15404b3835
- do not call goal expansion on meta-calls (that is done by undef). - docs updates - fix init code
955 lines
31 KiB
Prolog
955 lines
31 KiB
Prolog
%%% -*- Mode: Prolog; -*-
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%
|
|
% $Date: 2011-12-05 14:07:19 +0100 (Mon, 05 Dec 2011) $
|
|
% $Revision: 6766 $
|
|
%
|
|
% Main authors of this file:
|
|
% Bernd Gutmann
|
|
%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%
|
|
% Artistic License 2.0
|
|
%
|
|
% Copyright (c) 2000-2006, The Perl Foundation.
|
|
%
|
|
% Everyone is permitted to copy and distribute verbatim copies of this
|
|
% license document, but changing it is not allowed. Preamble
|
|
%
|
|
% This license establishes the terms under which a given free software
|
|
% Package may be copied, modified, distributed, and/or
|
|
% redistributed. The intent is that the Copyright Holder maintains some
|
|
% artistic control over the development of that Package while still
|
|
% keeping the Package available as open source and free software.
|
|
%
|
|
% You are always permitted to make arrangements wholly outside of this
|
|
% license directly with the Copyright Holder of a given Package. If the
|
|
% terms of this license do not permit the full use that you propose to
|
|
% make of the Package, you should contact the Copyright Holder and seek
|
|
% a different licensing arrangement. Definitions
|
|
%
|
|
% "Copyright Holder" means the individual(s) or organization(s) named in
|
|
% the copyright notice for the entire Package.
|
|
%
|
|
% "Contributor" means any party that has contributed code or other
|
|
% material to the Package, in accordance with the Copyright Holder's
|
|
% procedures.
|
|
%
|
|
% "You" and "your" means any person who would like to copy, distribute,
|
|
% or modify the Package.
|
|
%
|
|
% "Package" means the collection of files distributed by the Copyright
|
|
% Holder, and derivatives of that collection and/or of those files. A
|
|
% given Package may consist of either the Standard Version, or a
|
|
% Modified Version.
|
|
%
|
|
% "Distribute" means providing a copy of the Package or making it
|
|
% accessible to anyone else, or in the case of a company or
|
|
% organization, to others outside of your company or organization.
|
|
%
|
|
% "Distributor Fee" means any fee that you charge for Distributing this
|
|
% Package or providing support for this Package to another party. It
|
|
% does not mean licensing fees.
|
|
%
|
|
% "Standard Version" refers to the Package if it has not been modified,
|
|
% or has been modified only in ways explicitly requested by the
|
|
% Copyright Holder.
|
|
%
|
|
% "Modified Version" means the Package, if it has been changed, and such
|
|
% changes were not explicitly requested by the Copyright Holder.
|
|
%
|
|
% "Original License" means this Artistic License as Distributed with the
|
|
% Standard Version of the Package, in its current version or as it may
|
|
% be modified by The Perl Foundation in the future.
|
|
%
|
|
% "Source" form means the source code, documentation source, and
|
|
% configuration files for the Package.
|
|
%
|
|
% "Compiled" form means the compiled bytecode, object code, binary, or
|
|
% any other form resulting from mechanical transformation or translation
|
|
% of the Source form.
|
|
%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%
|
|
% Permission for Use and Modification Without Distribution
|
|
%
|
|
% (1) You are permitted to use the Standard Version and create and use
|
|
% Modified Versions for any purpose without restriction, provided that
|
|
% you do not Distribute the Modified Version.
|
|
%
|
|
% Permissions for Redistribution of the Standard Version
|
|
%
|
|
% (2) You may Distribute verbatim copies of the Source form of the
|
|
% Standard Version of this Package in any medium without restriction,
|
|
% either gratis or for a Distributor Fee, provided that you duplicate
|
|
% all of the original copyright notices and associated disclaimers. At
|
|
% your discretion, such verbatim copies may or may not include a
|
|
% Compiled form of the Package.
|
|
%
|
|
% (3) You may apply any bug fixes, portability changes, and other
|
|
% modifications made available from the Copyright Holder. The resulting
|
|
% Package will still be considered the Standard Version, and as such
|
|
% will be subject to the Original License.
