6126 lines
204 KiB
Prolog
6126 lines
204 KiB
Prolog
/* $Id$
|
||
|
||
Part of SWI-Prolog
|
||
|
||
Author: Markus Triska
|
||
E-mail: triska@gmx.at
|
||
WWW: http://www.swi-prolog.org
|
||
Copyright (C): 2007-2010 Markus Triska
|
||
|
||
This program is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU General Public License
|
||
as published by the Free Software Foundation; either version 2
|
||
of the License, or (at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public
|
||
License along with this library; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
||
As a special exception, if you link this library with other files,
|
||
compiled with a Free Software compiler, to produce an executable, this
|
||
library does not by itself cause the resulting executable to be covered
|
||
by the GNU General Public License. This exception does not however
|
||
invalidate any other reasons why the executable file might be covered by
|
||
the GNU General Public License.
|
||
*/
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Thanks to Tom Schrijvers for his "bounds.pl", the first finite
|
||
domain constraint solver included with SWI-Prolog. I've learned a
|
||
lot from it and could even use some of the code for this solver.
|
||
The propagation queue idea is taken from "prop.pl", a prototype
|
||
solver also written by Tom. Highlights of the present solver:
|
||
|
||
Symbolic constants for infinities
|
||
---------------------------------
|
||
|
||
?- X #>= 0, Y #=< 0.
|
||
%@ X in 0..sup,
|
||
%@ Y in inf..0.
|
||
|
||
No artificial limits (using GMP)
|
||
---------------------------------
|
||
|
||
?- N is 2^66, X #\= N.
|
||
%@ N = 73786976294838206464,
|
||
%@ X in inf..73786976294838206463\/73786976294838206465..sup.
|
||
|
||
Often stronger propagation
|
||
---------------------------------
|
||
|
||
?- Y #= abs(X), Y #\= 3, Z * Z #= 4.
|
||
%@ Y in 0..2\/4..sup,
|
||
%@ Y#=abs(X),
|
||
%@ X in inf.. -4\/ -2..2\/4..sup,
|
||
%@ Z in -2\/2.
|
||
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
|
||
Many things can be improved; if you need any additional features or
|
||
want to help, please e-mail me. A good starting point is taking a
|
||
propagation algorithm from the literature and adding it.
|
||
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
/** @pred _X_ #< _B_ is det
|
||
reified implication
|
||
|
||
As an example. consider finding out the people who wanted to sit
|
||
next to a friend and that are are actually sitting together:
|
||
|
||
~~~~~{.prolog}
|
||
preference_satisfied(X-Y, B) :-
|
||
abs(X - Y) #= 1 #<==> B.
|
||
~~~~~
|
||
Note that not all constraints may be reifiable.
|
||
|
||
|
||
*/
|
||
/** @pred _X_ #< _Y_ is semidet
|
||
smaller or equal
|
||
|
||
Arguments to this constraint may be an arithmetic expression with <tt>+</tt>,
|
||
<tt>-</tt>, <tt>\\*</tt>, integer division <tt>/</tt>, <tt>min</tt>, <tt>max</tt>, <tt>sum</tt>,
|
||
<tt>count</tt>, and
|
||
<tt>abs</tt>. Boolean variables support conjunction (/\), disjunction (\/),
|
||
implication (=>), equivalence (<=>), and xor. The <tt>sum</tt> constraint allows a two argument version using the
|
||
`where` conditional, in Zinc style.
|
||
|
||
The send more money equation may be written as:
|
||
|
||
~~~~~{.prolog}
|
||
1000*S + 100*E + 10*N + D +
|
||
1000*M + 100*O + 10*R + E #=
|
||
10000*M + 1000*O + 100*N + 10*E + Y,
|
||
~~~~~
|
||
|
||
This example uses `where` to select from
|
||
column _I_ the elements that have value under _M_:
|
||
|
||
~~~~~{.prolog}
|
||
OutFlow[I] #= sum(J in 1..N where D[J,I]<M, X[J,I])
|
||
~~~~~
|
||
|
||
The <tt>count</tt> constraint counts the number of elements that match a
|
||
certain constant or variable (integer sets are not available).
|
||
|
||
|
||
*/
|
||
/** @pred _X_ #<==> _B_ is det
|
||
reified equivalence
|
||
|
||
*/
|
||
/** @pred _X_ #= _Y_ is semidet
|
||
equality
|
||
|
||
*/
|
||
/** @pred _X_ #=< _Y_ is semidet
|
||
smaller
|
||
|
||
*/
|
||
/** @pred _X_ #==> _B_ is det
|
||
Reified implication
|
||
|
||
*/
|
||
/** @pred _X_ #> _Y_ is semidet
|
||
larger
|
||
|
||
*/
|
||
/** @pred _X_ #>= _Y_ is semidet
|
||
larger or equal
|
||
|
||
*/
|
||
/** @pred _X_ #\= _Y_ is semidet
|
||
disequality
|
||
|
||
*/
|
||
/** @pred all_different( _Vs_ )
|
||
|
||
Verifies whether all elements of a list are different.
|
||
*/
|
||
/** @pred labeling( _Opts_, _Xs_)
|
||
performs labeling, several variable and value selection options are
|
||
available. The defaults are `min` and `min_step`.
|
||
|
||
Variable selection options are as follows:
|
||
|
||
+ leftmost
|
||
choose the first variable
|
||
+ min
|
||
choose one of the variables with smallest minimum value
|
||
+ max
|
||
choose one of the variables with greatest maximum value
|
||
+ ff
|
||
choose one of the most constrained variables, that is, with the smallest
|
||
domain.
|
||
|
||
|
||
Given that we selected a variable, the values chosen for branching may
|
||
be:
|
||
|
||
+ min_step
|
||
smallest value
|
||
+ max_step
|
||
largest value
|
||
+ bisect
|
||
median
|
||
+ enum
|
||
all value starting from the minimum.
|
||
|
||
|
||
|
||
*/
|
||
/** @pred scalar_product(+ _Cs_, + _Vs_, + _Rel_, ? _V_ )
|
||
|
||
The product of constant _Cs_ by _Vs_ must be in relation
|
||
_Rel_ with _V_ .
|
||
|
||
|
||
*/
|
||
/** @pred transpose(+ _Graph_, - _NewGraph_)
|
||
|
||
|
||
Unify _NewGraph_ with a new graph obtained from _Graph_ by
|
||
replacing all edges of the form _V1-V2_ by edges of the form
|
||
_V2-V1_. The cost is `O(|V|^2)`. In the next example:
|
||
|
||
~~~~~{.prolog}
|
||
?- transpose([1-[3,5],2-[4],3-[],
|
||
4-[5],5-[],6-[],7-[],8-[]], NL).
|
||
|
||
NL = [1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]
|
||
~~~~~
|
||
Notice that an undirected graph is its own transpose.
|
||
|
||
|
||
*/
|
||
:- module(clpfd, [
|
||
op(760, yfx, #<==>),
|
||
op(750, xfy, #==>),
|
||
op(750, yfx, #<==),
|
||
op(740, yfx, #\/),
|
||
op(730, yfx, #\),
|
||
op(720, yfx, #/\),
|
||
op(710, fy, #\),
|
||
op(700, xfx, #>),
|
||
op(700, xfx, #<),
|
||
op(700, xfx, #>=),
|
||
op(700, xfx, #=<),
|
||
op(700, xfx, #=),
|
||
op(700, xfx, #\=),
|
||
op(700, xfx, in),
|
||
op(700, xfx, ins),
|
||
op(450, xfx, ..), % should bind more tightly than \/
|
||
(#>)/2,
|
||
(#<)/2,
|
||
(#>=)/2,
|
||
(#=<)/2,
|
||
(#=)/2,
|
||
(#\=)/2,
|
||
(#\)/1,
|
||
(#<==>)/2,
|
||
(#==>)/2,
|
||
(#<==)/2,
|
||
(#\/)/2,
|
||
(#/\)/2,
|
||
in/2,
|
||
ins/2,
|
||
all_different/1,
|
||
all_distinct/1,
|
||
sum/3,
|
||
scalar_product/4,
|
||
tuples_in/2,
|
||
labeling/2,
|
||
label/1,
|
||
indomain/1,
|
||
lex_chain/1,
|
||
serialized/2,
|
||
global_cardinality/2,
|
||
global_cardinality/3,
|
||
circuit/1,
|
||
element/3,
|
||
automaton/3,
|
||
automaton/8,
|
||
transpose/2,
|
||
zcompare/3,
|
||
chain/2,
|
||
fd_var/1,
|
||
fd_inf/2,
|
||
fd_sup/2,
|
||
fd_size/2,
|
||
fd_dom/2
|
||
]).
|
||
|
||
|
||
:- expects_dialect(swi).
|
||
|
||
:- use_module(library(assoc)).
|
||
:- use_module(library(apply)).
|
||
:- use_module(library(error)).
|
||
:- use_module(library(lists)).
|
||
:- use_module(library(pairs)).
|
||
|
||
|
||
:- op(700, xfx, cis).
|
||
:- op(700, xfx, cis_geq).
|
||
:- op(700, xfx, cis_gt).
|
||
:- op(700, xfx, cis_leq).
|
||
:- op(700, xfx, cis_lt).
|
||
|
||
/** <module> Constraint Logic Programming over Finite Domains
|
||
|
||
Constraint programming is a declarative formalism that lets you
|
||
describe conditions a solution must satisfy. This library provides
|
||
CLP(FD), Constraint Logic Programming over Finite Domains. It can be
|
||
used to model and solve various combinatorial problems such as
|
||
planning, scheduling and allocation tasks.
|
||
|
||
Most predicates of this library are finite domain _constraints_, which
|
||
are relations over integers. They generalise arithmetic evaluation of
|
||
integer expressions in that propagation can proceed in all directions.
|
||
This library also provides _enumeration_ _predicates_, which let you
|
||
systematically search for solutions on variables whose domains have
|
||
become finite. A finite domain _expression_ is one of:
|
||
|
||
| an integer | Given value |
|
||
| a variable | Unknown value |
|
||
| -Expr | Unary minus |
|
||
| Expr + Expr | Addition |
|
||
| Expr * Expr | Multiplication |
|
||
| Expr - Expr | Subtraction |
|
||
| min(Expr,Expr) | Minimum of two expressions |
|
||
| max(Expr,Expr) | Maximum of two expressions |
|
||
| Expr mod Expr | Remainder of integer division |
|
||
| abs(Expr) | Absolute value |
|
||
| Expr / Expr | Integer division |
|
||
|
||
The most important finite domain constraints are:
|
||
|
||
| Expr1 #>= Expr2 | Expr1 is larger than or equal to Expr2 |
|
||
| Expr1 #=< Expr2 | Expr1 is smaller than or equal to Expr2 |
|
||
| Expr1 #= Expr2 | Expr1 equals Expr2 |
|
||
| Expr1 #\= Expr2 | Expr1 is not equal to Expr2 |
|
||
| Expr1 #> Expr2 | Expr1 is strictly larger than Expr2 |
|
||
| Expr1 #< Expr2 | Expr1 is strictly smaller than Expr2 |
|
||
|
||
The constraints in/2, #=/2, #\=/2, #</2, #>/2, #=</2, and #>=/2 can be
|
||
_reified_, which means reflecting their truth values into Boolean
|
||
values represented by the integers 0 and 1. Let P and Q denote
|
||
reifiable constraints or Boolean variables, then:
|
||
|
||
| #\ Q | True iff Q is false |
|
||
| P #\/ Q | True iff either P or Q |
|
||
| P #/\ Q | True iff both P and Q |
|
||
| P #<==> Q | True iff P and Q are equivalent |
|
||
| P #==> Q | True iff P implies Q |
|
||
| P #<== Q | True iff Q implies P |
|
||
|
||
The constraints of this table are reifiable as well. If a variable
|
||
occurs at the place of a constraint that is being reified, it is
|
||
implicitly constrained to the Boolean values 0 and 1. Therefore, the
|
||
following queries all fail: ?- #\ 2., ?- #\ #\ 2. etc.
|
||
|
||
A common usage of this library is to first post the desired
|
||
constraints among the variables of a model, and then to use
|
||
enumeration predicates to search for solutions. As an example of a
|
||
constraint satisfaction problem, consider the cryptoarithmetic puzzle
|
||
SEND + MORE = MONEY, where different letters denote distinct integers
|
||
between 0 and 9. It can be modeled in CLP(FD) as follows:
|
||
|
||
==
|
||
:- use_module(library(clpfd)).
|
||
|
||
puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
|
||
Vars = [S,E,N,D,M,O,R,Y],
|
||
Vars ins 0..9,
|
||
all_different(Vars),
|
||
S*1000 + E*100 + N*10 + D +
|
||
M*1000 + O*100 + R*10 + E #=
|
||
M*10000 + O*1000 + N*100 + E*10 + Y,
|
||
M #\= 0, S #\= 0.
|
||
==
|
||
|
||
Sample query and its result:
|
||
|
||
==
|
||
?- puzzle(As+Bs=Cs).
|
||
As = [9, _G10107, _G10110, _G10113],
|
||
Bs = [1, 0, _G10128, _G10107],
|
||
Cs = [1, 0, _G10110, _G10107, _G10152],
|
||
_G10107 in 4..7,
|
||
1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,
|
||
all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),
|
||
_G10110 in 5..8,
|
||
_G10113 in 2..8,
|
||
_G10128 in 2..8,
|
||
_G10152 in 2..8.
|
||
==
|
||
|
||
Here, the constraint solver has deduced more stringent bounds for all
|
||
variables. Keeping the modeling part separate from the search lets you
|
||
view these residual goals, observe termination and determinism
|
||
properties of the modeling part in isolation from the search, and more
|
||
easily experiment with different search strategies. Labeling can then
|
||
be used to search for solutions:
|
||
|
||
==
|
||
?- puzzle(As+Bs=Cs), label(As).
|
||
As = [9, 5, 6, 7],
|
||
Bs = [1, 0, 8, 5],
|
||
Cs = [1, 0, 6, 5, 2] ;
|
||
false.
|
||
==
|
||
|
||
In this case, it suffices to label a subset of variables to find the
|
||
puzzle's unique solution, since the constraint solver is strong enough
|
||
to reduce the domains of remaining variables to singleton sets. In
|
||
general though, it is necessary to label all variables to obtain
|
||
ground solutions.
|
||
|
||
You can also use CLP(FD) constraints as a more declarative alternative
|
||
for ordinary integer arithmetic with is/2, >/2 etc. For example:
|
||
|
||
==
|
||
:- use_module(library(clpfd)).
|
||
|
||
fac(0, 1).
|
||
fac(N, F) :- N #> 0, N1 #= N - 1, F #= N * F1, fac(N1, F1).
|
||
==
|
||
|
||
This predicate can be used in all directions. For example:
|
||
|
||
==
|
||
?- fac(47, F).
|
||
F = 258623241511168180642964355153611979969197632389120000000000 ;
|
||
false.
|
||
|
||
?- fac(N, 1).
|
||
N = 0 ;
|
||
N = 1 ;
|
||
false.
|
||
|
||
?- fac(N, 3).
|
||
false.
|
||
==
|
||
|
||
To make the predicate terminate if any argument is instantiated, add
|
||
the (implied) constraint F #\= 0 before the recursive call. Otherwise,
|
||
the query fac(N, 0) is the only non-terminating case of this kind.
|
||
|
||
This library uses goal_expansion/2 to rewrite constraints at
|
||
compilation time. The expansion's aim is to transparently bring the
|
||
performance of CLP(FD) constraints close to that of conventional
|
||
arithmetic predicates (</2, =:=/2, is/2 etc.) when the constraints are
|
||
used in modes that can also be handled by built-in arithmetic. To
|
||
disable the expansion, set the flag clpfd_goal_expansion to false.
|
||
|
||
Use call_residue_vars/2 and copy_term/3 to inspect residual goals and
|
||
the constraints in which a variable is involved. This library also
|
||
provides _reflection_ predicates (like fd_dom/2, fd_size/2 etc.) with
|
||
which you can inspect a variable's current domain. These predicates
|
||
can be useful if you want to implement your own labeling strategies.
|
||
|
||
You can also define custom constraints. The mechanism to do this is
|
||
not yet finalised, and we welcome suggestions and descriptions of use
|
||
cases that are important to you. As an example of how it can be done
|
||
currently, let us define a new custom constraint "oneground(X,Y,Z)",
|
||
where Z shall be 1 if at least one of X and Y is instantiated:
|
||
|
||
==
|
||
:- use_module(library(clpfd)).
|
||
|
||
:- multifile clpfd:run_propagator/2.
|
||
|
||
oneground(X, Y, Z) :-
|
||
clpfd:make_propagator(oneground(X, Y, Z), Prop),
|
||
clpfd:init_propagator(X, Prop),
|
||
clpfd:init_propagator(Y, Prop),
|
||
clpfd:trigger_once(Prop).
|
||
|
||
clpfd:run_propagator(oneground(X, Y, Z), MState) :-
|
||
( integer(X) -> clpfd:kill(MState), Z = 1
|
||
; integer(Y) -> clpfd:kill(MState), Z = 1
|
||
; true
|
||
).
|
||
==
|
||
|
||
First, clpfd:make_propagator/2 is used to transform a user-defined
|
||
representation of the new constraint to an internal form. With
|
||
clpfd:init_propagator/2, this internal form is then attached to X and
|
||
Y. From now on, the propagator will be invoked whenever the domains of
|
||
X or Y are changed. Then, clpfd:trigger_once/1 is used to give the
|
||
propagator its first chance for propagation even though the variables'
|
||
domains have not yet changed. Finally, clpfd:run_propagator/2 is
|
||
extended to define the actual propagator. As explained, this predicate
|
||
is automatically called by the constraint solver. The first argument
|
||
is the user-defined representation of the constraint as used in
|
||
clpfd:make_propagator/2, and the second argument is a mutable state
|
||
that can be used to prevent further invocations of the propagator when
|
||
the constraint has become entailed, by using clpfd:kill/1. An example
|
||
of using the new constraint:
|
||
|
||
==
|
||
?- oneground(X, Y, Z), Y = 5.
|
||
Y = 5,
|
||
Z = 1,
|
||
X in inf..sup.
|
||
==
|
||
|
||
@author Markus Triska
|
||
*/
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
A bound is either:
|
||
|
||
n(N): integer N
|
||
inf: infimum of Z (= negative infinity)
|
||
sup: supremum of Z (= positive infinity)
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
is_bound(n(N)) :- integer(N).
|
||
is_bound(inf).
|
||
is_bound(sup).
|
||
|
||
defaulty_to_bound(D, P) :- ( integer(D) -> P = n(D) ; P = D ).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Compactified is/2 and predicates for several arithmetic expressions
|
||
with infinities, tailored for the modes needed by this solver.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
% cis_gt only works for terms of depth 0 on both sides
|
||
cis_gt(n(N), B) :- cis_gt_numeric(B, N).
|
||
cis_gt(sup, B0) :- B0 \== sup.
|
||
|
||
cis_gt_numeric(n(B), A) :- A > B.
|
||
cis_gt_numeric(inf, _).
|
||
|
||
cis_geq(A, B) :-
|
||
( cis_gt(A, B) -> true
|
||
; A == B
|
||
).
|
||
|
||
cis_geq_zero(sup).
|
||
cis_geq_zero(n(N)) :- N >= 0.
|
||
|
||
cis_lt(A, B) :- cis_gt(B, A).
|
||
|
||
cis_leq(A, B) :- cis_geq(B, A).
|
||
|
||
cis_min(inf, _, inf).
|
||
cis_min(sup, B, B).
|
||
cis_min(n(N), B, Min) :- cis_min_(B, N, Min).
|
||
|
||
cis_min_(inf, _, inf).
|
||
cis_min_(sup, N, n(N)).
|
||
cis_min_(n(B), A, n(M)) :- M is min(A,B).
|
||
|
||
cis_max(sup, _, sup).
|
||
cis_max(inf, B, B).
|
||
cis_max(n(N), B, Max) :- cis_max_(B, N, Max).
|
||
|
||
cis_max_(inf, N, n(N)).
|
||
cis_max_(sup, _, sup).
|
||
cis_max_(n(B), A, n(M)) :- M is max(A,B).
|
||
|
||
cis_plus(inf, _, inf).
|
||
cis_plus(sup, _, sup).
|
||
cis_plus(n(A), B, Plus) :- cis_plus_(B, A, Plus).
|
||
|
||
cis_plus_(sup, _, sup).
|
||
cis_plus_(inf, _, inf).
|
||
cis_plus_(n(B), A, n(S)) :- S is A + B.
|
||
|
||
cis_minus(inf, _, inf).
|
||
cis_minus(sup, _, sup).
|
||
cis_minus(n(A), B, M) :- cis_minus_(B, A, M).
|
||
|
||
cis_minus_(inf, _, sup).
|
||
cis_minus_(sup, _, inf).
|
||
cis_minus_(n(B), A, n(M)) :- M is A - B.
|
||
|
||
cis_uminus(inf, sup).
|
||
cis_uminus(sup, inf).
|
||
cis_uminus(n(A), n(B)) :- B is -A.
|
||
|
||
cis_abs(inf, sup).
|
||
cis_abs(sup, sup).
|
||
cis_abs(n(A), n(B)) :- B is abs(A).
|
||
|
||
cis_times(inf, B, P) :-
|
||
( B cis_lt n(0) -> P = sup
|
||
; B cis_gt n(0) -> P = inf
|
||
; P = n(0)
|
||
).
|
||
cis_times(sup, B, P) :-
|
||
( B cis_gt n(0) -> P = sup
|
||
; B cis_lt n(0) -> P = inf
|
||
; P = n(0)
|
||
).
|
||
cis_times(n(N), B, P) :- cis_times_(B, N, P).
|
||
|
||
cis_times_(inf, A, P) :- cis_times(inf, n(A), P).
|
||
cis_times_(sup, A, P) :- cis_times(sup, n(A), P).
|
||
cis_times_(n(B), A, n(P)) :- P is A * B.
|
||
|
||
cis_exp(inf, Y, R) :-
|
||
( Y mod 2 =:= 0 -> R = sup
|
||
; R = inf
|
||
).
|
||
cis_exp(sup, _, sup).
|
||
cis_exp(n(N), Y, n(R)) :- R is N^Y.
