3ac73c8881
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1713 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
63 lines
1.5 KiB
Plaintext
63 lines
1.5 KiB
Plaintext
|
|
:- object(primes).
|
|
|
|
:- info([
|
|
version is 1.0,
|
|
author is 'Paulo Moura',
|
|
date is 2006/04/14,
|
|
comment is 'Simple example for comparing single and multi-threading calculation of prime numbers.']).
|
|
|
|
:- threaded.
|
|
|
|
:- public(st_prime_numbers/3).
|
|
:- mode(st_prime_numbers(+integer, +integer, -list), one).
|
|
:- info(st_prime_numbers/3, [
|
|
comment is 'Returns all prime numbers in the given interval using a single calculation thread.',
|
|
argnames is ['Inf', 'Sup', 'Primes']]).
|
|
|
|
:- public(mt_prime_numbers/3).
|
|
:- mode(mt_prime_numbers(+integer, +integer, -list), one).
|
|
:- info(mt_prime_numbers/3, [
|
|
comment is 'Returns all prime numbers in the given interval using two calculation threads.',
|
|
argnames is ['Inf', 'Sup', 'Primes']]).
|
|
|
|
st_prime_numbers(N, M, Primes) :-
|
|
M > N,
|
|
prime_numbers(N, M, [], Primes).
|
|
|
|
mt_prime_numbers(N, M, Primes) :-
|
|
M > N,
|
|
N1 is N + (M - N) // 2,
|
|
N2 is N1 + 1,
|
|
threaded_call(prime_numbers(N, N1, [], Acc)),
|
|
threaded_call(prime_numbers(N2, M, Acc, Primes)),
|
|
threaded_exit(prime_numbers(N, N1, [], Acc)),
|
|
threaded_exit(prime_numbers(N2, M, Acc, Primes)).
|
|
|
|
prime_numbers(N, M, Primes, Primes) :-
|
|
N > M,
|
|
!.
|
|
prime_numbers(N, M, Acc, Primes) :-
|
|
( is_prime(N) ->
|
|
Acc2 = [N| Acc]
|
|
; Acc2 = Acc),
|
|
N2 is N + 1,
|
|
prime_numbers(N2, M, Acc2, Primes).
|
|
|
|
is_prime(2) :- !.
|
|
is_prime(Prime):-
|
|
Prime > 2,
|
|
Prime mod 2 =:= 1,
|
|
Sqrt is sqrt(Prime),
|
|
is_prime(3, Sqrt, Prime).
|
|
|
|
is_prime(N, Sqrt, Prime):-
|
|
( N > Sqrt ->
|
|
true
|
|
; Prime mod N > 0,
|
|
N2 is N + 2,
|
|
is_prime(N2, Sqrt, Prime)
|
|
).
|
|
|
|
:- end_object.
|