|
|
%
|
|
% Distribution of Modified Versions of the Package as Source
|
|
%
|
|
% (4) You may Distribute your Modified Version as Source (either gratis
|
|
% or for a Distributor Fee, and with or without a Compiled form of the
|
|
% Modified Version) provided that you clearly document how it differs
|
|
% from the Standard Version, including, but not limited to, documenting
|
|
% any non-standard features, executables, or modules, and provided that
|
|
% you do at least ONE of the following:
|
|
%
|
|
% (a) make the Modified Version available to the Copyright Holder of the
|
|
% Standard Version, under the Original License, so that the Copyright
|
|
% Holder may include your modifications in the Standard Version. (b)
|
|
% ensure that installation of your Modified Version does not prevent the
|
|
% user installing or running the Standard Version. In addition, the
|
|
% modified Version must bear a name that is different from the name of
|
|
% the Standard Version. (c) allow anyone who receives a copy of the
|
|
% Modified Version to make the Source form of the Modified Version
|
|
% available to others under (i) the Original License or (ii) a license
|
|
% that permits the licensee to freely copy, modify and redistribute the
|
|
% Modified Version using the same licensing terms that apply to the copy
|
|
% that the licensee received, and requires that the Source form of the
|
|
% Modified Version, and of any works derived from it, be made freely
|
|
% available in that license fees are prohibited but Distributor Fees are
|
|
% allowed.
|
|
%
|
|
% Distribution of Compiled Forms of the Standard Version or
|
|
% Modified Versions without the Source
|
|
%
|
|
% (5) You may Distribute Compiled forms of the Standard Version without
|
|
% the Source, provided that you include complete instructions on how to
|
|
% get the Source of the Standard Version. Such instructions must be
|
|
% valid at the time of your distribution. If these instructions, at any
|
|
% time while you are carrying out such distribution, become invalid, you
|
|
% must provide new instructions on demand or cease further
|
|
% distribution. If you provide valid instructions or cease distribution
|
|
% within thirty days after you become aware that the instructions are
|
|
% invalid, then you do not forfeit any of your rights under this
|
|
% license.
|
|
%
|
|
% (6) You may Distribute a Modified Version in Compiled form without the
|
|
% Source, provided that you comply with Section 4 with respect to the
|
|
% Source of the Modified Version.
|
|
%
|
|
% Aggregating or Linking the Package
|
|
%
|
|
% (7) You may aggregate the Package (either the Standard Version or
|
|
% Modified Version) with other packages and Distribute the resulting
|
|
% aggregation provided that you do not charge a licensing fee for the
|
|
% Package. Distributor Fees are permitted, and licensing fees for other
|
|
% components in the aggregation are permitted. The terms of this license
|
|
% apply to the use and Distribution of the Standard or Modified Versions
|
|
% as included in the aggregation.
|
|
%
|
|
% (8) You are permitted to link Modified and Standard Versions with
|
|
% other works, to embed the Package in a larger work of your own, or to
|
|
% build stand-alone binary or bytecode versions of applications that
|
|
% include the Package, and Distribute the result without restriction,
|
|
% provided the result does not expose a direct interface to the Package.
|
|
%
|
|
% Items That are Not Considered Part of a Modified Version
|
|
%
|
|
% (9) Works (including, but not limited to, modules and scripts) that
|
|
% merely extend or make use of the Package, do not, by themselves, cause
|
|
% the Package to be a Modified Version. In addition, such works are not
|
|
% considered parts of the Package itself, and are not subject to the
|
|
% terms of this license.
|
|
%
|
|
% General Provisions
|
|
%
|
|
% (10) Any use, modification, and distribution of the Standard or
|
|
% Modified Versions is governed by this Artistic License. By using,
|
|
% modifying or distributing the Package, you accept this license. Do not
|
|
% use, modify, or distribute the Package, if you do not accept this
|
|
% license.
|
|
%
|
|
% (11) If your Modified Version has been derived from a Modified Version
|
|
% made by someone other than you, you are nevertheless required to
|
|
% ensure that your Modified Version complies with the requirements of
|
|
% this license.
|
|
%
|
|
% (12) This license does not grant you the right to use any trademark,
|
|
% service mark, tradename, or logo of the Copyright Holder.
|
|
%
|
|
% (13) This license includes the non-exclusive, worldwide,
|
|
% free-of-charge patent license to make, have made, use, offer to sell,
|
|
% sell, import and otherwise transfer the Package with respect to any
|
|
% patent claims licensable by the Copyright Holder that are necessarily
|
|
% infringed by the Package. If you institute patent litigation
|
|
% (including a cross-claim or counterclaim) against any party alleging
|
|
% that the Package constitutes direct or contributory patent
|
|
% infringement, then this Artistic License to you shall terminate on the
|
|
% date that such litigation is filed.
|
|
%
|
|
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
|
|
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
|
|
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
|
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
|
|
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
|
|
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
|
|
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
:- module(completion, [propagate_evidence/2,
|
|
bdd_cluster/2,
|
|
split_atom_name/3,
|
|
reset_completion/0]).
|
|
|
|
:- style_check(all).
|
|
:- yap_flag(unknown,error).
|
|
|
|
% load library modules
|
|
:- use_module(library(lists),[member/2,append/3,reverse/2]).
|
|
:- use_module(library(system), [tmpnam/1]).
|
|
|
|
% load our own modules
|
|
:- use_module('../problog').
|
|
:- use_module(grounder).