|
||
|
||
% compactified is/2 for expressions of interest
|
||
|
||
goal_expansion(A cis B, Expansion) :-
|
||
phrase(cis_goals(B, A), Goals),
|
||
list_goal(Goals, Expansion).
|
||
|
||
cis_goals(V, V) --> { var(V) }, !.
|
||
cis_goals(n(N), n(N)) --> [].
|
||
cis_goals(inf, inf) --> [].
|
||
cis_goals(sup, sup) --> [].
|
||
cis_goals(sign(A0), R) --> cis_goals(A0, A), [cis_sign(A, R)].
|
||
cis_goals(abs(A0), R) --> cis_goals(A0, A), [cis_abs(A, R)].
|
||
cis_goals(-A0, R) --> cis_goals(A0, A), [cis_uminus(A, R)].
|
||
cis_goals(A0+B0, R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_plus(A, B, R)].
|
||
cis_goals(A0-B0, R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_minus(A, B, R)].
|
||
cis_goals(min(A0,B0), R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_min(A, B, R)].
|
||
cis_goals(max(A0,B0), R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_max(A, B, R)].
|
||
cis_goals(A0*B0, R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_times(A, B, R)].
|
||
cis_goals(div(A0,B0), R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_div(A, B, R)].
|
||
cis_goals(A0//B0, R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_slash(A, B, R)].
|
||
cis_goals(A0^B0, R) -->
|
||
cis_goals(A0, A),
|
||
cis_goals(B0, B),
|
||
[cis_exp(A, B, R)].
|
||
|
||
list_goal([], true).
|
||
list_goal([C|Cs], Goal) :- list_goal_(Cs, C, Goal).
|
||
|
||
list_goal_([], G, G).
|
||
list_goal_([C|Cs], G0, G) :- list_goal_(Cs, (G0,C), G).
|
||
|
||
|
||
cis_sign(sup, n(1)).
|
||
cis_sign(inf, n(-1)).
|
||
cis_sign(n(N), n(S)) :-
|
||
( N < 0 -> S = -1
|
||
; N > 0 -> S = 1
|
||
; S = 0
|
||
).
|
||
|
||
cis_div(sup, Y, Z) :- ( cis_geq_zero(Y) -> Z = sup ; Z = inf ).
|
||
cis_div(inf, Y, Z) :- ( cis_geq_zero(Y) -> Z = inf ; Z = sup ).
|
||
cis_div(n(X), Y, Z) :- cis_div_(Y, X, Z).
|
||
|
||
cis_div_(sup, _, n(0)).
|
||
cis_div_(inf, _, n(0)).
|
||
cis_div_(n(Y), X, Z) :-
|
||
( Y =:= 0 -> ( X >= 0 -> Z = sup ; Z = inf )
|
||
; Z0 is X // Y, Z = n(Z0)
|
||
).
|
||
|
||
cis_slash(sup, _, sup).
|
||
cis_slash(inf, _, inf).
|
||
cis_slash(n(N), B, S) :- cis_slash_(B, N, S).
|
||
|
||
cis_slash_(sup, _, n(0)).
|
||
cis_slash_(inf, _, n(0)).
|
||
cis_slash_(n(B), A, n(S)) :- S is A // B.
|
||
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
A domain is a finite set of disjoint intervals. Internally, domains
|
||
are represented as trees. Each node is one of:
|
||
|
||
empty: empty domain.
|
||
|
||
split(N, Left, Right)
|
||
- split on integer N, with Left and Right domains whose elements are
|
||
all less than and greater than N, respectively. The domain is the
|
||
union of Left and Right, i.e., N is a hole.
|
||
|
||
from_to(From, To)
|
||
- interval (From-1, To+1); From and To are bounds
|
||
|
||
Desiderata: rebalance domains; singleton intervals.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Type definition and inspection of domains.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
check_domain(D) :-
|
||
( var(D) -> instantiation_error(D)
|
||
; is_domain(D) -> true
|
||
; domain_error(clpfd_domain, D)
|
||
).
|
||
|
||
is_domain(empty).
|
||
is_domain(from_to(From,To)) :-
|
||
is_bound(From), is_bound(To),
|
||
From cis_leq To.
|
||
is_domain(split(S, Left, Right)) :-
|
||
integer(S),
|
||
is_domain(Left), is_domain(Right),
|
||
all_less_than(Left, S),
|
||
all_greater_than(Right, S).
|
||
|
||
all_less_than(empty, _).
|
||
all_less_than(from_to(From,To), S) :-
|
||
From cis_lt n(S), To cis_lt n(S).
|
||
all_less_than(split(S0,Left,Right), S) :-
|
||
S0 < S,
|
||
all_less_than(Left, S),
|
||
all_less_than(Right, S).
|
||
|
||
all_greater_than(empty, _).
|
||
all_greater_than(from_to(From,To), S) :-
|
||
From cis_gt n(S), To cis_gt n(S).
|
||
all_greater_than(split(S0,Left,Right), S) :-
|
||
S0 > S,
|
||
all_greater_than(Left, S),
|
||
all_greater_than(Right, S).
|
||
|
||
default_domain(from_to(inf,sup)).
|
||
|
||
domain_infimum(from_to(I, _), I).
|
||
domain_infimum(split(_, Left, _), I) :- domain_infimum(Left, I).
|
||
|
||
domain_supremum(from_to(_, S), S).
|
||
domain_supremum(split(_, _, Right), S) :- domain_supremum(Right, S).
|
||
|
||
domain_num_elements(empty, n(0)).
|
||
domain_num_elements(from_to(From,To), Num) :- Num cis To - From + n(1).
|
||
domain_num_elements(split(_, Left, Right), Num) :-
|
||
domain_num_elements(Left, NL),
|
||
domain_num_elements(Right, NR),
|
||
Num cis NL + NR.
|
||
|
||
domain_direction_element(from_to(n(From), n(To)), Dir, E) :-
|
||
( Dir == up -> between(From, To, E)
|
||
; between(From, To, E0),
|
||
E is To - (E0 - From)
|
||
).
|
||
domain_direction_element(split(_, D1, D2), Dir, E) :-
|
||
( Dir == up ->
|
||
( domain_direction_element(D1, Dir, E)
|
||
; domain_direction_element(D2, Dir, E)
|
||
)
|
||
; ( domain_direction_element(D2, Dir, E)
|
||
; domain_direction_element(D1, Dir, E)
|
||
)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Test whether domain contains a given integer.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_contains(from_to(From,To), I) :-
|
||
domain_contains_from(From, I),
|
||
domain_contains_to(To, I).
|
||
domain_contains(split(S, Left, Right), I) :-
|
||
( I < S -> domain_contains(Left, I)
|
||
; I > S -> domain_contains(Right, I)
|
||
).
|
||
|
||
domain_contains_from(inf, _).
|
||
domain_contains_from(n(L), I) :- L =< I.
|
||
|
||
domain_contains_to(sup, _).
|
||
domain_contains_to(n(U), I) :- I =< U.
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Test whether a domain contains another domain.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_subdomain(Dom, Sub) :- domain_subdomain(Dom, Dom, Sub).
|
||
|
||
domain_subdomain(from_to(_,_), Dom, Sub) :-
|
||
domain_subdomain_fromto(Sub, Dom).
|
||
domain_subdomain(split(_, _, _), Dom, Sub) :-
|
||
domain_subdomain_split(Sub, Dom, Sub).
|
||
|
||
domain_subdomain_split(empty, _, _).
|
||
domain_subdomain_split(from_to(From,To), split(S,Left0,Right0), Sub) :-
|
||
( To cis_lt n(S) -> domain_subdomain(Left0, Left0, Sub)
|
||
; From cis_gt n(S) -> domain_subdomain(Right0, Right0, Sub)
|
||
).
|
||
domain_subdomain_split(split(_,Left,Right), Dom, _) :-
|
||
domain_subdomain(Dom, Dom, Left),
|
||
domain_subdomain(Dom, Dom, Right).
|
||
|
||
domain_subdomain_fromto(empty, _).
|
||
domain_subdomain_fromto(from_to(From,To), from_to(From0,To0)) :-
|
||
From0 cis_leq From, To0 cis_geq To.
|
||
domain_subdomain_fromto(split(_,Left,Right), Dom) :-
|
||
domain_subdomain_fromto(Left, Dom),
|
||
domain_subdomain_fromto(Right, Dom).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Remove an integer from a domain. The domain is traversed until an
|
||
interval is reached from which the element can be removed, or until
|
||
it is clear that no such interval exists.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_remove(empty, _, empty).
|
||
domain_remove(from_to(L0, U0), X, D) :- domain_remove_(L0, U0, X, D).
|
||
domain_remove(split(S, Left0, Right0), X, D) :-
|
||
( X =:= S -> D = split(S, Left0, Right0)
|
||
; X < S ->
|
||
domain_remove(Left0, X, Left1),
|
||
( Left1 == empty -> D = Right0
|
||
; D = split(S, Left1, Right0)
|
||
)
|
||
; domain_remove(Right0, X, Right1),
|
||
( Right1 == empty -> D = Left0
|
||
; D = split(S, Left0, Right1)
|
||
)
|
||
).
|
||
|
||
%?- domain_remove(from_to(n(0),n(5)), 3, D).
|
||
|
||
domain_remove_(inf, U0, X, D) :-
|
||
( U0 == n(X) -> U1 is X - 1, D = from_to(inf, n(U1))
|
||
; U0 cis_lt n(X) -> D = from_to(inf,U0)
|
||
; L1 is X + 1, U1 is X - 1,
|
||
D = split(X, from_to(inf, n(U1)), from_to(n(L1),U0))
|
||
).
|
||
domain_remove_(n(N), U0, X, D) :- domain_remove_upper(U0, N, X, D).
|
||
|
||
domain_remove_upper(sup, L0, X, D) :-
|
||
( L0 =:= X -> L1 is X + 1, D = from_to(n(L1),sup)
|
||
; L0 > X -> D = from_to(n(L0),sup)
|
||
; L1 is X + 1, U1 is X - 1,
|
||
D = split(X, from_to(n(L0),n(U1)), from_to(n(L1),sup))
|
||
).
|
||
domain_remove_upper(n(U0), L0, X, D) :-
|
||
( L0 =:= U0, X =:= L0 -> D = empty
|
||
; L0 =:= X -> L1 is X + 1, D = from_to(n(L1), n(U0))
|
||
; U0 =:= X -> U1 is X - 1, D = from_to(n(L0), n(U1))
|
||
; between(L0, U0, X) ->
|
||
U1 is X - 1, L1 is X + 1,
|
||
D = split(X, from_to(n(L0), n(U1)), from_to(n(L1), n(U0)))
|
||
; D = from_to(n(L0),n(U0))
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Remove all elements greater than / less than a constant.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_remove_greater_than(empty, _, empty).
|
||
domain_remove_greater_than(from_to(From0,To0), G, D) :-
|
||
( From0 cis_gt n(G) -> D = empty
|
||
; To cis min(To0,n(G)), D = from_to(From0,To)
|
||
).
|
||
domain_remove_greater_than(split(S,Left0,Right0), G, D) :-
|
||
( S =< G ->
|
||
domain_remove_greater_than(Right0, G, Right),
|
||
( Right == empty -> D = Left0
|
||
; D = split(S, Left0, Right)
|
||
)
|
||
; domain_remove_greater_than(Left0, G, D)
|
||
).
|
||
|
||
domain_remove_smaller_than(empty, _, empty).
|
||
domain_remove_smaller_than(from_to(From0,To0), V, D) :-
|
||
( To0 cis_lt n(V) -> D = empty
|
||
; From cis max(From0,n(V)), D = from_to(From,To0)
|
||
).
|
||
domain_remove_smaller_than(split(S,Left0,Right0), V, D) :-
|
||
( S >= V ->
|
||
domain_remove_smaller_than(Left0, V, Left),
|
||
( Left == empty -> D = Right0
|
||
; D = split(S, Left, Right0)
|
||
)
|
||
; domain_remove_smaller_than(Right0, V, D)
|
||
).
|
||
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Remove a whole domain from another domain. (Set difference.)
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_subtract(Dom0, Sub, Dom) :- domain_subtract(Dom0, Dom0, Sub, Dom).
|
||
|
||
domain_subtract(empty, _, _, empty).
|
||
domain_subtract(from_to(From0,To0), Dom, Sub, D) :-
|
||
( Sub == empty -> D = Dom
|
||
; Sub = from_to(From,To) ->
|
||
( From == To -> From = n(X), domain_remove(Dom, X, D)
|
||
; From cis_gt To0 -> D = Dom
|
||
; To cis_lt From0 -> D = Dom
|
||
; From cis_leq From0 ->
|
||
( To cis_geq To0 -> D = empty
|
||
; From1 cis To + n(1),
|
||
D = from_to(From1, To0)
|
||
)
|
||
; To1 cis From - n(1),
|
||
( To cis_lt To0 ->
|
||
From = n(S),
|
||
From2 cis To + n(1),
|
||
D = split(S,from_to(From0,To1),from_to(From2,To0))
|
||
; D = from_to(From0,To1)
|
||
)
|
||
)
|
||
; Sub = split(S, Left, Right) ->
|
||
( n(S) cis_gt To0 -> domain_subtract(Dom, Dom, Left, D)
|
||
; n(S) cis_lt From0 -> domain_subtract(Dom, Dom, Right, D)
|
||
; domain_subtract(Dom, Dom, Left, D1),
|
||
domain_subtract(D1, D1, Right, D)
|
||
)
|
||
).
|
||
domain_subtract(split(S, Left0, Right0), _, Sub, D) :-
|
||
domain_subtract(Left0, Left0, Sub, Left),
|
||
domain_subtract(Right0, Right0, Sub, Right),
|
||
( Left == empty -> D = Right
|
||
; Right == empty -> D = Left
|
||
; D = split(S, Left, Right)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Complement of a domain
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_complement(D, C) :-
|
||
default_domain(Default),
|
||
domain_subtract(Default, D, C).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Convert domain to a list of disjoint intervals From-To.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_intervals(D, Is) :- phrase(domain_intervals(D), Is).
|
||
|
||
domain_intervals(split(_, Left, Right)) -->
|
||
domain_intervals(Left), domain_intervals(Right).
|
||
domain_intervals(empty) --> [].
|
||
domain_intervals(from_to(From,To)) --> [From-To].
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
To compute the intersection of two domains D1 and D2, we choose D1
|
||
as the reference domain. For each interval of D1, we compute how
|
||
far and to which values D2 lets us extend it.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domains_intersection(D1, D2, Intersection) :-
|
||
domains_intersection_(D1, D2, Intersection),
|
||
Intersection \== empty.
|
||
|
||
domains_intersection_(empty, _, empty).
|
||
domains_intersection_(from_to(L0,U0), D2, Dom) :-
|
||
narrow(D2, L0, U0, Dom).
|
||
domains_intersection_(split(S,Left0,Right0), D2, Dom) :-
|
||
domains_intersection_(Left0, D2, Left1),
|
||
domains_intersection_(Right0, D2, Right1),
|
||
( Left1 == empty -> Dom = Right1
|
||
; Right1 == empty -> Dom = Left1
|
||
; Dom = split(S, Left1, Right1)
|
||
).
|
||
|
||
narrow(empty, _, _, empty).
|
||
narrow(from_to(L0,U0), From0, To0, Dom) :-
|
||
From1 cis max(From0,L0), To1 cis min(To0,U0),
|
||
( From1 cis_gt To1 -> Dom = empty
|
||
; Dom = from_to(From1,To1)
|
||
).
|
||
narrow(split(S, Left0, Right0), From0, To0, Dom) :-
|
||
( To0 cis_lt n(S) -> narrow(Left0, From0, To0, Dom)
|
||
; From0 cis_gt n(S) -> narrow(Right0, From0, To0, Dom)
|
||
; narrow(Left0, From0, To0, Left1),
|
||
narrow(Right0, From0, To0, Right1),
|
||
( Left1 == empty -> Dom = Right1
|
||
; Right1 == empty -> Dom = Left1
|
||
; Dom = split(S, Left1, Right1)
|
||
)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Union of 2 domains.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domains_union(D1, D2, Union) :-
|
||
domain_intervals(D1, Is1),
|
||
domain_intervals(D2, Is2),
|
||
append(Is1, Is2, IsU0),
|
||
merge_intervals(IsU0, IsU1),
|
||
intervals_to_domain(IsU1, Union).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Shift the domain by an offset.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_shift(empty, _, empty).
|
||
domain_shift(from_to(From0,To0), O, from_to(From,To)) :-
|
||
From cis From0 + n(O), To cis To0 + n(O).
|
||
domain_shift(split(S0, Left0, Right0), O, split(S, Left, Right)) :-
|
||
S is S0 + O,
|
||
domain_shift(Left0, O, Left),
|
||
domain_shift(Right0, O, Right).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
The new domain contains all values of the old domain,
|
||
multiplied by a constant multiplier.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_expand(D0, M, D) :-
|
||
( M < 0 ->
|
||
domain_negate(D0, D1),
|
||
M1 is abs(M),
|
||
domain_expand_(D1, M1, D)
|
||
; M =:= 1 -> D = D0
|
||
; domain_expand_(D0, M, D)
|
||
).
|
||
|
||
domain_expand_(empty, _, empty).
|
||
domain_expand_(from_to(From0, To0), M, from_to(From,To)) :-
|
||
From cis From0*n(M),
|
||
To cis To0*n(M).
|
||
domain_expand_(split(S0, Left0, Right0), M, split(S, Left, Right)) :-
|
||
S is M*S0,
|
||
domain_expand_(Left0, M, Left),
|
||
domain_expand_(Right0, M, Right).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
similar to domain_expand/3, tailored for division: an interval
|
||
[From,To] is extended to [From*M, ((To+1)*M - 1)], i.e., to all
|
||
values that integer-divided by M yield a value from interval.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_expand_more(D0, M, D) :-
|
||
%format("expanding ~w by ~w\n", [D0,M]),
|
||
( M < 0 -> domain_negate(D0, D1), M1 is abs(M)
|
||
; D1 = D0, M1 = M
|
||
),
|
||
domain_expand_more_(D1, M1, D).
|
||
%format("yield: ~w\n", [D]).
|
||
|
||
domain_expand_more_(empty, _, empty).
|
||
domain_expand_more_(from_to(From0, To0), M, from_to(From,To)) :-
|
||
( From0 cis_lt n(0) ->
|
||
From cis (From0-n(1))*n(M) + n(1)
|
||
; From cis From0*n(M)
|
||
),
|
||
( To0 cis_lt n(0) ->
|
||
To cis To0*n(M)
|
||
; To cis (To0+n(1))*n(M) - n(1)
|
||
).
|
||
domain_expand_more_(split(S0, Left0, Right0), M, D) :-
|
||
S is M*S0,
|
||
domain_expand_more_(Left0, M, Left),
|
||
domain_expand_more_(Right0, M, Right),
|
||
domain_supremum(Left, LeftSup),
|
||
domain_infimum(Right, RightInf),
|
||
( LeftSup cis_lt n(S), n(S) cis_lt RightInf ->
|
||
D = split(S, Left, Right)
|
||
; domain_infimum(Left, Inf),
|
||
domain_supremum(Right, Sup),
|
||
D = from_to(Inf, Sup)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Scale a domain down by a constant multiplier. Assuming (//)/2.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_contract(D0, M, D) :-
|
||
%format("contracting ~w by ~w\n", [D0,M]),
|
||
( M < 0 -> domain_negate(D0, D1), M1 is abs(M)
|
||
; D1 = D0, M1 = M
|
||
),
|
||
domain_contract_(D1, M1, D).
|
||
|
||
domain_contract_(empty, _, empty).
|
||
domain_contract_(from_to(From0, To0), M, from_to(From,To)) :-
|
||
( cis_geq_zero(From0) ->
|
||
From cis (From0 + n(M) - n(1)) // n(M)
|
||
; From cis From0 // n(M)
|
||
),
|
||
( cis_geq_zero(To0) ->
|
||
To cis To0 // n(M)
|
||
; To cis (To0 - n(M) + n(1)) // n(M)
|
||
).
|
||
domain_contract_(split(S0,Left0,Right0), M, D) :-
|
||
S is S0 // M,
|
||
% Scaled down domains do not necessarily retain any holes of
|
||
% the original domain.
|
||
domain_contract_(Left0, M, Left),
|
||
domain_contract_(Right0, M, Right),
|
||
domain_supremum(Left, LeftSup),
|
||
domain_infimum(Right, RightInf),
|
||
( LeftSup cis_lt n(S), n(S) cis_lt RightInf ->
|
||
D = split(S, Left, Right)
|
||
; domain_infimum(Left0, Inf),
|
||
% TODO: this is not necessarily an interval
|
||
domain_supremum(Right0, Sup),
|
||
min_divide(Inf, Sup, n(M), n(M), From0),
|
||
max_divide(Inf, Sup, n(M), n(M), To0),
|
||
domain_infimum(Left, LeftInf),
|
||
domain_supremum(Right, RightSup),
|
||
From cis max(LeftInf, From0),
|
||
To cis min(RightSup, To0),
|
||
D = from_to(From, To)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Similar to domain_contract, tailored for division, i.e.,
|
||
{21,23} contracted by 4 is 5. It contracts "less".
