prob(~w,~w,~15e). % Count=~w~n',[ID,ClusterID,BDD_Prob,Count]),
 | |
| 	catch(NewLLH is OldLLH + Count*log(BDD_Prob),_Exception,NewLLH is 0.0/0.0),
 | |
| 	evaluate_bdds_stop(T,Handle,Symbol,NewLLH,LLH).
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %=
 | |
| %=
 | |
| %========================================================================
 | |
| 
 | |
| 
 | |
| 
 | |
| %========================================================================
 | |
| %= initialize the logger module and set the flags for learning
 | |
| %= don't change anything here! use set_learning_flag/2 instead
 | |
| %========================================================================
 | |
| 
 | |
| init_flags :-
 | |
| 	prolog_file_name('queries',Queries_Folder), % get absolute file name for './queries'
 | |
| 	prolog_file_name('output',Output_Folder), % get absolute file name for './output'
 | |
| 	problog_define_flag(bdd_directory, problog_flag_validate_directory, 'directory for BDD scripts', Queries_Folder,learning_general),
 | |
| 	problog_define_flag(output_directory, problog_flag_validate_directory, 'directory for logfiles etc', Output_Folder,learning_general,flags:learning_output_dir_handler),
 | |
| 	problog_define_flag(retain_bdd_output,problog_flag_validate_boolean,'Keep output files from BDD tool',false,learning_general),
 | |
| 	problog_define_flag(log_frequency, problog_flag_validate_posint, 'log results every nth iteration', 1, learning_general),
 | |
| 	problog_define_flag(reuse_initialized_bdds,problog_flag_validate_boolean, 'Reuse BDDs from previous runs',false, learning_general),
 | |
| 	problog_define_flag(pc_numerator,problog_flag_validate_in_interval_right_open([0.0,+inf]),'Add X to numerator (Pseudocounts)',0.0,learning_general),
 | |
| 	problog_define_flag(pc_denominator,problog_flag_validate_in_interval_right_open([0.0,+inf]),'Add X to denominator (Pseudocounts)',0.0,learning_general),
 | |
| 	problog_define_flag(parallel_processes,problog_flag_validate_posint,'Number of parallel BDD processes',8,learning_general),
 | |
| 
 | |
| 	problog_define_flag(cluster_bdds,problog_flag_validate_boolean,'Cluster similar BDDs',true,learning_general).
 | |
| 
 | |
| 
 | |
| init_logger :-
 | |
| 	logger_define_variable(iteration, int),
 | |
| 	logger_define_variable(duration,time),
 | |
| 
 | |
| 	logger_define_variable(llh_training_set,float),
 | |
| 	logger_define_variable(llh_test_set,float),
 | |
| 
 | |
| 	logger_define_variable(bdd_evaluation,time),
 | |
| 
 | |
| 	logger_define_variable(ground_truth_diff,float),
 | |
| 	logger_define_variable(ground_truth_mindiff,float),
 | |
| 	logger_define_variable(ground_truth_maxdiff,float),
 | |
| 
 | |
| 	logger_define_variable(train_bdd_script_generation,time),
 | |
| 	logger_define_variable(train_bdd_script_generation_grounding,time),
 | |
| 	logger_define_variable(train_bdd_script_generation_completion,time),
 | |
| 	logger_define_variable(train_bdd_script_generation_propagation,time),
 | |
| 	logger_define_variable(train_bdd_script_generation_splitting,time),
 | |
| 	logger_define_variable(train_bdd_script_generation_active_ground_atoms,int),
 | |
| 	logger_define_variable(train_bdd_script_generation_propagated_ground_atoms,int),
 | |
| 
 | |
| 	logger_define_variable(test_bdd_script_generation,time),
 | |
| 	logger_define_variable(test_bdd_script_generation_grounding,time),
 | |
| 	logger_define_variable(test_bdd_script_generation_completion,time),
 | |
| 	logger_define_variable(test_bdd_script_generation_propagation,time),
 | |
| 	logger_define_variable(test_bdd_script_generation_splitting,time),
 | |
| 	logger_define_variable(test_bdd_script_generation_active_ground_atoms,int),
 | |
| 	logger_define_variable(test_bdd_script_generation_propagated_ground_atoms,int).
 | |
| 
 | |
| :- initialization(init_flags).
 | |
| :- initialization(init_logger).
 | |
| 
 | |
| %:- spy em_one_iteration.
 | |
| 
 | |
| 
 | |
| %:- initialization(do_learning(100) ).
 |