|
|
:- use_module(logger).
|
|
:- use_module(termhandling).
|
|
:- use_module(flags).
|
|
:- use_module(print_learning).
|
|
:- use_module(utils).
|
|
:- use_module(utils_learning).
|
|
|
|
:- dynamic seen_atom/4.
|
|
:- dynamic bdd_cluster/2.
|
|
|
|
:- initialization(problog_define_flag(propagate_known,problog_flag_validate_boolean,'Propagate known atoms',true,learning_bdd_generation)).
|
|
:- initialization(problog_define_flag(propagate_det,problog_flag_validate_boolean,'Propagate deterministic atoms',true,learning_bdd_generation)).
|
|
:- initialization(problog_define_flag(output_dot_files,problog_flag_validate_boolean,'Output .dot files for BDD scripts',true,learning_bdd_generation)).
|
|
:- initialization(problog_define_flag(split_bdds,problog_flag_validate_boolean,'Split BDD scripts when possible',true,learning_bdd_generation)).
|
|
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
reset_completion :-
|
|
retractall(seen_atom(_,_,_,_)),
|
|
retractall(bdd_cluster(_,_)).
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
propagate_evidence(_,_) :-
|
|
\+ current_predicate(user:known/3),
|
|
!,
|
|
throw(error(system,'The predicate user:known/3 is not defined. If you really have empty interpretations declare the user:known/3 as dynamic and come back.')).
|
|
|
|
|
|
propagate_evidence(InterpretationID,Query_Type) :-
|
|
atomic(InterpretationID),
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Clean up %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
eraseall(rules),
|
|
eraseall(unpropagated_rules),
|
|
eraseall(known_atoms),
|
|
grounder_reset,
|
|
|
|
(
|
|
Query_Type==test
|
|
->
|
|
(
|
|
Key_BDD_script_generation=test_bdd_script_generation,
|
|
Key_BDD_script_generation_grounding=test_bdd_script_generation_grounding,
|
|
Key_BDD_script_generation_completion=test_bdd_script_generation_completion,
|
|
Key_BDD_script_generation_propagation=test_bdd_script_generation_propagation,
|
|
Key_BDD_script_generation_splitting=test_bdd_script_generation_splitting,
|
|
Key_BDD_script_generation_active_ground_atoms=test_bdd_script_generation_active_ground_atoms,
|
|
Key_BDD_script_generation_propagated_ground_atoms=test_bdd_script_generation_propagated_ground_atoms
|
|
);
|
|
(
|
|
Key_BDD_script_generation=train_bdd_script_generation,
|
|
Key_BDD_script_generation_grounding=train_bdd_script_generation_grounding,
|
|
Key_BDD_script_generation_completion=train_bdd_script_generation_completion,
|
|
Key_BDD_script_generation_propagation=train_bdd_script_generation_propagation,
|
|
Key_BDD_script_generation_splitting=train_bdd_script_generation_splitting,
|
|
Key_BDD_script_generation_active_ground_atoms=train_bdd_script_generation_active_ground_atoms,
|
|
Key_BDD_script_generation_propagated_ground_atoms=train_bdd_script_generation_propagated_ground_atoms
|
|
)
|
|
),
|
|
|
|
|
|
logger_start_timer(Key_BDD_script_generation),
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Calc dep() %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
logger_start_timer(Key_BDD_script_generation_grounding),
|
|
format_learning(5,'d',[]),
|
|
% iterate over all evidence atoms
|
|
forall(user:known(InterpretationID,Atom,Value),
|
|
(
|
|
catch( grounder_compute_reachable_atoms(Atom,InterpretationID,Success), _, fail),
|
|
(
|
|
(Success==true; Value==false)
|
|
->
|
|
true
|
|
;
|
|
throw(unprovable_evidence(Atom))
|
|
)
|
|
)
|
|
),
|
|
logger_stop_timer(Key_BDD_script_generation_grounding),
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Calc completion %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
logger_start_timer(Key_BDD_script_generation_completion),
|
|
format_learning(5,'c',[]),
|
|
once(completion(InterpretationID)),
|
|
logger_stop_timer(Key_BDD_script_generation_completion),
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Bring out intermediate garbage %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
grounder_reset,
|
|
!,
|
|
garbage_collect_atoms,
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Calc propagation %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
problog_flag(propagate_known,Propagate_Known),
|
|
|
|
(
|
|
Propagate_Known==true
|
|
->
|
|
(
|
|
logger_start_timer(Key_BDD_script_generation_propagation),
|
|
format_learning(5,'p',[]),
|
|
once(propagate),
|
|
logger_stop_timer(Key_BDD_script_generation_propagation)
|
|
);
|
|
true
|
|
),
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Split BDD Script %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
problog_flag(split_bdds,Split_BDDs),
|
|
format_learning(5,'S',[]),
|
|
(
|
|
Split_BDDs==false
|
|
->
|
|
(
|
|
findall(R,(recorded(rules,_,R);recorded(unpropagated_rules,_,R)),All_R),
|
|
Cluster=[All_R]
|
|
);
|
|
(
|
|
logger_start_timer(Key_BDD_script_generation_splitting),
|
|
split_rules(Cluster),
|
|
logger_stop_timer(Key_BDD_script_generation_splitting)
|
|
)
|
|
),
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Print BDD script %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
format_learning(5,'s',[]),
|
|
print_script_per_cluster(Cluster,InterpretationID,1,0,Seen_Atoms,[],ClusterIDs),
|
|
store_known_atoms(InterpretationID,ClusterIDs,Query_Type),
|
|
key_statistics(known_atoms,Known_Atoms,_),
|
|
logger_add_to_variable(Key_BDD_script_generation_active_ground_atoms,Seen_Atoms),
|
|
logger_add_to_variable(Key_BDD_script_generation_propagated_ground_atoms,Known_Atoms),
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%% Clean up %%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
eraseall(rules),
|
|
eraseall(unpropagated_rules),
|
|
eraseall(known_atoms),
|
|
grounder_reset,
|
|
logger_stop_timer(Key_BDD_script_generation).