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_contract_less(D0, M, D) :-
|
||
( M < 0 -> domain_negate(D0, D1), M1 is abs(M)
|
||
; D1 = D0, M1 = M
|
||
),
|
||
domain_contract_less_(D1, M1, D).
|
||
|
||
domain_contract_less_(empty, _, empty).
|
||
domain_contract_less_(from_to(From0, To0), M, from_to(From,To)) :-
|
||
From cis From0 // n(M), To cis To0 // n(M).
|
||
domain_contract_less_(split(S0,Left0,Right0), M, D) :-
|
||
S is S0 // M,
|
||
% Scaled down domains do not necessarily retain any holes of
|
||
% the original domain.
|
||
domain_contract_less_(Left0, M, Left),
|
||
domain_contract_less_(Right0, M, Right),
|
||
domain_supremum(Left, LeftSup),
|
||
domain_infimum(Right, RightInf),
|
||
( LeftSup cis_lt n(S), n(S) cis_lt RightInf ->
|
||
D = split(S, Left, Right)
|
||
; domain_infimum(Left0, Inf),
|
||
% TODO: this is not necessarily an interval
|
||
domain_supremum(Right0, Sup),
|
||
min_divide_less(Inf, Sup, n(M), n(M), From0),
|
||
max_divide_less(Inf, Sup, n(M), n(M), To0),
|
||
domain_infimum(Left, LeftInf),
|
||
domain_supremum(Right, RightSup),
|
||
From cis max(LeftInf, From0),
|
||
To cis min(RightSup, To0),
|
||
D = from_to(From, To)
|
||
%format("got: ~w\n", [D])
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Negate the domain. Left and Right sub-domains and bounds switch sides.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
domain_negate(empty, empty).
|
||
domain_negate(from_to(From0, To0), from_to(To,From)) :-
|
||
From cis -From0, To cis -To0.
|
||
domain_negate(split(S0, Left0, Right0), split(S, Left, Right)) :-
|
||
S is -S0,
|
||
domain_negate(Left0, Right),
|
||
domain_negate(Right0, Left).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Construct a domain from a list of integers. Try to balance it.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
list_to_disjoint_intervals([], []).
|
||
list_to_disjoint_intervals([N|Ns], Is) :-
|
||
list_to_disjoint_intervals(Ns, N, N, Is).
|
||
|
||
list_to_disjoint_intervals([], M, N, [n(M)-n(N)]).
|
||
list_to_disjoint_intervals([B|Bs], M, N, Is) :-
|
||
( B =:= N + 1 ->
|
||
list_to_disjoint_intervals(Bs, M, B, Is)
|
||
; Is = [n(M)-n(N)|Rest],
|
||
list_to_disjoint_intervals(Bs, B, B, Rest)
|
||
).
|
||
|
||
list_to_domain(List0, D) :-
|
||
( List0 == [] -> D = empty
|
||
; sort(List0, List),
|
||
list_to_disjoint_intervals(List, Is),
|
||
intervals_to_domain(Is, D)
|
||
).
|
||
|
||
intervals_to_domain([], empty) :- !.
|
||
intervals_to_domain([M-N], from_to(M,N)) :- !.
|
||
intervals_to_domain(Is, D) :-
|
||
length(Is, L),
|
||
FL is L // 2,
|
||
length(Front, FL),
|
||
append(Front, Tail, Is),
|
||
Tail = [n(Start)-_|_],
|
||
Hole is Start - 1,
|
||
intervals_to_domain(Front, Left),
|
||
intervals_to_domain(Tail, Right),
|
||
D = split(Hole, Left, Right).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
|
||
%% ?Var in +Domain
|
||
%
|
||
% Var is an element of Domain. Domain is one of:
|
||
%
|
||
% * Integer
|
||
% Singleton set consisting only of _Integer_.
|
||
% * Lower..Upper
|
||
% All integers _I_ such that _Lower_ =< _I_ =< _Upper_.
|
||
% _Lower_ must be an integer or the atom *inf*, which
|
||
% denotes negative infinity. _Upper_ must be an integer or
|
||
% the atom *sup*, which denotes positive infinity.
|
||
% * Domain1 \/ Domain2
|
||
% The union of Domain1 and Domain2.
|
||
|
||
V in D :-
|
||
fd_variable(V),
|
||
drep_to_domain(D, Dom),
|
||
domain(V, Dom).
|
||
|
||
fd_variable(V) :-
|
||
( var(V) -> true
|
||
; integer(V) -> true
|
||
; type_error(integer, V)
|
||
).
|
||
|
||
%% +Vars ins +Domain
|
||
%
|
||
% The variables in the list Vars are elements of Domain.
|
||
|
||
Vs ins D :-
|
||
must_be(list, Vs),
|
||
maplist(fd_variable, Vs),
|
||
drep_to_domain(D, Dom),
|
||
domains(Vs, Dom).
|
||
|
||
%% indomain(?Var)
|
||
%
|
||
% Bind Var to all feasible values of its domain on backtracking. The
|
||
% domain of Var must be finite.
|
||
|
||
indomain(Var) :- label([Var]).
|
||
|
||
order_dom_next(up, Dom, Next) :- domain_infimum(Dom, n(Next)).
|
||
order_dom_next(down, Dom, Next) :- domain_supremum(Dom, n(Next)).
|
||
order_dom_next(random_value(_), Dom, Next) :-
|
||
domain_to_list(Dom, Ls),
|
||
length(Ls, L),
|
||
I is random(L),
|
||
nth0(I, Ls, Next).
|
||
|
||
|
||
%% label(+Vars)
|
||
%
|
||
% Equivalent to labeling([], Vars).
|
||
|
||
label(Vs) :- labeling([], Vs).
|
||
|
||
%% labeling(+Options, +Vars)
|
||
%
|
||
% Labeling means systematically trying out values for the finite
|
||
% domain variables Vars until all of them are ground. The domain of
|
||
% each variable in Vars must be finite. Options is a list of options
|
||
% that let you exhibit some control over the search process. Several
|
||
% categories of options exist:
|
||
%
|
||
% The variable selection strategy lets you specify which variable of
|
||
% Vars is labeled next and is one of:
|
||
%
|
||
% * leftmost
|
||
% Label the variables in the order they occur in Vars. This is the
|
||
% default.
|
||
%
|
||
% * ff
|
||
% _|First fail|_. Label the leftmost variable with smallest domain next,
|
||
% in order to detect infeasibility early. This is often a good
|
||
% strategy.
|
||
%
|
||
% * ffc
|
||
% Of the variables with smallest domains, the leftmost one
|
||
% participating in most constraints is labeled next.
|
||
%
|
||
% * min
|
||
% Label the leftmost variable whose lower bound is the lowest next.
|
||
%
|
||
% * max
|
||
% Label the leftmost variable whose upper bound is the highest next.
|
||
%
|
||
% The value order is one of:
|
||
%
|
||
% * up
|
||
% Try the elements of the chosen variable's domain in ascending order.
|
||
% This is the default.
|
||
%
|
||
% * down
|
||
% Try the domain elements in descending order.
|
||
%
|
||
% The branching strategy is one of:
|
||
%
|
||
% * step
|
||
% For each variable X, a choice is made between X = V and X #\= V,
|
||
% where V is determined by the value ordering options. This is the
|
||
% default.
|
||
%
|
||
% * enum
|
||
% For each variable X, a choice is made between X = V_1, X = V_2
|
||
% etc., for all values V_i of the domain of X. The order is
|
||
% determined by the value ordering options.
|
||
%
|
||
% * bisect
|
||
% For each variable X, a choice is made between X #=< M and X #> M,
|
||
% where M is the midpoint of the domain of X.
|
||
%
|
||
% At most one option of each category can be specified, and an option
|
||
% must not occur repeatedly.
|
||
%
|
||
% The order of solutions can be influenced with:
|
||
%
|
||
% * min(Expr)
|
||
% * max(Expr)
|
||
%
|
||
% This generates solutions in ascending/descending order with respect
|
||
% to the evaluation of the arithmetic expression Expr. Labeling Vars
|
||
% must make Expr ground. If several such options are specified, they
|
||
% are interpreted from left to right, e.g.:
|
||
%
|
||
% ==
|
||
% ?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).
|
||
% ==
|
||
%
|
||
% This generates solutions in descending order of X, and for each
|
||
% binding of X, solutions are generated in ascending order of Y. To
|
||
% obtain the incomplete behaviour that other systems exhibit with
|
||
% "maximize(Expr)" and "minimize(Expr)", use once/1, e.g.:
|
||
%
|
||
% ==
|
||
% once(labeling([max(Expr)], Vars))
|
||
% ==
|
||
%
|
||
% Labeling is always complete, always terminates, and yields no
|
||
% redundant solutions.
|
||
%
|
||
|
||
labeling(Options, Vars) :-
|
||
must_be(list, Options),
|
||
must_be(list, Vars),
|
||
maplist(finite_domain, Vars),
|
||
label(Options, Options, default(leftmost), default(up), default(step), [], upto_ground, Vars).
|
||
|
||
finite_domain(Var) :-
|
||
( fd_get(Var, Dom, _) ->
|
||
( domain_infimum(Dom, n(_)), domain_supremum(Dom, n(_)) -> true
|
||
; instantiation_error(Var)
|
||
)
|
||
; integer(Var) -> true
|
||
; must_be(integer, Var)
|
||
).
|
||
|
||
|
||
label([O|Os], Options, Selection, Order, Choice, Optim, Consistency, Vars) :-
|
||
( var(O)-> instantiation_error(O)
|
||
; override(selection, Selection, O, Options, S1) ->
|
||
label(Os, Options, S1, Order, Choice, Optim, Consistency, Vars)
|
||
; override(order, Order, O, Options, O1) ->
|
||
label(Os, Options, Selection, O1, Choice, Optim, Consistency, Vars)
|
||
; override(choice, Choice, O, Options, C1) ->
|
||
label(Os, Options, Selection, Order, C1, Optim, Consistency, Vars)
|
||
; optimisation(O) ->
|
||
label(Os, Options, Selection, Order, Choice, [O|Optim], Consistency, Vars)
|
||
; consistency(O, O1) ->
|
||
label(Os, Options, Selection, Order, Choice, Optim, O1, Vars)
|
||
; domain_error(labeling_option, O)
|
||
).
|
||
label([], _, Selection, Order, Choice, Optim0, Consistency, Vars) :-
|
||
maplist(arg(1), [Selection,Order,Choice], [S,O,C]),
|
||
( Optim0 == [] ->
|
||
label(Vars, S, O, C, Consistency)
|
||
; reverse(Optim0, Optim),
|
||
exprs_singlevars(Optim, SVs),
|
||
optimise(Vars, [S,O,C], SVs)
|
||
).
|
||
|
||
% Introduce new variables for each min/max expression to avoid
|
||
% reparsing expressions during optimisation.
|
||
|
||
exprs_singlevars([], []).
|
||
exprs_singlevars([E|Es], [SV|SVs]) :-
|
||
E =.. [F,Expr],
|
||
Single #= Expr,
|
||
SV =.. [F,Single],
|
||
exprs_singlevars(Es, SVs).
|
||
|
||
all_dead(fd_props(Bs,Gs,Os)) :-
|
||
all_dead_(Bs),
|
||
all_dead_(Gs),
|
||
all_dead_(Os).
|
||
|
||
all_dead_([]).
|
||
all_dead_([propagator(_, S)|Ps]) :- S == dead, all_dead_(Ps).
|
||
|
||
label([], _, _, _, Consistency) :- !,
|
||
( Consistency = upto_in(I0,I) -> I0 = I
|
||
; true
|
||
).
|
||
label(Vars, Selection, Order, Choice, Consistency) :-
|
||
( Vars = [V|Vs], nonvar(V) -> label(Vs, Selection, Order, Choice, Consistency)
|
||
; select_var(Selection, Vars, Var, RVars),
|
||
( var(Var) ->
|
||
( Consistency = upto_in(I0,I), fd_get(Var, _, Ps), all_dead(Ps) ->
|
||
fd_size(Var, Size),
|
||
I1 is I0*Size,
|
||
label(RVars, Selection, Order, Choice, upto_in(I1,I))
|
||
; Consistency = upto_in, fd_get(Var, _, Ps), all_dead(Ps) ->
|
||
label(RVars, Selection, Order, Choice, Consistency)
|
||
; choice_order_variable(Choice, Order, Var, RVars, Vars, Selection, Consistency)
|
||
)
|
||
; label(RVars, Selection, Order, Choice, Consistency)
|
||
)
|
||
).
|
||
|
||
choice_order_variable(step, Order, Var, Vars, Vars0, Selection, Consistency) :-
|
||
fd_get(Var, Dom, _),
|
||
order_dom_next(Order, Dom, Next),
|
||
( Var = Next,
|
||
label(Vars, Selection, Order, step, Consistency)
|
||
; neq_num(Var, Next),
|
||
do_queue,
|
||
label(Vars0, Selection, Order, step, Consistency)
|
||
).
|
||
choice_order_variable(enum, Order, Var, Vars, _, Selection, Consistency) :-
|
||
fd_get(Var, Dom0, _),
|
||
domain_direction_element(Dom0, Order, Var),
|
||
label(Vars, Selection, Order, enum, Consistency).
|
||
choice_order_variable(bisect, Order, Var, _, Vars0, Selection, Consistency) :-
|
||
fd_get(Var, Dom, _),
|
||
domain_infimum(Dom, n(I)),
|
||
domain_supremum(Dom, n(S)),
|
||
Mid0 is (I + S) // 2,
|
||
( Mid0 =:= S -> Mid is Mid0 - 1 ; Mid = Mid0 ),
|
||
( Var #=< Mid,
|
||
label(Vars0, Selection, Order, bisect, Consistency)
|
||
; Var #> Mid,
|
||
label(Vars0, Selection, Order, bisect, Consistency)
|
||
).
|
||
|
||
override(What, Prev, Value, Options, Result) :-
|
||
call(What, Value),
|
||
override_(Prev, Value, Options, Result).
|
||
|
||
override_(default(_), Value, _, user(Value)).
|
||
override_(user(Prev), Value, Options, _) :-
|
||
( Value == Prev ->
|
||
domain_error(nonrepeating_labeling_options, Options)
|
||
; domain_error(consistent_labeling_options, Options)
|
||
).
|
||
|
||
selection(ff).
|
||
selection(ffc).
|
||
selection(min).
|
||
selection(max).
|
||
selection(leftmost).
|
||
selection(random_variable(Seed)) :-
|
||
must_be(integer, Seed),
|
||
set_random(seed(Seed)).
|
||
|
||
choice(step).
|
||
choice(enum).
|
||
choice(bisect).
|
||
|
||
order(up).
|
||
order(down).
|
||
% TODO: random_variable and random_value currently both set the seed,
|
||
% so exchanging the options can yield different results.
|
||
order(random_value(Seed)) :-
|
||
must_be(integer, Seed),
|
||
set_random(seed(Seed)).
|
||
|
||
consistency(upto_in(I), upto_in(1, I)).
|
||
consistency(upto_in, upto_in).
|
||
consistency(upto_ground, upto_ground).
|
||
|
||
optimisation(min(_)).
|
||
optimisation(max(_)).
|
||
|
||
select_var(leftmost, [Var|Vars], Var, Vars).
|
||
select_var(min, [V|Vs], Var, RVars) :-
|
||
find_min(Vs, V, Var),
|
||
delete_eq([V|Vs], Var, RVars).
|
||
select_var(max, [V|Vs], Var, RVars) :-
|
||
find_max(Vs, V, Var),
|
||
delete_eq([V|Vs], Var, RVars).
|
||
select_var(ff, [V|Vs], Var, RVars) :-
|
||
fd_size_(V, n(S)),
|
||
find_ff(Vs, V, S, Var),
|
||
delete_eq([V|Vs], Var, RVars).
|
||
select_var(ffc, [V|Vs], Var, RVars) :-
|
||
find_ffc(Vs, V, Var),
|
||
delete_eq([V|Vs], Var, RVars).
|
||
select_var(random_variable(_), Vars0, Var, Vars) :-
|
||
length(Vars0, L),
|
||
I is random(L),
|
||
nth0(I, Vars0, Var),
|
||
delete_eq(Vars0, Var, Vars).
|
||
|
||
find_min([], Var, Var).
|
||
find_min([V|Vs], CM, Min) :-
|
||
( min_lt(V, CM) ->
|
||
find_min(Vs, V, Min)
|
||
; find_min(Vs, CM, Min)
|
||
).
|
||
|
||
find_max([], Var, Var).
|
||
find_max([V|Vs], CM, Max) :-
|
||
( max_gt(V, CM) ->
|
||
find_max(Vs, V, Max)
|
||
; find_max(Vs, CM, Max)
|
||
).
|
||
|
||
find_ff([], Var, _, Var).
|
||
find_ff([V|Vs], CM, S0, FF) :-
|
||
( nonvar(V) -> find_ff(Vs, CM, S0, FF)
|
||
; ( fd_size_(V, n(S1)), S1 < S0 ->
|
||
find_ff(Vs, V, S1, FF)
|
||
; find_ff(Vs, CM, S0, FF)
|
||
)
|
||
).
|
||
|
||
find_ffc([], Var, Var).
|
||
find_ffc([V|Vs], Prev, FFC) :-
|
||
( ffc_lt(V, Prev) ->
|
||
find_ffc(Vs, V, FFC)
|
||
; find_ffc(Vs, Prev, FFC)
|
||
).
|
||
|
||
|
||
ffc_lt(X, Y) :-
|
||
( fd_get(X, XD, XPs) ->
|
||
domain_num_elements(XD, n(NXD))
|
||
; NXD = 1, XPs = []
|
||
),
|
||
( fd_get(Y, YD, YPs) ->
|
||
domain_num_elements(YD, n(NYD))
|
||
; NYD = 1, YPs = []
|
||
),
|
||
( NXD < NYD -> true
|
||
; NXD =:= NYD,
|
||
props_number(XPs, NXPs),
|
||
props_number(YPs, NYPs),
|
||
NXPs > NYPs
|
||
).
|
||
|
||
min_lt(X,Y) :- bounds(X,LX,_), bounds(Y,LY,_), LX < LY.
|
||
|
||
max_gt(X,Y) :- bounds(X,_,UX), bounds(Y,_,UY), UX > UY.
|
||
|
||
bounds(X, L, U) :-
|
||
( fd_get(X, Dom, _) ->
|
||
domain_infimum(Dom, n(L)),
|
||
domain_supremum(Dom, n(U))
|
||
; L = X, U = L
|
||
).
|
||
|
||
delete_eq([], _, []).
|
||
delete_eq([X|Xs], Y, List) :-
|
||
( nonvar(X) -> delete_eq(Xs, Y, List)
|
||
; X == Y -> List = Xs
|
||
; List = [X|Tail],
|
||
delete_eq(Xs, Y, Tail)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
contracting/1 -- subject to change
|
||
|
||
This can remove additional domain elements from the boundaries.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
contracting(Vs) :-
|
||
must_be(list, Vs),
|
||
maplist(finite_domain, Vs),
|
||
contracting(Vs, fail, Vs).
|
||
|
||
contracting([], Repeat, Vars) :-
|
||
( Repeat -> contracting(Vars, fail, Vars)
|
||
; true
|
||
).
|
||
contracting([V|Vs], Repeat, Vars) :-
|
||
fd_inf(V, Min),
|
||
( \+ \+ (V = Min) ->
|
||
fd_sup(V, Max),
|
||
( \+ \+ (V = Max) ->
|
||
contracting(Vs, Repeat, Vars)
|
||
; V #\= Max,
|
||
contracting(Vs, true, Vars)
|
||
)
|
||
; V #\= Min,
|
||
contracting(Vs, true, Vars)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
fds_sespsize(Vs, S).
|
||
|
||
S is an upper bound on the search space size with respect to finite
|
||
domain variables Vs.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
fds_sespsize(Vs, S) :-
|
||
must_be(list, Vs),
|
||
maplist(fd_variable, Vs),
|
||
fds_sespsize(Vs, n(1), S1),
|
||
bound_portray(S1, S).
|
||
|
||
fd_size_(V, S) :-
|
||
( fd_get(V, D, _) ->
|
||
domain_num_elements(D, S)
|
||
; S = n(1)
|
||
).
|
||
|
||
fds_sespsize([], S, S).
|
||
fds_sespsize([V|Vs], S0, S) :-
|
||
fd_size_(V, S1),
|
||
S2 cis S0*S1,
|
||
fds_sespsize(Vs, S2, S).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Optimisation uses destructive assignment to save the computed
|
||
extremum over backtracking. Failure is used to get rid of copies of
|
||
attributed variables that are created in intermediate steps. At
|
||
least that's the intention - it currently doesn't work in SWI:
|
||
|
||
%?- X in 0..3, call_residue_vars(labeling([min(X)], [X]), Vs).
|
||
%@ X = 0,
|
||
%@ Vs = [_G6174, _G6177],
|
||
%@ _G6174 in 0..3
|
||
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
optimise(Vars, Options, Whats) :-
|
||
Whats = [What|WhatsRest],
|
||
Extremum = extremum(none),
|
||
( catch(store_extremum(Vars, Options, What, Extremum),
|
||
time_limit_exceeded,
|
||
false)
|
||
; Extremum = extremum(n(Val)),
|
||
arg(1, What, Expr),
|
||
append(WhatsRest, Options, Options1),
|
||
( Expr #= Val,
|
||
labeling(Options1, Vars)
|
||
; Expr #\= Val,
|
||
optimise(Vars, Options, Whats)
|
||
)
|
||
).
|
||
|
||
store_extremum(Vars, Options, What, Extremum) :-
|
||
catch((labeling(Options, Vars), throw(w(What))), w(What1), true),
|
||
functor(What, Direction, _),
|
||
maplist(arg(1), [What,What1], [Expr,Expr1]),
|
||
optimise(Direction, Options, Vars, Expr1, Expr, Extremum).
|
||
|
||
optimise(Direction, Options, Vars, Expr0, Expr, Extremum) :-
|
||
must_be(ground, Expr0),
|
||
nb_setarg(1, Extremum, n(Expr0)),
|
||
catch((tighten(Direction, Expr, Expr0),
|
||
labeling(Options, Vars),
|
||
throw(v(Expr))), v(Expr1), true),
|
||
optimise(Direction, Options, Vars, Expr1, Expr, Extremum).
|
||
|
||
tighten(min, E, V) :- E #< V.
|
||
tighten(max, E, V) :- E #> V.
