git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1580 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
		
			
				
	
	
		
			99 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| =================================================================
 | |
| Logtalk - Object oriented extension to Prolog
 | |
| Release 2.27.1
 | |
| 
 | |
| Copyright (c) 1998-2006 Paulo Moura.  All Rights Reserved.
 | |
| =================================================================
 | |
| 
 | |
| 
 | |
| % start by loading the example:
 | |
| 
 | |
| | ?- logtalk_load(logic(loader)).
 | |
| ...
 | |
| 
 | |
| 
 | |
| % translate a single logic proposition:
 | |
| 
 | |
| | ?- translator::translate((p v ~q) => (r & k), Cs).
 | |
| r :- p.
 | |
| k :- p.
 | |
| q; r :- .
 | |
| q; k :- .
 | |
| 
 | |
| 
 | |
| Cs = [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])]
 | |
| yes
 | |
| 
 | |
| 
 | |
| % translate a single logic proposition printing each translation step:
 | |
| 
 | |
| | ?- translator::step_by_step((p v ~q) => (r & k), Cs).
 | |
| 
 | |
| Processing proposition: p v ~q=>r&k
 | |
| 
 | |
|   1. Remove implications: ~ (p v ~q) v r&k
 | |
|   2. Distribute negation: ~p&q v r&k
 | |
|   3. Remove existential quantifiers: ~p&q v r&k
 | |
|   4. Convert to prenex normal form: ~p&q v r&k
 | |
|   5. Remove universal quantifiers: ~p&q v r&k
 | |
|   6. Convert to conjunctive normal form: (~p v r)&(~p v k)&((q v r)&(q v k))
 | |
|   7. Convert to clauses: [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])]
 | |
| 
 | |
| Clauses in Prolog-like notation:
 | |
| r :- p.
 | |
| k :- p.
 | |
| q; r :- .
 | |
| q; k :- .
 | |
| 
 | |
| 
 | |
| Cs = [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])]
 | |
| yes
 | |
| 
 | |
| 
 | |
| % translate a single logic proposition printing each translation step:
 | |
| 
 | |
| | ?- translator::step_by_step(all(X, exists(Y, p(X) v ~q(X) => r(X, Y))), Cs).
 | |
| 
 | |
| Processing proposition: all(X, exists(Y, p(X)v~q(X)=>r(X, Y)))
 | |
| 
 | |
|   1. Remove implications: all(X, exists(Y, ~ (p(X)v~q(X))v r(X, Y)))
 | |
|   2. Distribute negation: all(X, exists(Y, ~p(X)&q(X)v r(X, Y)))
 | |
|   3. Remove existential quantifiers: all(X, ~p(X)&q(X)v r(X, f1(X)))
 | |
|   4. Convert to prenex normal form: all(X, ~p(X)&q(X)v r(X, f1(X)))
 | |
|   5. Remove universal quantifiers: ~p(X)&q(X)v r(X, f1(X))
 | |
|   6. Convert to conjunctive normal form: (~p(X)v r(X, f1(X)))& (q(X)v r(X, f1(X)))
 | |
|   7. Convert to clauses: [cl([r(X, f1(X))], [p(X)]), cl([q(X), r(X, f1(X))], [])]
 | |
| 
 | |
| Clauses in Prolog-like notation:
 | |
| r(X, f1(X)) :- p(X).
 | |
| q(X); r(X, f1(X)) :- .
 | |
| 
 | |
| 
 | |
| X = X
 | |
| Y = f1(X)
 | |
| Cs = [cl([r(X, f1(X))], [p(X)]), cl([q(X), r(X, f1(X))], [])] 
 | |
| yes
 | |
| 
 | |
| 
 | |
| % translate a single logic proposition printing each translation step:
 | |
| 
 | |
| | ?- translator::step_by_step(all(X, men(X)  => mortal(X)), Cs).
 | |
| 
 | |
| Processing proposition: all(X, men(X)=>mortal(X))
 | |
| 
 | |
|   1. Remove implications: all(X, ~men(X)v mortal(X))
 | |
|   2. Distribute negation: all(X, ~men(X)v mortal(X))
 | |
|   3. Remove existential quantifiers: all(X, ~men(X)v mortal(X))
 | |
|   4. Convert to prenex normal form: all(X, ~men(X)v mortal(X))
 | |
|   5. Remove universal quantifiers: ~men(X)v mortal(X)
 | |
|   6. Convert to conjunctive normal form: ~men(X)v mortal(X)
 | |
|   7. Convert to clauses: [cl([mortal(X)], [men(X)])]
 | |
| 
 | |
| Clauses in Prolog-like notation:
 | |
| mortal(X) :- men(X).
 | |
| 
 | |
| 
 | |
| X = X
 | |
| Cs = [cl([mortal(X)], [men(X)])] 
 | |
| yes
 |