|
|
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
print_script_per_cluster([],_,_,Seen_Atoms,Seen_Atoms,Cluster_IDs,Cluster_IDs).
|
|
print_script_per_cluster([Refs|T],InterpretationID,Cluster_ID,Old_Seen_Atoms,Seen_Atoms,Old_Cluster_IDs,Cluster_IDs) :-
|
|
create_bdd_file_name(InterpretationID,Cluster_ID,File_Name),
|
|
once(print_simplecudd_script(Refs,File_Name,This_Seen_Atoms)),
|
|
New_Seen_Atoms is Old_Seen_Atoms+This_Seen_Atoms,
|
|
Next_Cluster_ID is Cluster_ID+1,
|
|
print_script_per_cluster(T,InterpretationID,Next_Cluster_ID,New_Seen_Atoms,Seen_Atoms,[Cluster_ID|Old_Cluster_IDs],Cluster_IDs).
|
|
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
completion(InterpretationID) :-
|
|
% iterate over all reachable atoms where the completion
|
|
% can be computed. This will skip reachable probabilistic facts.
|
|
forall((
|
|
grounder_reachable_atom(Head),
|
|
grounder_completion_for_atom(Head,InterpretationID,Rule)
|
|
),
|
|
(
|
|
once(propagate_interpretation(Rule,InterpretationID,Rule2)),
|
|
simplify(Rule2,Rule3,_),
|
|
(
|
|
(Rule3\==false,record_constraint_cs_check(Rule3))
|
|
->
|
|
true;
|
|
(
|
|
print_theory,
|
|
format(user_error,'=============================~n',[]),
|
|
format(user_error,'Inconsistency error at building completion for atom ~q (Example ~q)~n',[Head,InterpretationID]),
|
|
format(user_error,' Completion was~n ~q~2n',[Rule]),
|
|
format(user_error,' After subsituting evidence~n ~q~2n',[Rule2]),
|
|
format(user_error,' After simplifying~n ~q~2n',[Rule3]),
|
|
format(user_error,'=============================~2n',[]),
|
|
throw(theory_is_inconsistent)
|
|
)
|
|
)
|
|
)
|
|
),
|
|
|
|
% print_theory,
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Store known Atoms %%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
forall(user:known(InterpretationID,Atom,Value),
|
|
recorda(known_atoms,'$atom'(Atom) <=> Value,_)
|
|
).
|
|
|
|
|
|
|
|
%========================================================================
|
|
%= find rule which makes sense to propagate
|
|
%========================================================================
|
|
|
|
propagate :-
|
|
problog_flag(propagate_det,true),
|
|
!,
|
|
repeat,
|
|
once(propagate_intern_known(Result1)),
|
|
% print_theory,
|
|
Result1==false,
|
|
once(propagate_intern_deterministic(Result2)),
|
|
Result2==false,
|
|
!.
|
|
propagate :-
|
|
repeat,
|
|
once(propagate_intern_known(Result1)),
|
|
Result1==false,
|
|
!.
|
|
|
|
propagate_intern_known(true) :-
|
|
recorded(unpropagated_rules,Atom <=> AtomValue,Key1),
|
|
!,
|
|
erase(Key1),
|
|
recorda(known_atoms,Atom <=> AtomValue,_),
|
|
forall(
|
|
(
|
|
recorded(rules,Rule,Key2),
|
|
once(propagate(Rule,Atom,AtomValue,NewRule,true)) % will succeed only when Atom appears in Rule
|
|
),
|
|
(
|
|
erase(Key2),
|
|
once(simplify(NewRule,NewRuleSimplified,_)),
|
|
(
|
|
(NewRuleSimplified\==false,record_constraint_cs_check(NewRuleSimplified))
|
|
->
|
|
true;
|
|
(
|
|
print_theory,
|
|
format(user_error,'Propagating ~q=~q for ~q leads to an inconsistency.!!!~2n',[Atom,AtomValue,Rule]),
|
|
throw(inconsitent)
|
|
)
|
|
)
|
|
)
|
|
).