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% all_different(+Vars)
|
||
%
|
||
% Vars are pairwise distinct.
|
||
|
||
all_different(Ls) :-
|
||
must_be(list, Ls),
|
||
maplist(fd_variable, Ls),
|
||
put_attr(Orig, clpfd_original, all_different(Ls)),
|
||
all_different(Ls, [], Orig),
|
||
do_queue.
|
||
|
||
all_different([], _, _).
|
||
all_different([X|Right], Left, Orig) :-
|
||
( var(X) ->
|
||
make_propagator(pdifferent(Left,Right,X,Orig), Prop),
|
||
init_propagator(X, Prop),
|
||
trigger_prop(Prop)
|
||
; exclude_fire(Left, Right, X)
|
||
),
|
||
all_different(Right, [X|Left], Orig).
|
||
|
||
%% sum(+Vars, +Rel, ?Expr)
|
||
%
|
||
% The sum of elements of the list Vars is in relation Rel to Expr. For
|
||
% example:
|
||
%
|
||
% ==
|
||
% ?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100).
|
||
% A in 0..100,
|
||
% A+B+C#=100,
|
||
% B in 0..100,
|
||
% C in 0..100.
|
||
% ==
|
||
|
||
sum(Vs, Op, Value) :-
|
||
must_be(list, Vs),
|
||
length(Vs, L),
|
||
length(Ones, L),
|
||
maplist(=(1), Ones),
|
||
scalar_product(Ones, Vs, Op, Value).
|
||
|
||
vars_plusterm([], _, T, T).
|
||
vars_plusterm([C|Cs], [V|Vs], T0, T) :- vars_plusterm(Cs, Vs, T0+(C*V), T).
|
||
|
||
%% scalar_product(+Cs, +Vs, +Rel, ?Expr)
|
||
%
|
||
% Cs is a list of integers, Vs is a list of variables and integers.
|
||
% True if the scalar product of Cs and Vs is in relation Rel to Expr.
|
||
|
||
scalar_product(Cs, Vs, Op, Value) :-
|
||
must_be(list(integer), Cs),
|
||
must_be(list, Vs),
|
||
must_be(callable, Op),
|
||
maplist(fd_variable, Vs),
|
||
\+ cyclic_term(Value),
|
||
( memberchk(Op, [#=,#\=,#<,#>,#=<,#>=]) -> true
|
||
; domain_error(scalar_product_relation, Op)
|
||
),
|
||
vars_plusterm(Cs, Vs, 0, Left),
|
||
( left_right_linsum_const(Left, Value, Cs1, Vs1, Const) ->
|
||
scalar_product_(Op, Cs1, Vs1, Const)
|
||
; sum(Cs, Vs, 0, Op, Value)
|
||
).
|
||
|
||
sum([], _, Sum, Op, Value) :- call(Op, Sum, Value).
|
||
sum([C|Cs], [X|Xs], Acc, Op, Value) :-
|
||
NAcc #= Acc + C*X,
|
||
sum(Cs, Xs, NAcc, Op, Value).
|
||
|
||
scalar_product_(#=, Cs, Vs, C) :-
|
||
propagator_init_trigger(Vs, scalar_product_eq(Cs, Vs, C)).
|
||
scalar_product_(#\=, Cs, Vs, C) :-
|
||
propagator_init_trigger(Vs, scalar_product_neq(Cs, Vs, C)).
|
||
scalar_product_(#=<, Cs, Vs, C) :-
|
||
propagator_init_trigger(Vs, scalar_product_leq(Cs, Vs, C)).
|
||
scalar_product_(#<, Cs, Vs, C) :-
|
||
C1 is C - 1,
|
||
scalar_product_(#=<, Cs, Vs, C1).
|
||
scalar_product_(#>, Cs, Vs, C) :-
|
||
C1 is C + 1,
|
||
scalar_product_(#>=, Cs, Vs, C1).
|
||
scalar_product_(#>=, Cs, Vs, C) :-
|
||
maplist(negative, Cs, Cs1),
|
||
C1 is -C,
|
||
scalar_product_(#=<, Cs1, Vs, C1).
|
||
|
||
negative(X0, X) :- X is -X0.
|
||
|
||
coeffs_variables_const([], [], [], [], I, I).
|
||
coeffs_variables_const([C|Cs], [V|Vs], Cs1, Vs1, I0, I) :-
|
||
( var(V) ->
|
||
Cs1 = [C|CRest], Vs1 = [V|VRest], I1 = I0
|
||
; I1 is I0 + C*V,
|
||
Cs1 = CRest, Vs1 = VRest
|
||
),
|
||
coeffs_variables_const(Cs, Vs, CRest, VRest, I1, I).
|
||
|
||
sum_finite_domains([], [], [], [], Inf, Sup, Inf, Sup).
|
||
sum_finite_domains([C|Cs], [V|Vs], Infs, Sups, Inf0, Sup0, Inf, Sup) :-
|
||
fd_get(V, _, Inf1, Sup1, _),
|
||
( Inf1 = n(NInf) ->
|
||
( C < 0 ->
|
||
Sup2 is Sup0 + C*NInf
|
||
; Inf2 is Inf0 + C*NInf
|
||
),
|
||
Sups = Sups1,
|
||
Infs = Infs1
|
||
; ( C < 0 ->
|
||
Sup2 = Sup0,
|
||
Sups = [C*V|Sups1],
|
||
Infs = Infs1
|
||
; Inf2 = Inf0,
|
||
Infs = [C*V|Infs1],
|
||
Sups = Sups1
|
||
)
|
||
),
|
||
( Sup1 = n(NSup) ->
|
||
( C < 0 ->
|
||
Inf2 is Inf0 + C*NSup
|
||
; Sup2 is Sup0 + C*NSup
|
||
),
|
||
Sups1 = Sups2,
|
||
Infs1 = Infs2
|
||
; ( C < 0 ->
|
||
Inf2 = Inf0,
|
||
Infs1 = [C*V|Infs2],
|
||
Sups1 = Sups2
|
||
; Sup2 = Sup0,
|
||
Sups1 = [C*V|Sups2],
|
||
Infs1 = Infs2
|
||
)
|
||
),
|
||
sum_finite_domains(Cs, Vs, Infs2, Sups2, Inf2, Sup2, Inf, Sup).
|
||
|
||
remove_dist_upper_lower([], _, _, _).
|
||
remove_dist_upper_lower([C|Cs], [V|Vs], D1, D2) :-
|
||
( fd_get(V, VD, VPs) ->
|
||
( C < 0 ->
|
||
domain_supremum(VD, n(Sup)),
|
||
L is Sup + D1//C,
|
||
domain_remove_smaller_than(VD, L, VD1),
|
||
domain_infimum(VD1, n(Inf)),
|
||
G is Inf - D2//C,
|
||
domain_remove_greater_than(VD1, G, VD2)
|
||
; domain_infimum(VD, n(Inf)),
|
||
G is Inf + D1//C,
|
||
domain_remove_greater_than(VD, G, VD1),
|
||
domain_supremum(VD1, n(Sup)),
|
||
L is Sup - D2//C,
|
||
domain_remove_smaller_than(VD1, L, VD2)
|
||
),
|
||
fd_put(V, VD2, VPs)
|
||
; true
|
||
),
|
||
remove_dist_upper_lower(Cs, Vs, D1, D2).
|
||
|
||
|
||
remove_dist_upper_leq([], _, _).
|
||
remove_dist_upper_leq([C|Cs], [V|Vs], D1) :-
|
||
( fd_get(V, VD, VPs) ->
|
||
( C < 0 ->
|
||
domain_supremum(VD, n(Sup)),
|
||
L is Sup + D1//C,
|
||
domain_remove_smaller_than(VD, L, VD1)
|
||
; domain_infimum(VD, n(Inf)),
|
||
G is Inf + D1//C,
|
||
domain_remove_greater_than(VD, G, VD1)
|
||
),
|
||
fd_put(V, VD1, VPs)
|
||
; true
|
||
),
|
||
remove_dist_upper_leq(Cs, Vs, D1).
|
||
|
||
|
||
remove_dist_upper([], _).
|
||
remove_dist_upper([C*V|CVs], D) :-
|
||
( fd_get(V, VD, VPs) ->
|
||
( C < 0 ->
|
||
( domain_supremum(VD, n(Sup)) ->
|
||
L is Sup + D//C,
|
||
domain_remove_smaller_than(VD, L, VD1)
|
||
; VD1 = VD
|
||
)
|
||
; ( domain_infimum(VD, n(Inf)) ->
|
||
G is Inf + D//C,
|
||
domain_remove_greater_than(VD, G, VD1)
|
||
; VD1 = VD
|
||
)
|
||
),
|
||
fd_put(V, VD1, VPs)
|
||
; true
|
||
),
|
||
remove_dist_upper(CVs, D).
|
||
|
||
remove_dist_lower([], _).
|
||
remove_dist_lower([C*V|CVs], D) :-
|
||
( fd_get(V, VD, VPs) ->
|
||
( C < 0 ->
|
||
( domain_infimum(VD, n(Inf)) ->
|
||
G is Inf - D//C,
|
||
domain_remove_greater_than(VD, G, VD1)
|
||
; VD1 = VD
|
||
)
|
||
; ( domain_supremum(VD, n(Sup)) ->
|
||
L is Sup - D//C,
|
||
domain_remove_smaller_than(VD, L, VD1)
|
||
; VD1 = VD
|
||
)
|
||
),
|
||
fd_put(V, VD1, VPs)
|
||
; true
|
||
),
|
||
remove_dist_lower(CVs, D).
|
||
|
||
remove_upper([], _).
|
||
remove_upper([C*X|CXs], Max) :-
|
||
( fd_get(X, XD, XPs) ->
|
||
D is Max//C,
|
||
( C < 0 ->
|
||
domain_remove_smaller_than(XD, D, XD1)
|
||
; domain_remove_greater_than(XD, D, XD1)
|
||
),
|
||
fd_put(X, XD1, XPs)
|
||
; true
|
||
),
|
||
remove_upper(CXs, Max).
|
||
|
||
remove_lower([], _).
|
||
remove_lower([C*X|CXs], Min) :-
|
||
( fd_get(X, XD, XPs) ->
|
||
D is -Min//C,
|
||
( C < 0 ->
|
||
domain_remove_greater_than(XD, D, XD1)
|
||
; domain_remove_smaller_than(XD, D, XD1)
|
||
),
|
||
fd_put(X, XD1, XPs)
|
||
; true
|
||
),
|
||
remove_lower(CXs, Min).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Constraint propagation proceeds as follows: Each CLP(FD) variable
|
||
has an attribute that stores its associated domain and constraints.
|
||
Constraints are triggered when the event they are registered for
|
||
occurs (for example: variable is instantiated, bounds change etc.).
|
||
do_queue/0 works off all triggered constraints, possibly triggering
|
||
new ones, until fixpoint.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
% FIFO queue
|
||
|
||
make_queue :- nb_setval('$clpfd_queue', fast_slow(Q-Q, L-L)).
|
||
|
||
push_fast_queue(E) :-
|
||
b_getval('$clpfd_queue', fast_slow(H-[E|T], L)),
|
||
b_setval('$clpfd_queue', fast_slow(H-T, L)).
|
||
|
||
push_slow_queue(E) :-
|
||
b_getval('$clpfd_queue', fast_slow(L, H-[E|T])),
|
||
b_setval('$clpfd_queue', fast_slow(L, H-T)).
|
||
|
||
pop_queue(E) :-
|
||
b_getval('$clpfd_queue', fast_slow(H-T, I-U)),
|
||
( nonvar(H) ->
|
||
H = [E|NH],
|
||
b_setval('$clpfd_queue', fast_slow(NH-T, I-U))
|
||
; nonvar(I) ->
|
||
I = [E|NI],
|
||
b_setval('$clpfd_queue', fast_slow(H-T, NI-U))
|
||
; false
|
||
).
|
||
|
||
fetch_propagator(Prop) :-
|
||
pop_queue(P),
|
||
( arg(2, P, S), S == dead -> fetch_propagator(Prop)
|
||
; Prop = P
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Parsing a CLP(FD) expression has two important side-effects: First,
|
||
it constrains the variables occurring in the expression to
|
||
integers. Second, it constrains some of them even more: For
|
||
example, in X/Y and X mod Y, Y is constrained to be #\= 0.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
constrain_to_integer(Var) :-
|
||
( integer(Var) -> true
|
||
; fd_get(Var, D, Ps),
|
||
fd_put(Var, D, Ps)
|
||
).
|
||
|
||
power_var_num(P, X, N) :-
|
||
( var(P) -> X = P, N = 1
|
||
; P = Left*Right,
|
||
power_var_num(Left, XL, L),
|
||
power_var_num(Right, XR, R),
|
||
XL == XR,
|
||
X = XL,
|
||
N is L + R
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Given expression E, we obtain the finite domain variable R by
|
||
interpreting a simple committed-choice language that is a list of
|
||
conditions and bodies. In conditions, g(Goal) means literally Goal,
|
||
and m(Match) means that E can be decomposed as stated. The
|
||
variables are to be understood as the result of parsing the
|
||
subexpressions recursively. In the body, g(Goal) means again Goal,
|
||
and p(Propagator) means to attach and trigger once a propagator.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
parse_clpfd(E, R,
|
||
[(g(cyclic_term(E)) -> [g(domain_error(clpfd_expression, E))]),
|
||
(g(var(E)) -> [g(constrain_to_integer(E)), g(E = R)]),
|
||
(g(integer(E)) -> [g(R = E)]),
|
||
(m(A+B) -> [p(pplus(A, B, R))]),
|
||
% power_var_num/3 must occur before */2 to be useful
|
||
(g(power_var_num(E, V, N)) -> [p(pexp(V, N, R))]),
|
||
(m(A*B) -> [p(ptimes(A, B, R))]),
|
||
(m(A-B) -> [p(pplus(R,B,A))]),
|
||
(m(-A) -> [p(ptimes(-1,A,R))]),
|
||
(m(max(A,B)) -> [g(A #=< R), g(B #=< R), p(pmax(A, B, R))]),
|
||
(m(min(A,B)) -> [g(A #>= R), g(B #>= R), p(pmin(A, B, R))]),
|
||
(m(mod(A,B)) -> [g(B #\= 0), p(pmod(A, B, R))]),
|
||
(m(abs(A)) -> [g(R #>= 0), p(pabs(A, R))]),
|
||
(m(A/B) -> [g(B #\= 0), p(pdiv(A, B, R))]),
|
||
(m(A^B) -> [p(pexp(A, B, R))]),
|
||
(g(true) -> [g(domain_error(clpfd_expression, E))])
|
||
]).
|
||
|
||
% Here, we compile the committed choice language to a single
|
||
% predicate, parse_clpfd/2.
|
||
|
||
make_parse_clpfd(Clauses) :-
|
||
parse_clpfd_clauses(Clauses0),
|
||
maplist(goals_goal, Clauses0, Clauses).
|
||
|
||
goals_goal((Head :- Goals), (Head :- Body)) :-
|
||
list_goal(Goals, Body).
|
||
|
||
parse_clpfd_clauses(Clauses) :-
|
||
parse_clpfd(E, R, Matchers),
|
||
maplist(parse_matcher(E, R), Matchers, Clauses).
|
||
|
||
parse_matcher(E, R, Matcher, Clause) :-
|
||
Matcher = (Condition0 -> Goals0),
|
||
phrase((parse_condition(Condition0, E, Head),
|
||
parse_goals(Goals0)), Goals),
|
||
Clause = (parse_clpfd(Head, R) :- Goals).
|
||
|
||
parse_condition(g(Goal), E, E) --> [Goal, !].
|
||
parse_condition(m(Match), _, Match0) -->
|
||
{ copy_term(Match, Match0) },
|
||
[!],
|
||
{ term_variables(Match0, Vs0),
|
||
term_variables(Match, Vs)
|
||
},
|
||
parse_match_variables(Vs0, Vs).
|
||
|
||
parse_match_variables([], []) --> [].
|
||
parse_match_variables([V0|Vs0], [V|Vs]) -->
|
||
[parse_clpfd(V0, V)],
|
||
parse_match_variables(Vs0, Vs).
|
||
|
||
parse_goals([]) --> [].
|
||
parse_goals([G|Gs]) --> parse_goal(G), parse_goals(Gs).
|
||
|
||
parse_goal(g(Goal)) --> [Goal].
|
||
parse_goal(p(Prop)) -->
|
||
[make_propagator(Prop, P)],
|
||
{ term_variables(Prop, Vs) },
|
||
parse_init(Vs, P),
|
||
[trigger_once(P)].
|
||
|
||
parse_init([], _) --> [].
|
||
parse_init([V|Vs], P) --> [init_propagator(V, P)], parse_init(Vs, P).
|
||
|
||
%?- set_prolog_flag(toplevel_print_options, [portray(true)]),
|
||
% clpfd:parse_clpfd_clauses(Clauses), maplist(portray_clause, Clauses).
|
||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
trigger_once(Prop) :- trigger_prop(Prop), do_queue.
|
||
|
||
neq(A, B) :- propagator_init_trigger(pneq(A, B)).
|
||
|
||
propagator_init_trigger(P) -->
|
||
{ term_variables(P, Vs) },
|
||
propagator_init_trigger(Vs, P).
|
||
|
||
propagator_init_trigger(Vs, P) -->
|
||
[p(Prop)],
|
||
{ make_propagator(P, Prop),
|
||
maplist(prop_init(Prop), Vs),
|
||
trigger_once(Prop) }.
|
||
|
||
propagator_init_trigger(P) :-
|
||
phrase(propagator_init_trigger(P), _).
|
||
|
||
propagator_init_trigger(Vs, P) :-
|
||
phrase(propagator_init_trigger(Vs, P), _).
|
||
|
||
prop_init(Prop, V) :- init_propagator(V, Prop).
|
||
|
||
geq(A, B) :-
|
||
( fd_get(A, AD, APs) ->
|
||
domain_infimum(AD, AI),
|
||
( fd_get(B, BD, _) ->
|
||
domain_supremum(BD, BS),
|
||
( AI cis_geq BS -> true
|
||
; propagator_init_trigger(pgeq(A,B))
|
||
)
|
||
; domain_remove_smaller_than(AD, B, AD1),
|
||
fd_put(A, AD1, APs),
|
||
do_queue
|
||
)
|
||
; fd_get(B, BD, BPs) ->
|
||
domain_remove_greater_than(BD, A, BD1),
|
||
fd_put(B, BD1, BPs),
|
||
do_queue
|
||
; A >= B
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Naive parsing of inequalities and disequalities can result in a lot
|
||
of unnecessary work if expressions of non-trivial depth are
|
||
involved: Auxiliary variables are introduced for sub-expressions,
|
||
and propagation proceeds on them as if they were involved in a
|
||
tighter constraint (like equality), whereas eventually only very
|
||
little of the propagated information is actually used. For example,
|
||
only extremal values are of interest in inequalities. Introducing
|
||
auxiliary variables should be avoided when possible, and
|
||
specialised propagators should be used for common constraints.
|
||
|
||
We again use a simple committed-choice language for matching
|
||
special cases of constraints. m_c(M,C) means that M matches and C
|
||
holds. d(X, Y) means decomposition, i.e., it is short for
|
||
g(parse_clpfd(X, Y)). r(X, Y) means to rematch with X and Y.
|
||
|
||
Two things are important: First, although the actual constraint
|
||
functors (#\=2, #=/2 etc.) are used in the description, they must
|
||
expand to the respective auxiliary predicates (match_expand/2)
|
||
because the actual constraints are subject to goal expansion.
|
||
Second, when specialised constraints (like scalar product) post
|
||
simpler constraints on their own, these simpler versions must be
|
||
handled separately and must occur before.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
match_expand(#>=, clpfd_geq_).
|
||
match_expand(#=, clpfd_equal_).
|
||
match_expand(#\=, clpfd_neq).
|
||
|
||
symmetric(#=).
|
||
symmetric(#\=).
|
||
|
||
matches([
|
||
(m_c(any(X) #>= any(Y), left_right_linsum_const(X, Y, Cs, Vs, Const)) ->
|
||
[g(( Cs = [1], Vs = [A] -> geq(A, Const)
|
||
; Cs = [-1], Vs = [A] -> Const1 is -Const, geq(Const1, A)
|
||
; Cs = [1,1], Vs = [A,B] -> A+B #= S, geq(S, Const)
|
||
; Cs = [1,-1], Vs = [A,B] ->
|
||
( Const =:= 0 -> geq(A, B)
|
||
; C1 is -Const,
|
||
propagator_init_trigger(x_leq_y_plus_c(B, A, C1))
|
||
)
|
||
; Cs = [-1,1], Vs = [A,B] ->
|
||
( Const =:= 0 -> geq(B, A)
|
||
; C1 is -Const,
|
||
propagator_init_trigger(x_leq_y_plus_c(A, B, C1))
|
||
)
|
||
; Cs = [-1,-1], Vs = [A,B] ->
|
||
A+B #= S, Const1 is -Const, geq(Const1, S)
|
||
; scalar_product_(#>=, Cs, Vs, Const)
|
||
))]),
|
||
(m(any(X) - any(Y) #>= integer(C)) -> [d(X, X1), d(Y, Y1), g(C1 is -C), p(x_leq_y_plus_c(Y1, X1, C1))]),
|
||
(m(integer(X) #>= any(Z) + integer(A)) -> [g(C is X - A), r(C, Z)]),
|
||
(m(abs(any(X)-any(Y)) #>= integer(I)) -> [d(X, X1), d(Y, Y1), p(absdiff_geq(X1, Y1, I))]),
|
||
(m(abs(any(X)) #>= integer(I)) -> [d(X, RX), g((I>0 -> I1 is -I, RX in inf..I1 \/ I..sup; true))]),
|
||
(m(integer(I) #>= abs(any(X))) -> [d(X, RX), g(I>=0), g(I1 is -I), g(RX in I1..I)]),
|
||
(m(any(X) #>= any(Y)) -> [d(X, RX), d(Y, RY), g(geq(RX, RY))]),
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
(m(var(X) #= var(Y)) -> [g(constrain_to_integer(X)), g(X=Y)]),
|
||
(m(var(X) #= var(Y)+var(Z)) -> [p(pplus(Y,Z,X))]),
|
||
(m(var(X) #= var(Y)-var(Z)) -> [p(pplus(X,Z,Y))]),
|
||
(m(var(X) #= var(Y)*var(Z)) -> [p(ptimes(Y,Z,X))]),
|
||
(m(var(X) #= -var(Z)) -> [p(ptimes(-1, Z, X))]),
|
||
(m_c(any(X) #= any(Y), left_right_linsum_const(X, Y, Cs, Vs, S)) ->
|
||
[g(( Cs = [] -> S =:= 0
|
||
; Cs = [C|CsRest],
|
||
gcd(CsRest, C, GCD),
|
||
S mod GCD =:= 0,
|
||
scalar_product_(#=, Cs, Vs, S)
|
||
))]),
|
||
(m(var(X) #= any(Y)) -> [d(Y,X)]),
|
||
(m(any(X) #= any(Y)) -> [d(X, RX), d(Y, RX)]),
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
(m(var(X) #\= integer(Y)) -> [g(neq_num(X, Y))]),
|
||
(m(var(X) #\= var(Y)) -> [g(neq(X,Y))]),
|
||
(m(var(X) #\= var(Y) + var(Z)) -> [p(x_neq_y_plus_z(X, Y, Z))]),
|
||
(m(var(X) #\= var(Y) - var(Z)) -> [p(x_neq_y_plus_z(Y, X, Z))]),
|
||
(m(var(X) #\= var(Y)*var(Z)) -> [p(ptimes(Y,Z,P)), g(neq(X,P))]),
|
||
(m(integer(X) #\= abs(any(Y)-any(Z))) -> [d(Y, Y1), d(Z, Z1), p(absdiff_neq(Y1, Z1, X))]),
|
||
(m_c(any(X) #\= any(Y), left_right_linsum_const(X, Y, Cs, Vs, S)) ->
|
||
[g(scalar_product_(#\=, Cs, Vs, S))]),
|
||
(m(any(X) #\= any(Y) + any(Z)) -> [d(X, X1), d(Y, Y1), d(Z, Z1), p(x_neq_y_plus_z(X1, Y1, Z1))]),
|
||
(m(any(X) #\= any(Y) - any(Z)) -> [d(X, X1), d(Y, Y1), d(Z, Z1), p(x_neq_y_plus_z(Y1, X1, Z1))]),
|
||
(m(any(X) #\= any(Y)) -> [d(X, RX), d(Y, RY), g(neq(RX, RY))])
|
||
]).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
We again compile the committed-choice matching language to the
|
||
intended auxiliary predicates. We now must take care not to
|
||
unintentionally unify a variable with a complex term.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
make_matches(Clauses) :-
|
||
matches(Ms),
|
||
findall(F, (member((M->_), Ms), arg(1, M, M1), functor(M1, F, _)), Fs0),
|
||
sort(Fs0, Fs),
|
||
maplist(prevent_cyclic_argument, Fs, PrevCyclicClauses),
|
||
phrase(matchers(Ms), Clauses0),
|
||
maplist(goals_goal, Clauses0, MatcherClauses),
|
||
append(PrevCyclicClauses, MatcherClauses, Clauses1),
|
||
sort_by_predicate(Clauses1, Clauses).
|
||
|
||
sort_by_predicate(Clauses, ByPred) :-
|
||
map_list_to_pairs(predname, Clauses, Keyed),
|
||
keysort(Keyed, KeyedByPred),
|
||
pairs_values(KeyedByPred, ByPred).
|
||
|
||
predname((H:-_), Key) :- !, predname(H, Key).
|
||
predname(M:H, M:Key) :- !, predname(H, Key).
|
||
predname(H, Name/Arity) :- !, functor(H, Name, Arity).
|
||
|
||
prevent_cyclic_argument(F0, Clause) :-
|
||
match_expand(F0, F),
|
||
Head =.. [F,X,Y],
|
||
Clause = (Head :- ( cyclic_term(X) ->
|
||
domain_error(clpfd_expression, X)
|
||
; cyclic_term(Y) ->
|
||
domain_error(clpfd_expression, Y)
|
||
; false
|
||
)).
|
||
|
||
matchers([]) --> [].
|
||
matchers([(Condition->Goals)|Ms]) -->
|
||
matcher(Condition, Goals),
|
||
matchers(Ms).
|
||
|
||
matcher(m(M), Gs) --> matcher(m_c(M,true), Gs).
|
||
matcher(m_c(Matcher,Cond), Gs) -->
|
||
[(Head :- Goals0)],
|
||
{ Matcher =.. [F,A,B],
|
||
match_expand(F, Expand),
|
||
Head =.. [Expand,X,Y],
|
||
phrase((match(A, X), match(B, Y)), Goals0, [Cond,!|Goals1]),
|
||
phrase(match_goals(Gs, Expand), Goals1) },
|
||
( { symmetric(F), \+ (subsumes_chk(A, B), subsumes_chk(B, A)) } ->
|
||
{ Head1 =.. [Expand,Y,X] },
|
||
[(Head1 :- Goals0)]
|
||
; []
|
||
).
|
||
|
||
match(any(A), T) --> [A = T].
|
||
match(var(V), T) --> [v_or_i(T), V = T].
|
||
match(integer(I), T) --> [integer(T), I = T].
|
||
match(-X, T) --> [nonvar(T), T = -A], match(X, A).
|
||
match(abs(X), T) --> [nonvar(T), T = abs(A)], match(X, A).
|
||
match(X+Y, T) --> [nonvar(T), T = A + B], match(X, A), match(Y, B).
|
||
match(X-Y, T) --> [nonvar(T), T = A - B], match(X, A), match(Y, B).
|
||
match(X*Y, T) --> [nonvar(T), T = A * B], match(X, A), match(Y, B).
|
||
|
||
match_goals([], _) --> [].
|
||
match_goals([G|Gs], F) --> match_goal(G, F), match_goals(Gs, F).
|
||
|
||
match_goal(r(X,Y), F) --> { G =.. [F,X,Y] }, [G].
|
||
match_goal(d(X,Y), _) --> [parse_clpfd(X, Y)].
|
||
match_goal(g(Goal), _) --> [Goal].
|
||
match_goal(p(Prop), _) -->
|
||
[make_propagator(Prop, P)],
|
||
{ term_variables(Prop, Vs) },
|
||
parse_init(Vs, P),
|
||
[trigger_once(P)].
|
||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
|
||
|
||
%% ?X #>= ?Y
|
||
%
|
||
% X is greater than or equal to Y.
|
||
|
||
X #>= Y :- clpfd_geq(X, Y).
|
||
|
||
clpfd_geq(X, Y) :- clpfd_geq_(X, Y), reinforce(X), reinforce(Y).
|
||
|
||
%% ?X #=< ?Y
|
||
%
|
||
% X is less than or equal to Y.
|
||
|
||
X #=< Y :- Y #>= X.
|
||
|
||
%% ?X #= ?Y
|
||
%
|
||
% X equals Y.
|
||
|
||
X #= Y :- clpfd_equal(X, Y).
|
||
|
||
clpfd_equal(X, Y) :- clpfd_equal_(X, Y), reinforce(X).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Conditions under which an equality can be compiled to built-in
|
||
arithmetic. Their order is significant.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
expr_conds(E, E) --> { var(E) }, !, [integer(E)].
|
||
expr_conds(E, E) --> { integer(E) }, !, [].
|
||
expr_conds(-E0, -E) --> expr_conds(E0, E).
|
||
expr_conds(abs(E0), abs(E)) --> expr_conds(E0, E).
|
||
expr_conds(A0+B0, A+B) --> expr_conds(A0, A), expr_conds(B0, B).
|
||
expr_conds(A0*B0, A*B) --> expr_conds(A0, A), expr_conds(B0, B).
|
||
expr_conds(A0-B0, A-B) --> expr_conds(A0, A), expr_conds(B0, B).
|
||
expr_conds(A0/B0, A//B) --> % "/" becomes "//"
|
||
expr_conds(A0, A), expr_conds(B0, B),
|
||
[B =\= 0].
|
||
expr_conds(min(A0,B0), min(A,B)) --> expr_conds(A0, A), expr_conds(B0, B).
|
||
expr_conds(max(A0,B0), max(A,B)) --> expr_conds(A0, A), expr_conds(B0, B).
|
||
expr_conds(A0 mod B0, A mod B) -->
|
||
expr_conds(A0, A), expr_conds(B0, B),
|
||
[B =\= 0].
|
||
expr_conds(A0^B0, A^B) -->
|
||
expr_conds(A0, A), expr_conds(B0, B),
|
||
[(B >= 0 ; A =:= -1)].
|
||
|
||
:- multifile
|
||
user:goal_expansion/2.
|
||
:- dynamic
|
||
user:goal_expansion/2.
|
||
|
||
user:goal_expansion(X0 #= Y0, Equal) :-
|
||
\+ current_prolog_flag(clpfd_goal_expansion, false),
|
||
phrase(clpfd:expr_conds(X0, X), CsX),
|
||
phrase(clpfd:expr_conds(Y0, Y), CsY),
|
||
clpfd:list_goal(CsX, CondX),
|
||
clpfd:list_goal(CsY, CondY),
|
||
Equal = ( CondX ->
|
||
( var(Y) -> Y is X
|
||
; CondY -> X =:= Y
|
||
; T is X, clpfd:clpfd_equal(T, Y0)
|
||
)
|
||
; CondY ->
|
||
( var(X) -> X is Y
|
||
; T is Y, clpfd:clpfd_equal(X0, T)
|
||
)
|
||
; clpfd:clpfd_equal(X0, Y0)
|
||
).
|
||
user:goal_expansion(X0 #>= Y0, Geq) :-
|
||
\+ current_prolog_flag(clpfd_goal_expansion, false),
|
||
phrase(clpfd:expr_conds(X0, X), CsX),
|
||
phrase(clpfd:expr_conds(Y0, Y), CsY),
|
||
clpfd:list_goal(CsX, CondX),
|
||
clpfd:list_goal(CsY, CondY),
|
||
Geq = ( CondX ->
|
||
( CondY -> X >= Y
|
||
; T is X, clpfd:clpfd_geq(T, Y0)
|
||
)
|
||
; CondY -> T is Y, clpfd:clpfd_geq(X0, T)
|
||
; clpfd:clpfd_geq(X0, Y0)
|
||
).
|
||
user:goal_expansion(X #=< Y, Leq) :- user:goal_expansion(Y #>= X, Leq).
|
||
user:goal_expansion(X #> Y, Gt) :- user:goal_expansion(X #>= Y+1, Gt).
|
||
user:goal_expansion(X #< Y, Lt) :- user:goal_expansion(Y #> X, Lt).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
linsum(X, S, S) --> { var(X) }, !, [vn(X,1)].
|
||
linsum(I, S0, S) --> { integer(I), !, S is S0 + I }.
|
||
linsum(-A, S0, S) --> mulsum(A, -1, S0, S).
|
||
linsum(N*A, S0, S) --> { integer(N) }, !, mulsum(A, N, S0, S).
|
||
linsum(A*N, S0, S) --> { integer(N) }, !, mulsum(A, N, S0, S).
|
||
linsum(A+B, S0, S) --> linsum(A, S0, S1), linsum(B, S1, S).
|
||
linsum(A-B, S0, S) --> linsum(A, S0, S1), mulsum(B, -1, S1, S).
|
||
|
||
mulsum(A, M, S0, S) -->
|
||
{ phrase(linsum(A, 0, CA), As), S is S0 + M*CA },
|
||
lin_mul(As, M).
|
||
|
||
lin_mul([], _) --> [].
|
||
lin_mul([vn(X,N0)|VNs], M) --> { N is N0*M }, [vn(X,N)], lin_mul(VNs, M).
|
||
|
||
v_or_i(V) :- var(V), !.
|
||
v_or_i(I) :- integer(I).
|
||
|
||
left_right_linsum_const(Left, Right, Cs, Vs, Const) :-
|
||
phrase(linsum(Left, 0, CL), Lefts0, Rights),
|
||
phrase(linsum(Right, 0, CR), Rights0),
|
||
maplist(linterm_negate, Rights0, Rights),
|
||
msort(Lefts0, Lefts),
|
||
Lefts = [vn(First,N)|LeftsRest],
|
||
vns_coeffs_variables(LeftsRest, N, First, Cs0, Vs0),
|
||
filter_linsum(Cs0, Vs0, Cs, Vs),
|
||
Const is CR - CL.
|
||
%format("linear sum: ~w ~w ~w\n", [Cs,Vs,Const]).
|
||
|
||
linterm_negate(vn(V,N0), vn(V,N)) :- N is -N0.
|
||
|
||
vns_coeffs_variables([], N, V, [N], [V]).
|
||
vns_coeffs_variables([vn(V,N)|VNs], N0, V0, Ns, Vs) :-
|
||
( V == V0 ->
|
||
N1 is N0 + N,
|
||
vns_coeffs_variables(VNs, N1, V0, Ns, Vs)
|
||
; Ns = [N0|NRest],
|
||
Vs = [V0|VRest],
|
||
vns_coeffs_variables(VNs, N, V, NRest, VRest)
|
||
).
|
||
|
||
filter_linsum([], [], [], []).
|
||
filter_linsum([C0|Cs0], [V0|Vs0], Cs, Vs) :-
|
||
( C0 =:= 0 ->
|
||
constrain_to_integer(V0),
|
||
filter_linsum(Cs0, Vs0, Cs, Vs)
|
||
; Cs = [C0|Cs1], Vs = [V0|Vs1],
|
||
filter_linsum(Cs0, Vs0, Cs1, Vs1)
|
||
).
|
||
|
||
gcd([], G, G).
|
||
gcd([N|Ns], G0, G) :-
|
||
G1 is gcd(N, G0),
|
||
gcd(Ns, G1, G).
|
||
|
||
even(N) :- N mod 2 =:= 0.
|
||
|
||
odd(N) :- \+ even(N).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
k-th root of N, if N is a k-th power.
|
||
|
||
TODO: Replace this when the GMP function becomes available.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
integer_kth_root(N, K, R) :-
|
||
( even(K) ->
|
||
N >= 0
|
||
; true
|
||
),
|
||
( N < 0 ->
|
||
odd(K),
|
||
integer_kroot(N, 0, N, K, R)
|
||
; integer_kroot(0, N, N, K, R)
|
||
).
|
||
|
||
integer_kroot(L, U, N, K, R) :-
|
||
( L =:= U -> N =:= L^K, R = L
|
||
; L + 1 =:= U ->
|
||
( L^K =:= N -> R = L
|
||
; U^K =:= N -> R = U
|
||
; fail
|
||
)
|
||
; Mid is (L + U)//2,
|
||
( Mid^K > N ->
|
||
integer_kroot(L, Mid, N, K, R)
|
||
; integer_kroot(Mid, U, N, K, R)
|
||
)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Largest R such that R^K =< N.
|
||
|
||
TODO: Replace this when the GMP function becomes available.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
integer_kth_root_leq(N, K, R) :-
|
||
( even(K) ->
|
||
N >= 0
|
||
; true
|
||
),
|
||
( N < 0 ->
|
||
odd(K),
|
||
integer_kroot_leq(N, 0, N, K, R)
|
||
; integer_kroot_leq(0, N, N, K, R)
|
||
).
|
||
|
||
integer_kroot_leq(L, U, N, K, R) :-
|
||
( L =:= U -> R = L
|
||
; L + 1 =:= U ->
|
||
( U^K =< N -> R = U
|
||
; R = L
|
||
)
|
||
; Mid is (L + U)//2,
|
||
( Mid^K > N ->
|
||
integer_kroot_leq(L, Mid, N, K, R)
|
||
; integer_kroot_leq(Mid, U, N, K, R)
|
||
)
|
||
).
|
||
|
||
%% ?X #\= ?Y
|
||
%
|
||
% X is not Y.
|
||
|
||
X #\= Y :- clpfd_neq(X, Y), do_queue.
|
||
|
||
% X #\= Y + Z
|
||
|
||
x_neq_y_plus_z(X, Y, Z) :-
|
||
propagator_init_trigger(x_neq_y_plus_z(X,Y,Z)).
|
||
|
||
% X is distinct from the number N. This is used internally, and does
|
||
% not reinforce other constraints.
|
||
|
||
neq_num(X, N) :-
|
||
( fd_get(X, XD, XPs) ->
|
||
domain_remove(XD, N, XD1),
|
||
fd_put(X, XD1, XPs)
|
||
; X =\= N
|
||
).
|
||
|
||
%% ?X #> ?Y
|
||
%
|
||
% X is greater than Y.
|
||
|
||
X #> Y :- X #>= Y + 1.
|
||
|
||
%% #<(?X, ?Y)
|
||
%
|
||
% X is less than Y. In addition to its regular use in problems that
|
||
% require it, this constraint can also be useful to eliminate
|
||
% uninteresting symmetries from a problem. For example, all possible
|
||
% matches between pairs built from four players in total:
|
||
%
|
||
% ==
|
||
% ?- Vs = [A,B,C,D], Vs ins 1..4, all_different(Vs), A #< B, C #< D, A #< C,
|
||
% findall(pair(A,B)-pair(C,D), label(Vs), Ms).
|
||
% Ms = [pair(1, 2)-pair(3, 4), pair(1, 3)-pair(2, 4), pair(1, 4)-pair(2, 3)]
|
||
% ==
|
||
|
||
X #< Y :- Y #> X.
|
||
|
||
%% #\ +Q
|
||
%
|
||
% The reifiable constraint Q does _not_ hold. For example, to obtain
|
||
% the complement of a domain:
|
||
%
|
||
% ==
|
||
% ?- #\ X in -3..0\/10..80.
|
||
% X in inf.. -4\/1..9\/81..sup.
|
||
% ==
|
||
|
||
#\ Q :- reify(Q, 0), do_queue.
|
||
|
||
%% ?P #<==> ?Q
|
||
%
|
||
% P and Q are equivalent. For example:
|
||
%
|
||
% ==
|
||
% ?- X #= 4 #<==> B, X #\= 4.
|
||
% B = 0,
|
||
% X in inf..3\/5..sup.
|
||
% ==
|
||
% The following example uses reified constraints to relate a list of
|
||
% finite domain variables to the number of occurrences of a given value:
|
||
%
|
||
% ==
|
||
% :- use_module(library(clpfd)).
|
||
%
|
||
% vs_n_num(Vs, N, Num) :-
|
||
% maplist(eq_b(N), Vs, Bs),
|
||
% sum(Bs, #=, Num).
|
||
%
|
||
% eq_b(X, Y, B) :- X #= Y #<==> B.
|
||
% ==
|
||
%
|
||
% Sample queries and their results:
|
||
%
|
||
% ==
|
||
% ?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num).
|
||
% Vs = [X, Y, Z],
|
||
% Num = 0,
|
||
% X in 0..1,
|
||
% Y in 0..1,
|
||
% Z in 0..1.
|
||
%
|
||
% ?- vs_n_num([X,Y,Z], 2, 3).
|
||
% X = 2,
|
||
% Y = 2,
|
||
% Z = 2.
|
||
% ==
|
||
|
||
L #<==> R :- reify(L, B), reify(R, B), do_queue.
|
||
|
||
%% ?P #==> ?Q
|
||
%
|
||
% P implies Q.
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Implication is special in that created auxiliary constraints can be
|
||
retracted when the implication becomes entailed, for example:
|
||
|
||
%?- X + 1 #= Y #==> Z, Z #= 1.
|
||
%@ Z = 1,
|
||
%@ X in inf..sup,
|
||
%@ Y in inf..sup.
|
||
|
||
We cannot use propagator_init_trigger/1 here because the states of
|
||
auxiliary propagators are themselves part of the propagator.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
L #==> R :-
|
||
phrase((reify(L, BL),reify(R, BR)), Ps),
|
||
propagator_init_trigger([BL,BR], pimpl(BL,BR,Ps)).
|
||
|
||
%% ?P #<== ?Q
|
||
%
|
||
% Q implies P.
|
||
|
||
L #<== R :- R #==> L.
|
||
|
||
%% ?P #/\ ?Q
|
||
%
|
||
% P and Q hold.
|
||
|
||
L #/\ R :- reify(L, 1), reify(R, 1), do_queue.
|
||
|
||
%% ?P #\/ ?Q
|
||
%
|
||
% P or Q holds. For example, the sum of natural numbers below 1000
|
||
% that are multiples of 3 or 5:
|
||
%
|
||
% ==
|
||
% ?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999, indomain(N)), Ns), sum(Ns, #=, Sum).
|
||
% Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...],
|
||
% Sum = 233168.
|
||
% ==
|
||
|
||
L #\/ R :-
|
||
reify(L, X, Ps1),
|
||
reify(R, Y, Ps2),
|
||
propagator_init_trigger([X,Y], reified_or(X,Ps1,Y,Ps2,1)).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
A constraint that is being reified need not hold. Therefore, in
|
||
X/Y, Y can as well be 0, for example. Note that it is OK to
|
||
constrain the *result* of an expression (which does not appear
|
||
explicitly in the expression and is not visible to the outside),
|
||
but not the operands, except for requiring that they be integers.
|
||
|
||
In contrast to parse_clpfd/2, the result of an expression can now
|
||
also be undefined, in which case the constraint cannot hold.
|
||
Therefore, the committed-choice language is extended by an element
|
||
d(D) that states D is 1 iff all subexpressions are defined. a(V)
|
||
means that V is an auxiliary variable that was introduced while
|
||
parsing a compound expression. a(X,V) means V is auxiliary unless
|
||
it is ==/2 X, and a(X,Y,V) means V is auxiliary unless it is ==/2 X
|
||
or Y. l(L) means the literal L occurs in the described list.
|
||
|
||
When a constraint becomes entailed or subexpressions become
|
||
undefined, created auxiliary constraints are killed, and the
|
||
"clpfd" attribute is removed from auxiliary variables.
|
||
|
||
For (/)/2 and mod/2, we create a skeleton propagator and remember
|
||
it as an auxiliary constraint. The corresponding reified
|
||
propagators can use the skeleton when the constraint is defined.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
parse_reified(E, R, D,
|
||
[(g(cyclic_term(E)) -> [g(domain_error(clpfd_expression, E))]),
|
||
(g(var(E)) -> [g(constrain_to_integer(E)), g(R = E), g(D=1)]),
|
||
(g(integer(E)) -> [g(R=E), g(D=1)]),
|
||
(m(A+B) -> [d(D), p(pplus(A,B,R)), a(A,B,R)]),
|
||
(m(A*B) -> [d(D), p(ptimes(A,B,R)), a(A,B,R)]),
|
||
(m(A-B) -> [d(D), p(pplus(R,B,A)), a(A,B,R)]),
|
||
(m(-A) -> [d(D), p(ptimes(-1,A,R)), a(R)]),
|
||
(m(max(A,B)) -> [d(D), p(pgeq(R, A)), p(pgeq(R, B)), p(pmax(A,B,R)), a(A,B,R)]),
|
||
(m(min(A,B)) -> [d(D), p(pgeq(A, R)), p(pgeq(B, R)), p(pmin(A,B,R)), a(A,B,R)]),
|
||
(m(A mod B) ->
|
||
[d(D1), l(p(P)), g(make_propagator(pmod(X,Y,Z), P)),
|
||
p([A,B,D2,R], reified_mod(A,B,D2,[X,Y,Z]-P,R)),
|
||
p(reified_and(D1,[],D2,[],D)), a(D2), a(A,B,R)]),
|
||
(m(abs(A)) -> [g(R#>=0), d(D), p(pabs(A, R)), a(A,R)]),
|
||
(m(A/B) ->
|
||
[d(D1), l(p(P)), g(make_propagator(pdiv(X,Y,Z), P)),
|
||
p([A,B,D2,R], reified_div(A,B,D2,[X,Y,Z]-P,R)),
|
||
p(reified_and(D1,[],D2,[],D)), a(D2), a(A,B,R)]),
|
||
(m(A^B) -> [d(D), p(pexp(A,B,R)), a(A,B,R)]),
|
||
(g(true) -> [g(domain_error(clpfd_expression, E))])]
|
||
).