|
|
propagate_intern_known(false).
|
|
|
|
propagate_intern_deterministic(true) :-
|
|
recorded(rules,Atom <=> AtomValue,Key1),
|
|
!,
|
|
erase(Key1),
|
|
forall(
|
|
(
|
|
recorded(rules,Rule,Key2),
|
|
once(propagate(Rule,Atom,AtomValue,NewRule,true)) % will succeed only when Atom appears in Rule
|
|
),
|
|
(
|
|
erase(Key2),
|
|
once(simplify(NewRule,NewRuleSimplified,_)),
|
|
(
|
|
(NewRuleSimplified\=false,record_constraint_cs_check(NewRuleSimplified))
|
|
->
|
|
true;
|
|
(
|
|
print_theory,
|
|
format(user_error,'Propagating ~q=~q for ~q leads to an inconsistency.!!!~2n',[Atom,AtomValue,Rule]),
|
|
throw(inconsitent)
|
|
)
|
|
)
|
|
)
|
|
).
|
|
propagate_intern_deterministic(false).
|
|
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
record_constraint_cs_check( (X <=> Y) ) :-
|
|
recorda(rules,(X <=> Y),_).
|
|
record_constraint_cs_check((X,Y)) :-
|
|
record_constraint_cs_check(X),
|
|
record_constraint_cs_check(Y).
|
|
record_constraint_cs_check( (X;Y)) :-
|
|
recorda(rules,(X;Y),_).
|
|
record_constraint_cs_check( \+ '$atom'(X) ) :-
|
|
(
|
|
recorded(unpropagated_rules, ('$atom'(X)<=>OldValue),_)
|
|
->
|
|
OldValue==false;
|
|
recorda(unpropagated_rules, ('$atom'(X) <=> false),_)
|
|
).
|
|
record_constraint_cs_check('$atom'(X)) :-
|
|
(
|
|
recorded(unpropagated_rules, ('$atom'(X)<=>OldValue),_)
|
|
->
|
|
OldValue==true;
|
|
recorda(unpropagated_rules, ('$atom'(X) <=> true),_)
|
|
).
|
|
record_constraint_cs_check(true).
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
|
|
split_atom_name(Name,ID,GroundID) :-
|
|
atom(Name),
|
|
atomic_concat(x,Temp,Name),
|
|
atom_codes(Temp,TempC),
|
|
|
|
(
|
|
append(Head,[95|Tail],TempC) % 95-_-
|
|
->
|
|
(
|
|
number_chars(ID,Head),
|
|
number_chars(GroundID,Tail)
|
|
);
|
|
(
|
|
number_chars(ID,TempC),
|
|
GroundID=0
|
|
)
|
|
),
|
|
!.
|
|
|
|
store_known_atoms(ID,ClusterIDs,Query_Type) :-
|
|
(
|
|
Query_Type==test
|
|
->
|
|
(
|
|
KK_True_Array=known_count_true_test,
|
|
KK_False_Array=known_count_false_test
|
|
);
|
|
(
|
|
KK_True_Array=known_count_true_training,
|
|
KK_False_Array=known_count_false_training
|
|
)
|
|
),
|
|
|
|
retractall(bdd_cluster(ID,_)),
|
|
|
|
assertz(bdd_cluster(ID,ClusterIDs)),
|
|
create_known_values_file_name(ID,File_Name),
|
|
open(File_Name,'write',Handle),
|
|
format(Handle,'completion:bdd_cluster(~w,~w).~n',[ID,ClusterIDs]),
|
|
|
|
forall((
|
|
recorded(known_atoms,'$atom'(Atom) <=> Value,_),
|
|
remember(Atom,Name),
|
|
split_atom_name(Name,FactID,GroundID)
|
|
),
|
|
(
|
|
(
|
|
Value==true
|
|
->
|
|
add_to_array_element(KK_True_Array,FactID,1,_);
|
|
add_to_array_element(KK_False_Array,FactID,1,_)
|
|
),
|
|
know_atom_expected_count(Value,Count),
|
|
format(Handle,'completion:known_count(~w,~w,~w,~w). % ~w~n',[ID,FactID,GroundID,Count,Atom])
|
|
)
|
|
),
|
|
|
|
close(Handle).
|
|
|
|
know_atom_expected_count(true,1).
|
|
know_atom_expected_count(false,0).
|
|
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
print_theory :-
|
|
format_learning(5,'~n Current Theory~n == Unpropagated Rules ==~n',[]),
|
|
forall(recorded(unpropagated_rules,Rule,Key),
|
|
format_learning(5,' ~q. (~q)~n',[Rule,Key])
|
|
),
|
|
|
|
format_learning(5,' == Rules ==~n',[]),
|
|
forall(recorded(rules,Rule,Key),
|
|
format_learning(5,' ~q. (~q)~n',[Rule,Key])),
|
|
|
|
format_learning(5,' == Known and Propagated Atoms ==~n',[]),
|
|
forall(recorded(known_atoms,Head <=> Bodies,Key),
|
|
format_learning(5,' ~q <=> ~q. (~q)~n',[Head,Bodies,Key])
|
|
),
|
|
|
|
format_learning(5,'~3n',[]).
|
|
|
|
|
|
%========================================================================
|
|
%= split_rules(-Cluster)
|
|
%========================================================================
|
|
split_rules(Cluster) :-
|
|
eraseall(cluster),
|
|
|
|
% add all rules to the clusters
|
|
forall(recorded(rules,Expression,Reference),
|
|
include_in_clusters(Expression,Reference)),
|
|
|
|
% add all unpropagated rules to the clusters
|
|
forall(recorded(unpropagated_rules,Expression,Reference),
|
|
include_in_clusters(Expression,Reference)),
|
|
|
|
garbage_collect_atoms,
|
|
|
|
% Merge clusters until
|
|
% no more clusters can be merged
|
|
(
|
|
repeat,
|
|
merge_cluster(Result),
|
|
Result==false,
|
|
!
|
|
),
|
|
|
|
findall(Keys,recorded(cluster,c(_Facts,Keys),_),Cluster),
|
|
eraseall(cluster),
|
|
|
|
garbage_collect_atoms.
|
|
|
|
%========================================================================
|
|
%= include_in_clusters(+Expression,+Reference)
|
|
%========================================================================
|
|
|
|
include_in_clusters(Expression,Reference) :-
|
|
(
|
|
setof(F, Expression^term_element(Expression, F), Facts_Sorted)
|
|
->
|
|
true;
|
|
Facts_Sorted = []
|
|
),
|
|
|
|
bb_put(facts,Facts_Sorted),
|
|
bb_put(rule_keys,[Reference]),
|
|
|
|
% iterate over all cluster that overlap with Current_Facts
|
|
forall((
|
|
recorded(cluster,c(CFacts,Cluster_Rule_Keys),CKey),
|
|
bb_get(facts,Current_Facts),
|
|
sorted_overlap_test(Current_Facts,CFacts)
|
|
),
|
|
(
|
|
erase(CKey),
|
|
bb_get(rule_keys,Current_Rule_Keys),
|
|
append(Current_Facts,CFacts,Merged_Facts),
|
|
append(Current_Rule_Keys,Cluster_Rule_Keys,Merged_Rule_Keys),
|
|
sort(Merged_Facts,Sorted_Facts),
|
|
bb_put(facts,Sorted_Facts),
|
|
bb_put(rule_keys,Merged_Rule_Keys)
|
|
)
|
|
),
|
|
|
|
%clean up and store the new (possibly merged) cluster
|
|
bb_delete(facts,Final_Facts),
|
|
bb_delete(rule_keys,Final_Rule_Keys),
|
|
recorda(cluster,c(Final_Facts,Final_Rule_Keys),_).
|
|
|
|
%========================================================================
|
|
%= find two clusters that should be merged because they both
|
|
%= contain the same fact
|
|
%========================================================================
|
|
|
|
merge_cluster(true) :-
|
|
recorded(cluster,c(CFacts1,Cluster_Rule_Keys1),CKey1),
|
|
recorded(cluster,c(CFacts2,Cluster_Rule_Keys2),CKey2),
|
|
CKey1 @< CKey2,
|
|
sorted_overlap_test(CFacts1,CFacts2),
|
|
!,
|
|
erase(CKey1),
|
|
erase(CKey2),
|
|
|
|
append(CFacts1,CFacts2,Merged_Facts),
|
|
sort(Merged_Facts,Sorted_Facts),
|
|
|
|
append(Cluster_Rule_Keys1,Cluster_Rule_Keys2,Merged_Rule_Keys),
|
|
recorda(cluster,c(Sorted_Facts,Merged_Rule_Keys),_).
|
|
merge_cluster(false).