|
||
|
||
% Again, we compile this to a predicate, parse_reified_clpfd//3. This
|
||
% time, it is a DCG that describes the list of auxiliary variables and
|
||
% propagators for the given expression, in addition to relating it to
|
||
% its reified (Boolean) finite domain variable and its Boolean
|
||
% definedness.
|
||
|
||
make_parse_reified(Clauses) :-
|
||
parse_reified_clauses(Clauses0),
|
||
maplist(goals_goal_dcg, Clauses0, Clauses).
|
||
|
||
goals_goal_dcg((Head --> Goals), Clause) :-
|
||
list_goal(Goals, Body),
|
||
expand_term((Head --> Body), Clause).
|
||
|
||
parse_reified_clauses(Clauses) :-
|
||
parse_reified(E, R, D, Matchers),
|
||
maplist(parse_reified(E, R, D), Matchers, Clauses).
|
||
|
||
parse_reified(E, R, D, Matcher, Clause) :-
|
||
Matcher = (Condition0 -> Goals0),
|
||
phrase((reified_condition(Condition0, E, Head, Ds),
|
||
reified_goals(Goals0, Ds)), Goals, [a(D)]),
|
||
Clause = (parse_reified_clpfd(Head, R, D) --> Goals).
|
||
|
||
reified_condition(g(Goal), E, E, []) --> [{Goal}, !].
|
||
reified_condition(m(Match), _, Match0, Ds) -->
|
||
{ copy_term(Match, Match0) },
|
||
[!],
|
||
{ term_variables(Match0, Vs0),
|
||
term_variables(Match, Vs)
|
||
},
|
||
reified_variables(Vs0, Vs, Ds).
|
||
|
||
reified_variables([], [], []) --> [].
|
||
reified_variables([V0|Vs0], [V|Vs], [D|Ds]) -->
|
||
[parse_reified_clpfd(V0, V, D)],
|
||
reified_variables(Vs0, Vs, Ds).
|
||
|
||
reified_goals([], _) --> [].
|
||
reified_goals([G|Gs], Ds) --> reified_goal(G, Ds), reified_goals(Gs, Ds).
|
||
|
||
reified_goal(d(D), Ds) -->
|
||
( { Ds = [X] } -> [{D=X}]
|
||
; { Ds = [X,Y] } ->
|
||
{ phrase(reified_goal(p(reified_and(X,[],Y,[],D)), _), Gs),
|
||
list_goal(Gs, Goal) },
|
||
[( {X==1, Y==1} -> {D = 1} ; Goal )]
|
||
; { domain_error(one_or_two_element_list, Ds) }
|
||
).
|
||
reified_goal(g(Goal), _) --> [{Goal}].
|
||
reified_goal(p(Vs, Prop), _) -->
|
||
[{make_propagator(Prop, P)}],
|
||
parse_init_dcg(Vs, P),
|
||
[{trigger_once(P)}],
|
||
[( { arg(2, P, S), S == dead } -> [] ; [p(P)])].
|
||
reified_goal(p(Prop), Ds) -->
|
||
{ term_variables(Prop, Vs) },
|
||
reified_goal(p(Vs,Prop), Ds).
|
||
reified_goal(a(V), _) --> [a(V)].
|
||
reified_goal(a(X,V), _) --> [a(X,V)].
|
||
reified_goal(a(X,Y,V), _) --> [a(X,Y,V)].
|
||
reified_goal(l(L), _) --> [[L]].
|
||
|
||
parse_init_dcg([], _) --> [].
|
||
parse_init_dcg([V|Vs], P) --> [{init_propagator(V, P)}], parse_init_dcg(Vs, P).
|
||
|
||
%?- set_prolog_flag(toplevel_print_options, [portray(true)]),
|
||
% clpfd:parse_reified_clauses(Cs), maplist(portray_clause, Cs).
|
||
|
||
reify(E, B) :- reify(E, B, _).
|
||
|
||
reify(Expr, B, Ps) :- phrase(reify(Expr, B), Ps).
|
||
|
||
reify(E, B) --> { B in 0..1 }, reify_(E, B).
|
||
|
||
reify_(E, _) -->
|
||
{ cyclic_term(E), !, domain_error(clpfd_reifiable_expression, E) }.
|
||
reify_(E, B) --> { var(E), !, E = B }.
|
||
reify_(E, B) --> { integer(E), !, E = B }.
|
||
reify_(V in Drep, B) --> !,
|
||
{ drep_to_domain(Drep, Dom), fd_variable(V) },
|
||
propagator_init_trigger(reified_in(V,Dom,B)),
|
||
a(B).
|
||
reify_(tuples_in(Tuples, Relation), B) --> !,
|
||
{ must_be(list, Tuples),
|
||
append(Tuples, Vs),
|
||
maplist(fd_variable, Vs),
|
||
must_be(list(list(integer)), Relation),
|
||
maplist(relation_tuple_b_prop(Relation), Tuples, Bs, Ps),
|
||
( Bs == [] -> B = 1
|
||
; Bs = [B1|Rest],
|
||
bs_and(Rest, B1, And),
|
||
And #<==> B
|
||
) },
|
||
list(Ps),
|
||
as([B|Bs]).
|
||
reify_(finite_domain(V), B) --> !,
|
||
{ fd_variable(V) },
|
||
propagator_init_trigger(reified_fd(V,B)),
|
||
a(B).
|
||
reify_(L #>= R, B) --> !,
|
||
{ phrase((parse_reified_clpfd(L, LR, LD),
|
||
parse_reified_clpfd(R, RR, RD)), Ps) },
|
||
list(Ps),
|
||
propagator_init_trigger([LD,LR,RD,RR,B], reified_geq(LD,LR,RD,RR,Ps,B)),
|
||
a(B).
|
||
reify_(L #> R, B) --> !, reify_(L #>= (R+1), B).
|
||
reify_(L #=< R, B) --> !, reify_(R #>= L, B).
|
||
reify_(L #< R, B) --> !, reify_(R #>= (L+1), B).
|
||
reify_(L #= R, B) --> !,
|
||
{ phrase((parse_reified_clpfd(L, LR, LD),
|
||
parse_reified_clpfd(R, RR, RD)), Ps) },
|
||
list(Ps),
|
||
propagator_init_trigger([LD,LR,RD,RR,B], reified_eq(LD,LR,RD,RR,Ps,B)),
|
||
a(B).
|
||
reify_(L #\= R, B) --> !,
|
||
{ phrase((parse_reified_clpfd(L, LR, LD),
|
||
parse_reified_clpfd(R, RR, RD)), Ps) },
|
||
list(Ps),
|
||
propagator_init_trigger([LD,LR,RD,RR,B], reified_neq(LD,LR,RD,RR,Ps,B)),
|
||
a(B).
|
||
reify_(L #==> R, B) --> !, reify_((#\ L) #\/ R, B).
|
||
reify_(L #<== R, B) --> !, reify_(R #==> L, B).
|
||
reify_(L #<==> R, B) --> !, reify_((L #==> R) #/\ (R #==> L), B).
|
||
reify_(L #/\ R, B) --> !,
|
||
{ reify(L, LR, Ps1),
|
||
reify(R, RR, Ps2) },
|
||
list(Ps1), list(Ps2),
|
||
propagator_init_trigger([LR,RR,B], reified_and(LR,Ps1,RR,Ps2,B)),
|
||
a(LR, RR, B).
|
||
reify_(L #\/ R, B) --> !,
|
||
{ reify(L, LR, Ps1),
|
||
reify(R, RR, Ps2) },
|
||
list(Ps1), list(Ps2),
|
||
propagator_init_trigger([LR,RR,B], reified_or(LR,Ps1,RR,Ps2,B)),
|
||
a(LR, RR, B).
|
||
reify_(#\ Q, B) --> !,
|
||
reify(Q, QR),
|
||
propagator_init_trigger(reified_not(QR,B)),
|
||
a(B).
|
||
reify_(E, _) --> !, { domain_error(clpfd_reifiable_expression, E) }.
|
||
|
||
list([]) --> [].
|
||
list([L|Ls]) --> [L], list(Ls).
|
||
|
||
a(X,Y,B) -->
|
||
( { nonvar(X) } -> a(Y, B)
|
||
; { nonvar(Y) } -> a(X, B)
|
||
; [a(X,Y,B)]
|
||
).
|
||
|
||
a(X, B) -->
|
||
( { var(X) } -> [a(X, B)]
|
||
; a(B)
|
||
).
|
||
|
||
a(B) -->
|
||
( { var(B) } -> [a(B)]
|
||
; []
|
||
).
|
||
|
||
as([]) --> [].
|
||
as([B|Bs]) --> a(B), as(Bs).
|
||
|
||
bs_and([], A, A).
|
||
bs_and([B|Bs], A0, A) :-
|
||
bs_and(Bs, A0#/\B, A).
|
||
|
||
relation_tuple_b_prop(Relation, Tuple, B, p(Prop)) :-
|
||
put_attr(R, clpfd_relation, Relation),
|
||
make_propagator(reified_tuple_in(Tuple, R, B), Prop),
|
||
tuple_freeze(Tuple, Tuple, Prop),
|
||
init_propagator(B, Prop).
|
||
|
||
% Match variables to created skeleton.
|
||
|
||
skeleton(Vs, Vs-Prop) :-
|
||
maplist(prop_init(Prop), Vs),
|
||
trigger_once(Prop).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
A drep is a user-accessible and visible domain representation. N,
|
||
N..M, and D1 \/ D2 are dreps, if D1 and D2 are dreps.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
is_drep(V) :- var(V), !, instantiation_error(V).
|
||
is_drep(N) :- integer(N), !.
|
||
is_drep(N..M) :- !, drep_bound(N), drep_bound(M), N \== sup, M \== inf.
|
||
is_drep(D1\/D2) :- !, is_drep(D1), is_drep(D2).
|
||
|
||
drep_bound(V) :- var(V), !, instantiation_error(V).
|
||
drep_bound(sup) :- !. % should infinities be accessible?
|
||
drep_bound(inf) :- !.
|
||
drep_bound(I) :- integer(I), !.
|
||
|
||
drep_to_intervals(I) --> { integer(I) }, !, [n(I)-n(I)].
|
||
drep_to_intervals(N..M) -->
|
||
( { defaulty_to_bound(N, N1), defaulty_to_bound(M, M1),
|
||
N1 cis_leq M1} -> [N1-M1]
|
||
; []
|
||
).
|
||
drep_to_intervals(D1 \/ D2) -->
|
||
drep_to_intervals(D1), drep_to_intervals(D2).
|
||
|
||
drep_to_domain(DR, D) :-
|
||
( is_drep(DR) -> true
|
||
; domain_error(clpfd_domain, DR)
|
||
),
|
||
phrase(drep_to_intervals(DR), Is0),
|
||
merge_intervals(Is0, Is1),
|
||
intervals_to_domain(Is1, D).
|
||
|
||
merge_intervals(Is0, Is) :-
|
||
keysort(Is0, Is1),
|
||
merge_overlapping(Is1, Is).
|
||
|
||
merge_overlapping([], []).
|
||
merge_overlapping([A-B0|ABs0], [A-B|ABs]) :-
|
||
merge_remaining(ABs0, B0, B, Rest),
|
||
merge_overlapping(Rest, ABs).
|
||
|
||
merge_remaining([], B, B, []).
|
||
merge_remaining([N-M|NMs], B0, B, Rest) :-
|
||
Next cis B0 + n(1),
|
||
( N cis_gt Next -> B = B0, Rest = [N-M|NMs]
|
||
; B1 cis max(B0,M),
|
||
merge_remaining(NMs, B1, B, Rest)
|
||
).
|
||
|
||
domain(V, Dom) :-
|
||
( fd_get(V, Dom0, VPs) ->
|
||
domains_intersection(Dom, Dom0, Dom1),
|
||
%format("intersected\n: ~w\n ~w\n==> ~w\n\n", [Dom,Dom0,Dom1]),
|
||
fd_put(V, Dom1, VPs),
|
||
do_queue,
|
||
reinforce(V)
|
||
; domain_contains(Dom, V)
|
||
).
|
||
|
||
domains([], _).
|
||
domains([V|Vs], D) :- domain(V, D), domains(Vs, D).
|
||
|
||
props_number(fd_props(Gs,Bs,Os), N) :-
|
||
length(Gs, N1),
|
||
length(Bs, N2),
|
||
length(Os, N3),
|
||
N is N1 + N2 + N3.
|
||
|
||
fd_get(X, Dom, Ps) :-
|
||
( get_attr(X, clpfd, Attr) -> Attr = clpfd_attr(_,_,_,Dom,Ps)
|
||
; var(X) -> default_domain(Dom), Ps = fd_props([],[],[])
|
||
).
|
||
|
||
fd_get(X, Dom, Inf, Sup, Ps) :-
|
||
fd_get(X, Dom, Ps),
|
||
domain_infimum(Dom, Inf),
|
||
domain_supremum(Dom, Sup).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
By default, propagation always terminates. Currently, this is
|
||
ensured by allowing the left and right boundaries, as well as the
|
||
distance between the smallest and largest number occurring in the
|
||
domain representation to be changed at most once after a constraint
|
||
is posted, unless the domain is bounded. Set the experimental
|
||
Prolog flag 'clpfd_propagation' to 'full' to make the solver
|
||
propagate as much as possible. This can make queries
|
||
non-terminating, like: X #> abs(X), or: X #> Y, Y #> X, X #> 0.
|
||
Importantly, it can also make labeling non-terminating, as in:
|
||
|
||
?- B #==> X #> abs(X), indomain(B).
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
fd_put(X, Dom, Ps) :-
|
||
( current_prolog_flag(clpfd_propagation, full) ->
|
||
put_full(X, Dom, Ps)
|
||
; put_terminating(X, Dom, Ps)
|
||
).
|
||
|
||
put_terminating(X, Dom, Ps) :-
|
||
Dom \== empty,
|
||
( Dom = from_to(F, F) -> F = n(X)
|
||
; ( get_attr(X, clpfd, Attr) ->
|
||
Attr = clpfd_attr(Left,Right,Spread,OldDom, _OldPs),
|
||
put_attr(X, clpfd, clpfd_attr(Left,Right,Spread,Dom,Ps)),
|
||
( OldDom == Dom -> true
|
||
; ( Left == (.) -> Bounded = yes
|
||
; domain_infimum(Dom, Inf), domain_supremum(Dom, Sup),
|
||
( Inf = n(_), Sup = n(_) ->
|
||
Bounded = yes
|
||
; Bounded = no
|
||
)
|
||
),
|
||
( Bounded == yes ->
|
||
put_attr(X, clpfd, clpfd_attr(.,.,.,Dom,Ps)),
|
||
trigger_props(Ps, X, OldDom, Dom)
|
||
; % infinite domain; consider border and spread changes
|
||
domain_infimum(OldDom, OldInf),
|
||
( Inf == OldInf -> LeftP = Left
|
||
; LeftP = yes
|
||
),
|
||
domain_supremum(OldDom, OldSup),
|
||
( Sup == OldSup -> RightP = Right
|
||
; RightP = yes
|
||
),
|
||
domain_spread(OldDom, OldSpread),
|
||
domain_spread(Dom, NewSpread),
|
||
( NewSpread == OldSpread -> SpreadP = Spread
|
||
; SpreadP = yes
|
||
),
|
||
put_attr(X, clpfd, clpfd_attr(LeftP,RightP,SpreadP,Dom,Ps)),
|
||
( RightP == yes, Right = yes -> true
|
||
; LeftP == yes, Left = yes -> true
|
||
; SpreadP == yes, Spread = yes -> true
|
||
; trigger_props(Ps, X, OldDom, Dom)
|
||
)
|
||
)
|
||
)
|
||
; var(X) ->
|
||
put_attr(X, clpfd, clpfd_attr(no,no,no,Dom, Ps))
|
||
; true
|
||
)
|
||
).
|
||
|
||
domain_spread(Dom, Spread) :-
|
||
domain_smallest_finite(Dom, S),
|
||
domain_largest_finite(Dom, L),
|
||
Spread cis L - S.
|
||
|
||
smallest_finite(inf, Y, Y).
|
||
smallest_finite(n(N), _, n(N)).
|
||
|
||
domain_smallest_finite(from_to(F,T), S) :- smallest_finite(F, T, S).
|
||
domain_smallest_finite(split(_, L, _), S) :- domain_smallest_finite(L, S).
|
||
|
||
largest_finite(sup, Y, Y).
|
||
largest_finite(n(N), _, n(N)).
|
||
|
||
domain_largest_finite(from_to(F,T), L) :- largest_finite(T, F, L).
|
||
domain_largest_finite(split(_, _, R), L) :- domain_largest_finite(R, L).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
With terminating propagation, all relevant constraints get a
|
||
propagation opportunity whenever a new constraint is posted.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
reinforce(X) :-
|
||
( current_prolog_flag(clpfd_propagation, full) ->
|
||
% full propagation propagates everything in any case
|
||
true
|
||
; term_variables(X, Vs),
|
||
maplist(reinforce_, Vs),
|
||
do_queue
|
||
).
|
||
|
||
collect_variables(X, Vs0, Vs) :-
|
||
( fd_get(X, _, Ps) ->
|
||
term_variables(Ps, Vs1),
|
||
%all_collect(Vs1, [X|Vs0], Vs)
|
||
Vs = [X|Vs1]
|
||
; Vs = Vs0
|
||
).
|
||
|
||
all_collect([], Vs, Vs).
|
||
all_collect([X|Xs], Vs0, Vs) :-
|
||
( member(V, Vs0), X == V -> all_collect(Xs, Vs0, Vs)
|
||
; collect_variables(X, Vs0, Vs1),
|
||
all_collect(Xs, Vs1, Vs)
|
||
).
|
||
|
||
reinforce_(X) :-
|
||
( fd_var(X), fd_get(X, Dom, Ps) ->
|
||
put_full(X, Dom, Ps)
|
||
; true
|
||
).
|
||
|
||
put_full(X, Dom, Ps) :-
|
||
Dom \== empty,
|
||
( Dom = from_to(F, F) -> F = n(X)
|
||
; ( get_attr(X, clpfd, Attr) ->
|
||
Attr = clpfd_attr(_,_,_,OldDom, _OldPs),
|
||
put_attr(X, clpfd, clpfd_attr(no,no,no,Dom, Ps)),
|
||
%format("putting dom: ~w\n", [Dom]),
|
||
( OldDom == Dom -> true
|
||
; trigger_props(Ps, X, OldDom, Dom)
|
||
)
|
||
; var(X) -> %format('\t~w in ~w .. ~w\n',[X,L,U]),
|
||
put_attr(X, clpfd, clpfd_attr(no,no,no,Dom, Ps))
|
||
; true
|
||
)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
A propagator is a term of the form propagator(C, State), where C
|
||
represents a constraint, and State is a free variable that can be
|
||
used to destructively change the state of the propagator via
|
||
attributes. This can be used to avoid redundant invocation of the
|
||
same propagator, or to disable the propagator.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
make_propagator(C, propagator(C, _)).
|
||
|
||
trigger_props(fd_props(Gs,Bs,Os), X, D0, D) :-
|
||
trigger_props_(Os),
|
||
( ground(X) ->
|
||
trigger_props_(Gs),
|
||
trigger_props_(Bs)
|
||
; Bs \== [] ->
|
||
domain_infimum(D0, I0),
|
||
domain_infimum(D, I),
|
||
( I == I0 ->
|
||
domain_supremum(D0, S0),
|
||
domain_supremum(D, S),
|
||
( S == S0 -> true
|
||
; trigger_props_(Bs)
|
||
)
|
||
; trigger_props_(Bs)
|
||
)
|
||
; true
|
||
).
|
||
|
||
|
||
trigger_props(fd_props(Gs,Bs,Os), X) :-
|
||
trigger_props_(Os),
|
||
trigger_props_(Bs),
|
||
( ground(X) ->
|
||
trigger_props_(Gs)
|
||
; true
|
||
).
|
||
|
||
trigger_props(fd_props(Gs,Bs,Os)) :-
|
||
trigger_props_(Gs),
|
||
trigger_props_(Bs),
|
||
trigger_props_(Os).
|
||
|
||
trigger_props_([]).
|
||
trigger_props_([P|Ps]) :- trigger_prop(P), trigger_props_(Ps).
|
||
|
||
trigger_prop(Propagator) :-
|
||
arg(2, Propagator, State),
|
||
( State == dead -> true
|
||
; get_attr(State, clpfd_aux, queued) -> true
|
||
; b_getval('$clpfd_current_propagator', C), C == State -> true
|
||
; % passive
|
||
% format("triggering: ~w\n", [Propagator]),
|
||
put_attr(State, clpfd_aux, queued),
|
||
( arg(1, Propagator, C), functor(C, F, _), global_constraint(F) ->
|
||
push_slow_queue(Propagator)
|
||
; push_fast_queue(Propagator)
|
||
)
|
||
).
|
||
|
||
kill(State) :- del_attr(State, clpfd_aux), State = dead.
|
||
|
||
kill(State, Ps) :-
|
||
kill(State),
|
||
maplist(kill_entailed, Ps).
|
||
|
||
kill_entailed(p(Prop)) :-
|
||
arg(2, Prop, State),
|
||
kill(State).
|
||
kill_entailed(a(V)) :-
|
||
del_attr(V, clpfd).