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
print_simplecudd_script(Refs,BDDFilename,Seen_Atoms) :-
|
|
retractall(seen_atom(_,_,_,_)),
|
|
retractall(script_hash(_,_)),
|
|
|
|
bb_put(counter,0),
|
|
bb_put(det_counter,0),
|
|
bb_put(grounding_counter,0),
|
|
|
|
tmpnam(Temp_File_Name),
|
|
open(Temp_File_Name,'write',Handle1),
|
|
findall(X,(
|
|
member(R,Refs),
|
|
recorded(_,Expression,R),
|
|
print_expression(Expression,Handle1,X)
|
|
),L),
|
|
reverse(L,L_Rev),
|
|
list_to_conjunction(L_Rev,Con),
|
|
|
|
|
|
print_expression_and_final(Con,Handle1,'',Final),
|
|
|
|
(
|
|
(atom_codes(Final,[76|_])) % X='L....'
|
|
->
|
|
LastID=Final;
|
|
(
|
|
next_counter(LastID),
|
|
format(Handle1,'~w=~w~n',[LastID,Final])
|
|
)
|
|
),
|
|
|
|
format(Handle1,'~w~n',[LastID]),
|
|
close(Handle1),
|
|
|
|
succeeds_n_times(seen_atom(_,_,_,_),Seen_Atoms),
|
|
bb_get(counter,IntermediateSteps),
|
|
|
|
prefix_bdd_file_with_header(BDDFilename,Seen_Atoms,IntermediateSteps,Temp_File_Name),
|
|
|
|
problog_flag(output_dot_files,Output_Dot_Files),
|
|
|
|
(
|
|
Output_Dot_Files==true
|
|
->
|
|
(
|
|
atomic_concat([BDDFilename,'.dot'],Dot_File_Name),
|
|
open(Dot_File_Name,'write',Handle2),
|
|
format(Handle2,'digraph d{~n',[]),
|
|
|
|
forall(seen_atom(Atom,ID,_FactID,_),
|
|
format(Handle2,'~q [label="~q\\n~q", style="filled", color="lightblue"];~n',[ID,Atom,ID])
|
|
),
|
|
|
|
findall(X,(member(R,Refs),recorded(_,Expression,R),print_dot_expression(Expression,Handle2,X)),_L2),
|
|
|
|
% switch off printing final line until bugfix
|
|
%list_to_conjunction(L2,Con2),
|
|
% print_dot_expression(Con2,Handle2,_),
|
|
format(Handle2,'}~n',[]),
|
|
close(Handle2)
|
|
);
|
|
true
|
|
),
|
|
|
|
retractall(script_hash(_,_)),
|
|
retractall(seen_atom(_,_,_,_)).
|
|
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
print_expression(Term,_Handle,N) :-
|
|
script_hash(Term,N),
|
|
!.
|
|
|
|
print_expression(X <=> Y, Handle,N3) :-
|
|
print_expression(X,Handle,N1),
|
|
print_expression(Y,Handle,N2),
|
|
next_counter(N3),
|
|
assert(script_hash(X <=> Y, N3)),
|
|
format(Handle,'~w = ~w ~~# ~w~n',[N3,N1,N2]).
|
|
print_expression( (X,Y), Handle,Number) :-
|
|
print_expression_and((X,Y),Handle,'',Number),
|
|
assert(script_hash((X,Y), Number)).
|
|
print_expression( (X;Y), Handle,Number) :-
|
|
print_expression_or((X;Y),Handle,'',Number),
|
|
assert(script_hash((X;Y), Number)).
|
|
print_expression( \+ '$atom'(X), _Handle,ID) :-
|
|
remember(X,Name),
|
|
atomic_concat(['~',Name],ID).
|
|
print_expression( true, _Handle,'TRUE').
|
|
print_expression( false, _Handle,'FALSE').
|
|
print_expression('$atom'(X), _Handle,ID) :-
|
|
remember(X,ID).
|
|
|
|
print_expression_or((X;Y), Handle,OldAcc,Number) :-
|
|
!,
|
|
print_expression(X,Handle,NX),
|
|
atomic_concat([OldAcc,NX,' + '],NewAcc),
|
|
print_expression_or(Y,Handle,NewAcc,Number).
|
|
print_expression_or(X, Handle,OldAcc,Number) :-
|
|
print_expression(X,Handle,NX),
|
|
next_counter(Number),
|
|
format(Handle,'~w = ~w~w~n',[Number,OldAcc,NX]).
|
|
|
|
|
|
print_expression_and((X,Y), Handle,OldAcc,Number) :-
|
|
!,
|
|
print_expression(X,Handle,NX),
|
|
atomic_concat([OldAcc,NX,' * '],NewAcc),
|
|
print_expression_and(Y,Handle,NewAcc,Number).
|
|
print_expression_and(X, Handle,OldAcc,Number) :-
|
|
print_expression(X,Handle,NX),
|
|
next_counter(Number),
|
|
format(Handle,'~w = ~w~w~n',[Number,OldAcc,NX]).
|
|
|
|
|
|
print_expression_and_final((X,Y), Handle,OldAcc,Number) :-
|
|
!,
|
|
atomic_concat([OldAcc,X,' * '],NewAcc),
|
|
print_expression_and_final(Y,Handle,NewAcc,Number).
|
|
print_expression_and_final( true, _Handle,_ACC,'TRUE').
|
|
print_expression_and_final(X, Handle,OldAcc,Number) :-
|
|
next_counter(Number),
|
|
format(Handle,'~w = ~w~w~n',[Number,OldAcc,X]).
|
|
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
print_dot_expression_or((X;Y), Handle,Number) :-
|
|
!,
|
|
print_dot_expression(X,Handle,NX),
|
|
print_dot_line(NX,Number,Handle),
|
|
print_dot_expression_or(Y,Handle,Number).
|
|
print_dot_expression_or(X, Handle,Number) :-
|
|
print_dot_expression(X,Handle,NX),
|
|
print_dot_line(NX,Number,Handle).
|
|
|
|
|
|
print_dot_expression_and((X,Y), Handle,Number) :-
|
|
!,
|
|
print_dot_expression(X,Handle,NX),
|
|
print_dot_line(NX,Number,Handle),
|
|
print_dot_expression_and(Y,Handle,Number).
|
|
print_dot_expression_and(X, Handle,Number) :-
|
|
print_dot_expression(X,Handle,NX),
|
|
print_dot_line(NX,Number,Handle).
|
|
|
|
|
|
|
|
|
|
print_dot_expression(X <=> Y, Handle,N3) :-
|
|
print_dot_expression(X,Handle,N1),
|
|
print_dot_expression(Y,Handle,N2),
|
|
next_counter(N3),
|
|
format(Handle,'~w [label="<=>",shape="diamond", style="filled", color="lightsalmon"];~n',[N3]),
|
|
print_dot_line(N1,N3,Handle),
|
|
print_dot_line(N2,N3,Handle).
|
|
print_dot_expression( (X,Y), Handle,Number) :-
|
|
next_counter(Number),
|
|
format(Handle,'~w [label="^",shape="triangle", style="filled", color="lightgoldenrod"];~n',[Number]),
|
|
print_dot_expression_and((X,Y),Handle,Number).
|
|
print_dot_expression( (X;Y), Handle,Number) :-
|
|
next_counter(Number),
|
|
format(Handle,'~w [label="v",shape="invtriangle", style="filled", color="greenyellow"];~n',[Number]),
|
|
print_dot_expression_or((X;Y),Handle,Number).
|
|
print_dot_expression( \+ '$atom'(X), _Handle,ID) :-
|
|
remember(X,Name),
|
|
atomic_concat(['~',Name],ID).
|
|
print_dot_expression(true, _Handle,'TRUE').
|
|
print_dot_expression( false, _Handle,'FALSE').
|
|
print_dot_expression( '$atom'(X), _Handle,ID) :-
|
|
remember(X,ID).
|
|
|
|
|
|
print_dot_line(N1,N2,Handle) :-
|
|
(
|
|
atomic_concat('~',ID,N1)
|
|
->
|
|
format(Handle,'~w -> ~w [style="dashed, bold"];~n',[ID,N2]);
|
|
format(Handle,'~w -> ~w;~n',[N1,N2])
|
|
).
|
|
|
|
%========================================================================
|
|
%=
|
|
%========================================================================
|
|
|
|
|
|
remember(X,Name) :-
|
|
seen_atom(X,Name,_,_),
|
|
!.
|
|
remember(X,X) :-
|
|
atom(X),
|
|
atom_codes(X,[76|_]), % X='L....'
|
|
!.
|
|
remember(X,Name) :-
|
|
probabilistic_fact(P,X,ID),
|
|
!,
|
|
(
|
|
non_ground_fact(ID)
|
|
->
|
|
(
|
|
next_grounding_id(Grounding_ID),
|
|
atomic_concat([x,ID,'_',Grounding_ID],Name)
|
|
);
|
|
atomic_concat([x,ID],Name)
|
|
),
|
|
assertz(seen_atom(X,Name,ID,P)).
|
|
remember(X,Name) :-
|
|
next_det_counter(Det_ID),
|
|
atomic_concat([y,Det_ID],Name),
|
|
assertz(seen_atom(X,Name,det,1.0)).
|
|
|
|
|
|
next_grounding_id(N) :-
|
|
bb_get(grounding_counter,N),
|
|
N2 is N+1,
|
|
bb_put(grounding_counter,N2).
|
|
|
|
next_det_counter(ID) :-
|
|
bb_get(det_counter,N),
|
|
N2 is N+1,
|
|
atomic_concat(['y',N2],ID),
|
|
bb_put(det_counter,N2).
|
|
|
|
next_counter(ID) :-
|
|
bb_get(counter,N),
|
|
N2 is N+1,
|
|
atomic_concat(['L',N2],ID),
|
|
bb_put(counter,N2).
|
|
|
|
|