|
||
kill_entailed(a(X,B)) :-
|
||
( X == B -> true
|
||
; del_attr(B, clpfd)
|
||
).
|
||
kill_entailed(a(X,Y,B)) :-
|
||
( X == B -> true
|
||
; Y == B -> true
|
||
; del_attr(B, clpfd)
|
||
).
|
||
|
||
no_reactivation(rel_tuple(_,_)).
|
||
%no_reactivation(scalar_product(_,_,_,_)).
|
||
|
||
activate_propagator(propagator(P,State)) :-
|
||
% format("running: ~w\n", [P]),
|
||
del_attr(State, clpfd_aux),
|
||
( no_reactivation(P) ->
|
||
b_setval('$clpfd_current_propagator', State),
|
||
run_propagator(P, State),
|
||
b_setval('$clpfd_current_propagator', [])
|
||
; run_propagator(P, State)
|
||
).
|
||
|
||
disable_queue :- b_setval('$clpfd_queue_status', disabled).
|
||
enable_queue :- b_setval('$clpfd_queue_status', enabled).
|
||
|
||
portray_propagator(propagator(P,_), F) :- functor(P, F, _).
|
||
|
||
portray_queue(V, []) :- var(V), !.
|
||
portray_queue([P|Ps], [F|Fs]) :-
|
||
portray_propagator(P, F),
|
||
portray_queue(Ps, Fs).
|
||
|
||
do_queue :-
|
||
% b_getval('$clpfd_queue', H-_),
|
||
% portray_queue(H, Port),
|
||
% format("queue: ~w\n", [Port]),
|
||
( b_getval('$clpfd_queue_status', enabled) ->
|
||
( fetch_propagator(Propagator) ->
|
||
activate_propagator(Propagator),
|
||
do_queue
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
|
||
init_propagator(Var, Prop) :-
|
||
( fd_get(Var, Dom, Ps0) ->
|
||
insert_propagator(Prop, Ps0, Ps),
|
||
fd_put(Var, Dom, Ps)
|
||
; true
|
||
).
|
||
|
||
constraint_wake(pneq, ground).
|
||
constraint_wake(x_neq_y_plus_z, ground).
|
||
constraint_wake(absdiff_neq, ground).
|
||
constraint_wake(pdifferent, ground).
|
||
constraint_wake(pexclude, ground).
|
||
constraint_wake(scalar_product_neq, ground).
|
||
|
||
constraint_wake(x_leq_y_plus_c, bounds).
|
||
constraint_wake(scalar_product_eq, bounds).
|
||
constraint_wake(scalar_product_leq, bounds).
|
||
constraint_wake(pplus, bounds).
|
||
constraint_wake(pgeq, bounds).
|
||
constraint_wake(pgcc_single, bounds).
|
||
constraint_wake(pgcc_check_single, bounds).
|
||
|
||
global_constraint(pdistinct).
|
||
global_constraint(pgcc).
|
||
global_constraint(pgcc_single).
|
||
global_constraint(pcircuit).
|
||
%global_constraint(rel_tuple).
|
||
%global_constraint(scalar_product_eq).
|
||
|
||
insert_propagator(Prop, Ps0, Ps) :-
|
||
Ps0 = fd_props(Gs,Bs,Os),
|
||
arg(1, Prop, Constraint),
|
||
functor(Constraint, F, _),
|
||
( constraint_wake(F, ground) ->
|
||
Ps = fd_props([Prop|Gs], Bs, Os)
|
||
; constraint_wake(F, bounds) ->
|
||
Ps = fd_props(Gs, [Prop|Bs], Os)
|
||
; Ps = fd_props(Gs, Bs, [Prop|Os])
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% lex_chain(+Lists)
|
||
%
|
||
% Lists are lexicographically non-decreasing.
|
||
|
||
lex_chain(Lss) :-
|
||
must_be(list(list), Lss),
|
||
maplist(maplist(fd_variable), Lss),
|
||
make_propagator(presidual(lex_chain(Lss)), Prop),
|
||
lex_chain_(Lss, Prop).
|
||
|
||
lex_chain_([], _).
|
||
lex_chain_([Ls|Lss], Prop) :-
|
||
maplist(prop_init(Prop), Ls),
|
||
lex_chain_lag(Lss, Ls),
|
||
lex_chain_(Lss, Prop).
|
||
|
||
lex_chain_lag([], _).
|
||
lex_chain_lag([Ls|Lss], Ls0) :-
|
||
lex_le(Ls0, Ls),
|
||
lex_chain_lag(Lss, Ls).
|
||
|
||
lex_le([], []).
|
||
lex_le([V1|V1s], [V2|V2s]) :-
|
||
V1 #=< V2,
|
||
( integer(V1) ->
|
||
( integer(V2) ->
|
||
( V1 =:= V2 -> lex_le(V1s, V2s) ; true )
|
||
; freeze(V2, lex_le([V1|V1s], [V2|V2s]))
|
||
)
|
||
; freeze(V1, lex_le([V1|V1s], [V2|V2s]))
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
|
||
%% tuples_in(+Tuples, +Relation).
|
||
%
|
||
% Relation must be a list of lists of integers. The elements of the
|
||
% list Tuples are constrained to be elements of Relation. Arbitrary
|
||
% finite relations, such as compatibility tables, can be modeled in
|
||
% this way. For example, if 1 is compatible with 2 and 5, and 4 is
|
||
% compatible with 0 and 3:
|
||
%
|
||
% ==
|
||
% ?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4.
|
||
% X = 4,
|
||
% Y in 0\/3.
|
||
% ==
|
||
%
|
||
% As another example, consider a train schedule represented as a list
|
||
% of quadruples, denoting departure and arrival places and times for
|
||
% each train. In the following program, Ps is a feasible journey of
|
||
% length 3 from A to D via trains that are part of the given schedule.
|
||
%
|
||
% ==
|
||
% :- use_module(library(clpfd)).
|
||
%
|
||
% trains([[1,2,0,1],[2,3,4,5],[2,3,0,1],[3,4,5,6],[3,4,2,3],[3,4,8,9]]).
|
||
%
|
||
% threepath(A, D, Ps) :-
|
||
% Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]],
|
||
% T2 #> T1,
|
||
% T4 #> T3,
|
||
% trains(Ts),
|
||
% tuples_in(Ps, Ts).
|
||
% ==
|
||
%
|
||
% In this example, the unique solution is found without labeling:
|
||
%
|
||
% ==
|
||
% ?- threepath(1, 4, Ps).
|
||
% Ps = [[1, 2, 0, 1], [2, 3, 4, 5], [3, 4, 8, 9]].
|
||
% ==
|
||
|
||
tuples_in(Tuples, Relation) :-
|
||
must_be(list, Tuples),
|
||
append(Tuples, Vs),
|
||
maplist(fd_variable, Vs),
|
||
must_be(list(list(integer)), Relation),
|
||
maplist(relation_tuple(Relation), Tuples),
|
||
do_queue.
|
||
|
||
relation_tuple(Relation, Tuple) :-
|
||
relation_unifiable(Relation, Tuple, Us, _, _),
|
||
( ground(Tuple) -> memberchk(Tuple, Relation)
|
||
; tuple_domain(Tuple, Us),
|
||
( Tuple = [_,_|_] -> tuple_freeze(Tuple, Us)
|
||
; true
|
||
)
|
||
).
|
||
|
||
tuple_domain([], _).
|
||
tuple_domain([T|Ts], Relation0) :-
|
||
lists_firsts_rests(Relation0, Firsts, Relation1),
|
||
( var(T) ->
|
||
( Firsts = [Unique] -> T = Unique
|
||
; list_to_domain(Firsts, FDom),
|
||
fd_get(T, TDom, TPs),
|
||
domains_intersection(TDom, FDom, TDom1),
|
||
fd_put(T, TDom1, TPs)
|
||
)
|
||
; true
|
||
),
|
||
tuple_domain(Ts, Relation1).
|
||
|
||
tuple_freeze(Tuple, Relation) :-
|
||
put_attr(R, clpfd_relation, Relation),
|
||
make_propagator(rel_tuple(R, Tuple), Prop),
|
||
tuple_freeze(Tuple, Tuple, Prop).
|
||
|
||
tuple_freeze([], _, _).
|
||
tuple_freeze([T|Ts], Tuple, Prop) :-
|
||
( var(T) ->
|
||
init_propagator(T, Prop),
|
||
trigger_prop(Prop)
|
||
; true
|
||
),
|
||
tuple_freeze(Ts, Tuple, Prop).
|
||
|
||
relation_unifiable([], _, [], Changed, Changed).
|
||
relation_unifiable([R|Rs], Tuple, Us, Changed0, Changed) :-
|
||
( all_in_domain(R, Tuple) ->
|
||
Us = [R|Rest],
|
||
relation_unifiable(Rs, Tuple, Rest, Changed0, Changed)
|
||
; relation_unifiable(Rs, Tuple, Us, true, Changed)
|
||
).
|
||
|
||
all_in_domain([], []).
|
||
all_in_domain([A|As], [T|Ts]) :-
|
||
( fd_get(T, Dom, _) ->
|
||
domain_contains(Dom, A)
|
||
; T =:= A
|
||
),
|
||
all_in_domain(As, Ts).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
% trivial propagator, used only to remember pending constraints
|
||
run_propagator(presidual(_), _).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(pdifferent(Left,Right,X,_), _MState) :-
|
||
( ground(X) ->
|
||
disable_queue,
|
||
exclude_fire(Left, Right, X),
|
||
enable_queue
|
||
; true
|
||
).
|
||
|
||
run_propagator(weak_distinct(Left,Right,X,_), _MState) :-
|
||
( ground(X) ->
|
||
disable_queue,
|
||
exclude_fire(Left, Right, X),
|
||
enable_queue
|
||
; outof_reducer(Left, Right, X)
|
||
%( var(X) -> kill_if_isolated(Left, Right, X, MState)
|
||
%; true
|
||
%)
|
||
).
|
||
|
||
run_propagator(pexclude(Left,Right,X), _) :-
|
||
( ground(X) ->
|
||
disable_queue,
|
||
exclude_fire(Left, Right, X),
|
||
enable_queue
|
||
; true
|
||
).
|
||
|
||
run_propagator(pdistinct(Ls), _MState) :-
|
||
distinct(Ls).
|
||
|
||
run_propagator(check_distinct(Left,Right,X), _) :-
|
||
\+ list_contains(Left, X),
|
||
\+ list_contains(Right, X).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(pelement(N, Is, V), MState) :-
|
||
( fd_get(N, NDom, _) ->
|
||
( fd_get(V, VDom, VPs) ->
|
||
integers_remaining(Is, 1, NDom, empty, VDom1),
|
||
domains_intersection(VDom, VDom1, VDom2),
|
||
fd_put(V, VDom2, VPs)
|
||
; true
|
||
)
|
||
; kill(MState), nth1(N, Is, V)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(pgcc_single(Vs, Pairs), _) :- gcc_global(Vs, Pairs).
|
||
|
||
run_propagator(pgcc_check_single(Pairs), _) :- gcc_check(Pairs).
|
||
|
||
run_propagator(pgcc_check(Pairs), _) :- gcc_check(Pairs).
|
||
|
||
run_propagator(pgcc(Vs, _, Pairs), _) :- gcc_global(Vs, Pairs).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(pcircuit(Vs), _MState) :-
|
||
distinct(Vs),
|
||
propagate_circuit(Vs).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(pneq(A, B), MState) :-
|
||
( nonvar(A) ->
|
||
( nonvar(B) -> A =\= B, kill(MState)
|
||
; fd_get(B, BD0, BExp0),
|
||
domain_remove(BD0, A, BD1),
|
||
kill(MState),
|
||
fd_put(B, BD1, BExp0)
|
||
)
|
||
; nonvar(B) -> run_propagator(pneq(B, A), MState)
|
||
; A \== B,
|
||
fd_get(A, _, AI, AS, _), fd_get(B, _, BI, BS, _),
|
||
( AS cis_lt BI -> kill(MState)
|
||
; AI cis_gt BS -> kill(MState)
|
||
; true
|
||
)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(pgeq(A,B), MState) :-
|
||
( A == B -> kill(MState)
|
||
; nonvar(A) ->
|
||
( nonvar(B) -> kill(MState), A >= B
|
||
; fd_get(B, BD, BPs),
|
||
domain_remove_greater_than(BD, A, BD1),
|
||
kill(MState),
|
||
fd_put(B, BD1, BPs)
|
||
)
|
||
; nonvar(B) ->
|
||
fd_get(A, AD, APs),
|
||
domain_remove_smaller_than(AD, B, AD1),
|
||
kill(MState),
|
||
fd_put(A, AD1, APs)
|
||
; fd_get(A, AD, AL, AU, APs),
|
||
fd_get(B, _, BL, BU, _),
|
||
AU cis_geq BL,
|
||
( AL cis_geq BU -> kill(MState)
|
||
; AU == BL -> kill(MState), A = B
|
||
; NAL cis max(AL,BL),
|
||
domains_intersection(AD, from_to(NAL,AU), NAD),
|
||
fd_put(A, NAD, APs),
|
||
( fd_get(B, BD2, BL2, BU2, BPs2) ->
|
||
NBU cis min(BU2, AU),
|
||
domains_intersection(BD2, from_to(BL2,NBU), NBD),
|
||
fd_put(B, NBD, BPs2)
|
||
; true
|
||
)
|
||
)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(rel_tuple(R, Tuple), MState) :-
|
||
get_attr(R, clpfd_relation, Relation),
|
||
( ground(Tuple) -> kill(MState), memberchk(Tuple, Relation)
|
||
; relation_unifiable(Relation, Tuple, Us, false, Changed),
|
||
Us = [_|_],
|
||
( Tuple = [First,Second], ( ground(First) ; ground(Second) ) ->
|
||
kill(MState)
|
||
; true
|
||
),
|
||
( Us = [Single] -> kill(MState), Single = Tuple
|
||
; Changed ->
|
||
put_attr(R, clpfd_relation, Us),
|
||
disable_queue,
|
||
tuple_domain(Tuple, Us),
|
||
enable_queue
|
||
; true
|
||
)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(pserialized(S_I, D_I, S_J, D_J, _), MState) :-
|
||
( nonvar(S_I), nonvar(S_J) ->
|
||
kill(MState),
|
||
( S_I + D_I =< S_J -> true
|
||
; S_J + D_J =< S_I -> true
|
||
; false
|
||
)
|
||
; serialize_lower_upper(S_I, D_I, S_J, D_J, MState),
|
||
serialize_lower_upper(S_J, D_J, S_I, D_I, MState)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
% abs(X-Y) #\= C
|
||
run_propagator(absdiff_neq(X,Y,C), MState) :-
|
||
( C < 0 -> kill(MState)
|
||
; nonvar(X) ->
|
||
kill(MState),
|
||
( nonvar(Y) -> abs(X - Y) =\= C
|
||
; V1 is X - C, neq_num(Y, V1),
|
||
V2 is C + X, neq_num(Y, V2)
|
||
)
|
||
; nonvar(Y) -> kill(MState),
|
||
V1 is C + Y, neq_num(X, V1),
|
||
V2 is Y - C, neq_num(X, V2)
|
||
; true
|
||
).
|
||
|
||
% abs(X-Y) #>= C
|
||
run_propagator(absdiff_geq(X,Y,C), MState) :-
|
||
( C =< 0 -> kill(MState)
|
||
; nonvar(X) ->
|
||
kill(MState),
|
||
( nonvar(Y) -> abs(X-Y) >= C
|
||
; P1 is X - C, P2 is X + C,
|
||
Y in inf..P1 \/ P2..sup
|
||
)
|
||
; nonvar(Y) ->
|
||
kill(MState),
|
||
P1 is Y - C, P2 is Y + C,
|
||
X in inf..P1 \/ P2..sup
|
||
; true
|
||
).
|
||
|
||
% X #\= Y + Z
|
||
run_propagator(x_neq_y_plus_z(X,Y,Z), MState) :-
|
||
( nonvar(X) ->
|
||
( nonvar(Y) ->
|
||
( nonvar(Z) -> kill(MState), X =\= Y + Z
|
||
; kill(MState), XY is X - Y, neq_num(Z, XY)
|
||
)
|
||
; nonvar(Z) -> kill(MState), XZ is X - Z, neq_num(Y, XZ)
|
||
; true
|
||
)
|
||
; nonvar(Y) ->
|
||
( nonvar(Z) ->
|
||
kill(MState), YZ is Y + Z, neq_num(X, YZ)
|
||
; Y =:= 0 -> kill(MState), neq(X, Z)
|
||
; true
|
||
)
|
||
; Z == 0 -> kill(MState), neq(X, Y)
|
||
; true
|
||
).
|
||
|
||
% X #=< Y + C
|
||
run_propagator(x_leq_y_plus_c(X,Y,C), MState) :-
|
||
( nonvar(X) ->
|
||
( nonvar(Y) -> kill(MState), X =< Y + C
|
||
; kill(MState),
|
||
R is X - C,
|
||
fd_get(Y, YD, YPs),
|
||
domain_remove_smaller_than(YD, R, YD1),
|
||
fd_put(Y, YD1, YPs)
|
||
)
|
||
; nonvar(Y) ->
|
||
kill(MState),
|
||
R is Y + C,
|
||
fd_get(X, XD, XPs),
|
||
domain_remove_greater_than(XD, R, XD1),
|
||
fd_put(X, XD1, XPs)
|
||
; fd_get(Y, YD, _),
|
||
( domain_supremum(YD, n(YSup)) ->
|
||
YS1 is YSup + C,
|
||
fd_get(X, XD, XPs),
|
||
domain_remove_greater_than(XD, YS1, XD1),
|
||
fd_put(X, XD1, XPs)
|
||
; true
|
||
),
|
||
( fd_get(X, XD2, _), domain_infimum(XD2, n(XInf)) ->
|
||
XI1 is XInf - C,
|
||
( fd_get(Y, YD1, YPs1) ->
|
||
domain_remove_smaller_than(YD1, XI1, YD2),
|
||
( domain_infimum(YD2, n(YInf)),
|
||
domain_supremum(XD2, n(XSup)),
|
||
XSup =< YInf + C ->
|
||
kill(MState)
|
||
; true
|
||
),
|
||
fd_put(Y, YD2, YPs1)
|
||
; true
|
||
)
|
||
; true
|
||
)
|
||
).
|
||
|
||
run_propagator(scalar_product_neq(Cs0,Vs0,P0), MState) :-
|
||
coeffs_variables_const(Cs0, Vs0, Cs, Vs, 0, I),
|
||
P is P0 - I,
|
||
( Vs = [] -> kill(MState), P =\= 0
|
||
; Vs = [V], Cs = [C] ->
|
||
kill(MState),
|
||
( C =:= 1 -> neq_num(V, P)
|
||
; C*V #\= P
|
||
)
|
||
; Cs == [1,-1] -> kill(MState), Vs = [A,B], x_neq_y_plus_z(A, B, P)
|
||
; Cs == [-1,1] -> kill(MState), Vs = [A,B], x_neq_y_plus_z(B, A, P)
|
||
; P =:= 0, Cs = [1,1,-1] ->
|
||
kill(MState), Vs = [A,B,C], x_neq_y_plus_z(C, A, B)
|
||
; P =:= 0, Cs = [1,-1,1] ->
|
||
kill(MState), Vs = [A,B,C], x_neq_y_plus_z(B, A, C)
|
||
; P =:= 0, Cs = [-1,1,1] ->
|
||
kill(MState), Vs = [A,B,C], x_neq_y_plus_z(A, B, C)
|
||
; true
|
||
).
|
||
|
||
run_propagator(scalar_product_leq(Cs0,Vs0,P0), MState) :-
|
||
coeffs_variables_const(Cs0, Vs0, Cs, Vs, 0, I),
|
||
P is P0 - I,
|
||
( Vs = [] -> kill(MState), P >= 0
|
||
; sum_finite_domains(Cs, Vs, Infs, Sups, 0, 0, Inf, Sup),
|
||
D1 is P - Inf,
|
||
disable_queue,
|
||
( Infs == [], Sups == [] ->
|
||
Inf =< P,
|
||
( Sup =< P -> kill(MState)
|
||
; remove_dist_upper_leq(Cs, Vs, D1)
|
||
)
|
||
; Infs == [] -> Inf =< P, remove_dist_upper(Sups, D1)
|
||
; Sups = [_], Infs = [_] ->
|
||
remove_upper(Infs, D1)
|
||
; Infs = [_] -> remove_upper(Infs, D1)
|
||
; true
|
||
),
|
||
enable_queue
|
||
).
|
||
|
||
run_propagator(scalar_product_eq(Cs0,Vs0,P0), MState) :-
|
||
coeffs_variables_const(Cs0, Vs0, Cs, Vs, 0, I),
|
||
P is P0 - I,
|
||
( Vs = [] -> kill(MState), P =:= 0
|
||
; Vs = [V], Cs = [C] -> kill(MState), P mod C =:= 0, V is P // C
|
||
; Cs == [1,1] -> kill(MState), Vs = [A,B], A + B #= P
|
||
; Cs == [1,-1] -> kill(MState), Vs = [A,B], A #= P + B
|
||
; Cs == [-1,1] -> kill(MState), Vs = [A,B], B #= P + A
|
||
; Cs == [-1,-1] -> kill(MState), Vs = [A,B], P1 is -P, A + B #= P1
|
||
; P =:= 0, Cs == [1,1,-1] -> kill(MState), Vs = [A,B,C], A + B #= C
|
||
; P =:= 0, Cs == [1,-1,1] -> kill(MState), Vs = [A,B,C], A + C #= B
|
||
; P =:= 0, Cs == [-1,1,1] -> kill(MState), Vs = [A,B,C], B + C #= A
|
||
; sum_finite_domains(Cs, Vs, Infs, Sups, 0, 0, Inf, Sup),
|
||
% nl, writeln(Infs-Sups-Inf-Sup),
|
||
D1 is P - Inf,
|
||
D2 is Sup - P,
|
||
disable_queue,
|
||
( Infs == [], Sups == [] ->
|
||
between(Inf, Sup, P),
|
||
remove_dist_upper_lower(Cs, Vs, D1, D2)
|
||
; Sups = [] -> P =< Sup, remove_dist_lower(Infs, D2)
|
||
; Infs = [] -> Inf =< P, remove_dist_upper(Sups, D1)
|
||
; Sups = [_], Infs = [_] ->
|
||
remove_lower(Sups, D2),
|
||
remove_upper(Infs, D1)
|
||
; Infs = [_] -> remove_upper(Infs, D1)
|
||
; Sups = [_] -> remove_lower(Sups, D2)
|
||
; true
|
||
),
|
||
enable_queue
|
||
).
|
||
|
||
% X + Y = Z
|
||
run_propagator(pplus(X,Y,Z), MState) :-
|
||
( nonvar(X) ->
|
||
( X =:= 0 -> kill(MState), Y = Z
|
||
; Y == Z -> kill(MState), X =:= 0
|
||
; nonvar(Y) -> kill(MState), Z is X + Y
|
||
; nonvar(Z) -> kill(MState), Y is Z - X
|
||
; fd_get(Z, ZD, ZPs),
|
||
fd_get(Y, YD, _),
|
||
domain_shift(YD, X, Shifted_YD),
|
||
domains_intersection(ZD, Shifted_YD, ZD1),
|
||
fd_put(Z, ZD1, ZPs),
|
||
( fd_get(Y, YD1, YPs) ->
|
||
O is -X,
|
||
domain_shift(ZD1, O, YD2),
|
||
domains_intersection(YD1, YD2, YD3),
|
||
fd_put(Y, YD3, YPs)
|
||
; true
|
||
)
|
||
)
|
||
; nonvar(Y) -> run_propagator(pplus(Y,X,Z), MState)
|
||
; nonvar(Z) ->
|
||
( X == Y -> kill(MState), even(Z), X is Z // 2
|
||
; fd_get(X, XD, _),
|
||
fd_get(Y, YD, YPs),
|
||
domain_negate(XD, XDN),
|
||
domain_shift(XDN, Z, YD1),
|
||
domains_intersection(YD, YD1, YD2),
|
||
fd_put(Y, YD2, YPs),
|
||
( fd_get(X, XD1, XPs) ->
|
||
domain_negate(YD2, YD2N),
|
||
domain_shift(YD2N, Z, XD2),
|
||
domains_intersection(XD1, XD2, XD3),
|
||
fd_put(X, XD3, XPs)
|
||
; true
|
||
)
|
||
)
|
||
; ( X == Y -> kill(MState), 2*X #= Z
|
||
; X == Z -> kill(MState), Y = 0
|
||
; Y == Z -> kill(MState), X = 0
|
||
; fd_get(X, XD, XL, XU, XPs), fd_get(Y, YD, YL, YU, YPs),
|
||
fd_get(Z, ZD, ZL, ZU, _) ->
|
||
NXL cis max(XL, ZL-YU),
|
||
NXU cis min(XU, ZU-YL),
|
||
( NXL == XL, NXU == XU -> true
|
||
; domains_intersection(XD, from_to(NXL, NXU), NXD),
|
||
fd_put(X, NXD, XPs)
|
||
),
|
||
( fd_get(Y, YD2, YL2, YU2, YPs2) ->
|
||
NYL cis max(YL2, ZL-NXU),
|
||
NYU cis min(YU2, ZU-NXL),
|
||
( NYL == YL2, NYU == YU2 -> true
|
||
; domains_intersection(YD2, from_to(NYL, NYU), NYD),
|
||
fd_put(Y, NYD, YPs2)
|
||
)
|
||
; NYL = n(Y), NYU = n(Y)
|
||
),
|
||
( fd_get(Z, ZD2, ZL2, ZU2, ZPs2) ->
|
||
NZL cis max(ZL2,NXL+NYL),
|
||
NZU cis min(ZU2,NXU+NYU),
|
||
( NZL == ZL2, NZU == ZU2 -> true
|
||
; domains_intersection(ZD2, from_to(NZL,NZU), NZD),
|
||
fd_put(Z, NZD, ZPs2)
|
||
)
|
||
; true
|
||
)
|
||
; true
|
||
)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(ptimes(X,Y,Z), MState) :-
|
||
( nonvar(X) ->
|
||
( nonvar(Y) -> kill(MState), Z is X * Y
|
||
; X =:= 0 -> kill(MState), Z = 0
|
||
; X =:= 1 -> kill(MState), Z = Y
|
||
; nonvar(Z) -> kill(MState), 0 =:= Z mod X, Y is Z // X
|
||
; fd_get(Y, YD, _),
|
||
fd_get(Z, ZD, ZPs),
|
||
domain_expand(YD, X, Scaled_YD),
|
||
domains_intersection(ZD, Scaled_YD, ZD1),
|
||
fd_put(Z, ZD1, ZPs),
|
||
( fd_get(Y, YDom2, YPs2) ->
|
||
domain_contract(ZD1, X, Contract),
|
||
domains_intersection(YDom2, Contract, NYDom),
|
||
fd_put(Y, NYDom, YPs2)
|
||
; kill(MState), Z is X * Y
|
||
)
|
||
)
|
||
; nonvar(Y) -> run_propagator(ptimes(Y,X,Z), MState)
|
||
; nonvar(Z) ->
|
||
( X == Y ->
|
||
kill(MState),
|
||
integer_kth_root(Z, 2, R),
|
||
NR is -R,
|
||
X in NR \/ R
|
||
; fd_get(X, XD, XL, XU, XPs),
|
||
fd_get(Y, YD, YL, YU, _),
|
||
min_divide(n(Z), n(Z), YL, YU, TNXL),
|
||
max_divide(n(Z), n(Z), YL, YU, TNXU),
|
||
NXL cis max(XL,TNXL),
|
||
NXU cis min(XU,TNXU),
|
||
( NXL == XL, NXU == XU -> true
|
||
; domains_intersection(XD, from_to(NXL,NXU), XD1),
|
||
fd_put(X, XD1, XPs)
|
||
),
|
||
( fd_get(Y, YD2, YL2, YU2,YExp2) ->
|
||
min_divide(n(Z), n(Z), NXL, NXU, NYL),
|
||
max_divide(n(Z), n(Z), NXL, NXU, NYU),
|
||
( NYL cis_leq YL2, NYU cis_geq YU2 -> true
|
||
; domains_intersection(YD2, from_to(NYL,NYU), YD3),
|
||
fd_put(Y, YD3, YExp2)
|
||
)
|
||
; ( Y \== 0 -> 0 =:= Z mod Y, kill(MState), X is Z // Y
|
||
; kill(MState), Z = 0
|
||
)
|
||
)
|
||
),
|
||
( Z =\= 0 -> neq_num(X, 0), neq_num(Y, 0)
|
||
; true
|
||
)
|
||
; ( X == Y -> kill(MState), X^2#=Z
|
||
; fd_get(X, XD, XL, XU, XExp),
|
||
fd_get(Y, YD, YL, YU, _),
|
||
fd_get(Z, ZD, ZL, ZU, _),
|
||
min_divide(ZL,ZU,YL,YU,TXL),
|
||
NXL cis max(XL,TXL),
|
||
max_divide(ZL,ZU,YL,YU,TXU),
|
||
NXU cis min(XU,TXU),
|
||
( NXL == XL, NXU == XU -> true
|
||
; domains_intersection(XD, from_to(NXL,NXU), XD1),
|
||
fd_put(X, XD1, XExp)
|
||
),
|
||
( fd_get(Y,YD2,YL2,YU2,YExp2) ->
|
||
min_divide(ZL,ZU,XL,XU,TYL),
|
||
NYL cis max(YL2,TYL),
|
||
max_divide(ZL,ZU,XL,XU,TYU),
|
||
NYU cis min(YU2,TYU),
|
||
( NYL == YL2, NYU == YU2 -> true
|
||
; domains_intersection(YD2, from_to(NYL,NYU), YD3),
|
||
fd_put(Y, YD3, YExp2)
|
||
)
|
||
; NYL = n(Y), NYU = n(Y)
|
||
),
|
||
( fd_get(Z, ZD2, ZL2, ZU2, ZExp2) ->
|
||
min_times(NXL,NXU,NYL,NYU,NZL),
|
||
max_times(NXL,NXU,NYL,NYU,NZU),
|
||
( NZL cis_leq ZL2, NZU cis_geq ZU2 -> ZD3 = ZD2
|
||
; domains_intersection(ZD2, from_to(NZL,NZU), ZD3),
|
||
fd_put(Z, ZD3, ZExp2)
|
||
),
|
||
( domain_contains(ZD3, 0) -> true
|
||
; neq_num(X, 0), neq_num(Y, 0)
|
||
)
|
||
; true
|
||
)
|
||
)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% X / Y = Z
|
||
|
||
run_propagator(pdiv(X,Y,Z), MState) :-
|
||
( nonvar(X) ->
|
||
( nonvar(Y) -> kill(MState), Y =\= 0, Z is X // Y
|
||
; fd_get(Y, YD, YL, YU, YPs),
|
||
( nonvar(Z) ->
|
||
( Z =:= 0 ->
|
||
NYL is -abs(X) - 1,
|
||
NYU is abs(X) + 1,
|
||
domains_intersection(YD, split(0, from_to(inf,n(NYL)),
|
||
from_to(n(NYU), sup)),
|
||
NYD),
|
||
fd_put(Y, NYD, YPs)
|
||
; ( sign(X) =:= sign(Z) ->
|
||
NYL cis max(n(X) // (n(Z)+sign(n(Z))) + n(1), YL),
|
||
NYU cis min(n(X) // n(Z), YU)
|
||
; NYL cis max(n(X) // n(Z), YL),
|
||
NYU cis min(n(X) // (n(Z)+sign(n(Z))) - n(1), YU)
|
||
),
|
||
( NYL = YL, NYU = YU -> true
|
||
; domains_intersection(YD, from_to(NYL,NYU), NYD),
|
||
fd_put(Y, NYD, YPs)
|
||
)
|
||
)
|
||
; fd_get(Z, ZD, ZL, ZU, ZPs),
|
||
( X >= 0, YL cis_gt n(0) ->
|
||
NZL cis max(n(X)//YU, ZL),
|
||
NZU cis min(n(X)//YL, ZU)
|
||
; % TODO: more stringent bounds, cover Y
|
||
NZL cis max(-abs(n(X)), ZL),
|
||
NZU cis min(abs(n(X)), ZU)
|
||
),
|
||
( NZL = ZL, NZU = ZU -> true
|
||
; domains_intersection(ZD, from_to(NZL,NZU), NZD),
|
||
fd_put(Z, NZD, ZPs)
|
||
)
|
||
)
|
||
)
|
||
; nonvar(Y) ->
|
||
Y =\= 0,
|
||
( Y =:= 1 -> kill(MState), X = Z
|
||
; Y =:= -1 -> kill(MState), Z #= -X
|
||
; fd_get(X, XD, XL, XU, XPs),
|
||
( nonvar(Z) ->
|
||
( sign(Z) =:= sign(Y) ->
|
||
NXL cis max(n(Z)*n(Y), XL),
|
||
NXU cis min((abs(n(Z))+n(1))*abs(n(Y))-n(1), XU)
|
||
; Z =:= 0 ->
|
||
NXL cis max(-abs(n(Y)) + n(1), XL),
|
||
NXU cis min(abs(n(Y)) - n(1), XU)
|
||
; NXL cis max((n(Z)+sign(n(Z))*n(1))*n(Y)+n(1), XL),
|
||
NXU cis min(n(Z)*n(Y), XU)
|
||
),
|
||
( NXL == XL, NXU == XU -> true
|
||
; domains_intersection(XD, from_to(NXL,NXU), NXD),
|
||
fd_put(X, NXD, XPs)
|
||
)
|
||
; fd_get(Z, ZD, ZPs),
|
||
domain_contract_less(XD, Y, Contracted),
|
||
domains_intersection(ZD, Contracted, NZD),
|
||
fd_put(Z, NZD, ZPs),
|
||
( \+ domain_contains(NZD, 0), fd_get(X, XD2, XPs2) ->
|
||
domain_expand_more(NZD, Y, Expanded),
|
||
domains_intersection(XD2, Expanded, NXD2),
|
||
fd_put(X, NXD2, XPs2)
|
||
; true
|
||
)
|
||
)
|
||
)
|
||
; nonvar(Z) ->
|
||
fd_get(X, XD, XL, XU, XPs),
|
||
fd_get(Y, YD, YL, YU, YPs),
|
||
( YL cis_geq n(0), XL cis_geq n(0) ->
|
||
NXL cis max(YL*n(Z), XL),
|
||
NXU cis min(YU*(n(Z)+n(1))-n(1), XU)
|
||
; %TODO: cover more cases
|
||
NXL = XL, NXU = XU
|
||
),
|
||
( NXL == XL, NXU == XU -> true
|
||
; domains_intersection(XD, from_to(NXL,NXU), NXD),
|
||
fd_put(X, NXD, XPs)
|
||
)
|
||
; ( X == Y -> Z = 1
|
||
; fd_get(X, _, XL, XU, _),
|
||
fd_get(Y, _, YL, YU, _),
|
||
fd_get(Z, ZD, ZPs),
|
||
NZU cis max(abs(XL), XU),
|
||
NZL cis -NZU,
|
||
domains_intersection(ZD, from_to(NZL,NZU), NZD0),
|
||
( cis_geq_zero(XL), cis_geq_zero(YL) ->
|
||
domain_remove_smaller_than(NZD0, 0, NZD1)
|
||
; % TODO: cover more cases
|
||
NZD1 = NZD0
|
||
),
|
||
fd_put(Z, NZD1, ZPs)
|
||
)
|
||
).
|
||
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% Y = abs(X)
|
||
|
||
run_propagator(pabs(X,Y), MState) :-
|
||
( nonvar(X) -> kill(MState), Y is abs(X)
|
||
; nonvar(Y) ->
|
||
kill(MState),
|
||
Y >= 0,
|
||
YN is -Y,
|
||
X in YN \/ Y
|
||
; fd_get(X, XD, XPs),
|
||
fd_get(Y, YD, _),
|
||
domain_negate(YD, YDNegative),
|
||
domains_union(YD, YDNegative, XD1),
|
||
domains_intersection(XD, XD1, XD2),
|
||
fd_put(X, XD2, XPs),
|
||
( fd_get(Y, YD1, YPs1) ->
|
||
domain_negate(XD2, XD2Neg),
|
||
domains_union(XD2, XD2Neg, YD2),
|
||
domain_remove_smaller_than(YD2, 0, YD3),
|
||
domains_intersection(YD1, YD3, YD4),
|
||
fd_put(Y, YD4, YPs1)
|
||
; true
|
||
)
|
||
).
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% K = X mod M
|
||
|
||
run_propagator(pmod(X,M,K), MState) :-
|
||
( nonvar(X) ->
|
||
( nonvar(M) -> kill(MState), M =\= 0, K is X mod M
|
||
; true
|
||
)
|
||
; nonvar(M) ->
|
||
M =\= 0,
|
||
( abs(M) =:= 1 -> kill(MState), K = 0
|
||
; fd_get(K, KD, KPs) ->
|
||
MP is abs(M) - 1,
|
||
fd_get(K, KD, KPs),
|
||
( M > 0 -> KDN = from_to(n(0), n(MP))
|
||
; MN is -MP, KDN = from_to(n(MN), n(0))
|
||
),
|
||
domains_intersection(KD, KDN, KD1),
|
||
fd_put(K, KD1, KPs),
|
||
( fd_get(X, XD, _), domain_infimum(XD, n(Min)) ->
|
||
K1 is Min mod M,
|
||
( domain_contains(KD1, K1) -> true
|
||
; neq_num(X, Min)
|
||
)
|
||
; true
|
||
),
|
||
( fd_get(X, XD1, _), domain_supremum(XD1, n(Max)) ->
|
||
K2 is Max mod M,
|
||
( domain_contains(KD1, K2) -> true
|
||
; neq_num(X, Max)
|
||
)
|
||
; true
|
||
)
|
||
; fd_get(X, XD, _),
|
||
% if possible, propagate at the boundaries
|
||
( nonvar(K), domain_infimum(XD, n(Min)) ->
|
||
( Min mod M =:= K -> true
|
||
; neq_num(X, Min)
|
||
)
|
||
; true
|
||
),
|
||
( nonvar(K), domain_supremum(XD, n(Max)) ->
|
||
( Max mod M =:= K -> true
|
||
; neq_num(X, Max)
|
||
)
|
||
; true
|
||
)
|
||
)
|
||
; true % TODO: propagate more
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% Z = max(X,Y)
|
||
|
||
run_propagator(pmax(X,Y,Z), MState) :-
|
||
( nonvar(X) ->
|
||
( nonvar(Y) -> kill(MState), Z is max(X,Y)
|
||
; nonvar(Z) ->
|
||
( Z =:= X -> kill(MState), X #>= Y
|
||
; Z > X -> Z = Y
|
||
; fail % Z < X
|
||
)
|
||
; fd_get(Y, YD, YInf, YSup, _),
|
||
( YInf cis_gt n(X) -> Z = Y
|
||
; YSup cis_lt n(X) -> Z = X
|
||
; YSup = n(M) ->
|
||
fd_get(Z, ZD, ZPs),
|
||
domain_remove_greater_than(ZD, M, ZD1),
|
||
fd_put(Z, ZD1, ZPs)
|
||
; true
|
||
)
|
||
)
|
||
; nonvar(Y) -> run_propagator(pmax(Y,X,Z), MState)
|
||
; fd_get(Z, ZD, ZPs) ->
|
||
fd_get(X, _, XInf, XSup, _),
|
||
fd_get(Y, YD, YInf, YSup, _),
|
||
( YInf cis_gt YSup -> kill(MState), Z = Y
|
||
; YSup cis_lt XInf -> kill(MState), Z = X
|
||
; n(M) cis max(XSup, YSup) ->
|
||
domain_remove_greater_than(ZD, M, ZD1),
|
||
fd_put(Z, ZD1, ZPs)
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% Z = min(X,Y)
|
||
|
||
run_propagator(pmin(X,Y,Z), MState) :-
|
||
( nonvar(X) ->
|
||
( nonvar(Y) -> kill(MState), Z is min(X,Y)
|
||
; nonvar(Z) ->
|
||
( Z =:= X -> kill(MState), X #=< Y
|
||
; Z < X -> Z = Y
|
||
; fail % Z > X
|
||
)
|
||
; fd_get(Y, YD, YInf, YSup, _),
|
||
( YSup cis_lt n(X) -> Z = Y
|
||
; YInf cis_gt n(X) -> Z = X
|
||
; YInf = n(M) ->
|
||
fd_get(Z, ZD, ZPs),
|
||
domain_remove_smaller_than(ZD, M, ZD1),
|
||
fd_put(Z, ZD1, ZPs)
|
||
; true
|
||
)
|
||
)
|
||
; nonvar(Y) -> run_propagator(pmin(Y,X,Z), MState)
|
||
; fd_get(Z, ZD, ZPs) ->
|
||
fd_get(X, _, XInf, XSup, _),
|
||
fd_get(Y, YD, YInf, YSup, _),
|
||
( YSup cis_lt YInf -> kill(MState), Z = Y
|
||
; YInf cis_gt XSup -> kill(MState), Z = X
|
||
; n(M) cis min(XInf, YInf) ->
|
||
domain_remove_smaller_than(ZD, M, ZD1),
|
||
fd_put(Z, ZD1, ZPs)
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% Z = X ^ Y
|
||
|
||
run_propagator(pexp(X,Y,Z), MState) :-
|
||
( X == 1 -> kill(MState), Z = 1
|
||
; X == 0 -> kill(MState), Z #<==> Y #= 0
|
||
; Y == 0 -> kill(MState), Z = 1
|
||
; Y == 1 -> kill(MState), Z = X
|
||
; nonvar(X), nonvar(Y) ->
|
||
( Y >= 0 -> true ; X =:= -1 ),
|
||
kill(MState),
|
||
Z is X^Y
|
||
; nonvar(Z), nonvar(Y) ->
|
||
integer_kth_root(Z, Y, R),
|
||
kill(MState),
|
||
( even(Y) ->
|
||
N is -R,
|
||
X in N \/ R
|
||
; X = R
|
||
)
|
||
; nonvar(Y), Y > 0 ->
|
||
( even(Y) ->
|
||
geq(Z, 0)
|
||
; true
|
||
),
|
||
( fd_get(X, XD, XL, XU, _), fd_get(Z, ZD, ZL, ZU, ZPs) ->
|
||
( domain_contains(ZD, 0) -> XD1 = XD
|
||
; domain_remove(XD, 0, XD1)
|
||
),
|
||
( domain_contains(XD, 0) -> ZD1 = ZD
|
||
; domain_remove(ZD, 0, ZD1)
|
||
),
|
||
( even(Y) ->
|
||
( cis_geq_zero(XL) ->
|
||
NZL cis XL^Y
|
||
; NZL = n(0)
|
||
),
|
||
NZU cis max(abs(XL),abs(XU))^Y,
|
||
domains_intersection(ZD1, from_to(NZL,NZU), ZD2)
|
||
; ( finite(XL) ->
|
||
NZL cis XL^Y,
|
||
NZU cis XU^Y,
|
||
domains_intersection(ZD1, from_to(NZL,NZU), ZD2)
|
||
; ZD2 = ZD1
|
||
)
|
||
),
|
||
fd_put(Z, ZD2, ZPs),
|
||
( even(Y), ZU = n(Num) ->
|
||
integer_kth_root_leq(Num, Y, RU),
|
||
( cis_geq_zero(XL), ZL = n(Num1) ->
|
||
integer_kth_root_leq(Num1, Y, RL)
|
||
; RL is -RU
|
||
),
|
||
NXD = from_to(n(RL),n(RU))
|
||
; odd(Y), cis_geq_zero(ZL), ZU = n(Num) ->
|
||
integer_kth_root_leq(Num, Y, RU),
|
||
ZL = n(Num1),
|
||
integer_kth_root_leq(Num1, Y, RL),
|
||
NXD = from_to(n(RL),n(RU))
|
||
; NXD = XD1 % TODO: propagate more
|
||
),
|
||
( fd_get(X, XD2, XPs) ->
|
||
domains_intersection(XD2, XD1, XD3),
|
||
domains_intersection(XD3, NXD, XD4),
|
||
fd_put(X, XD4, XPs)
|
||
; true
|
||
)
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(pzcompare(Order, A, B), MState) :-
|
||
( A == B -> kill(MState), Order = (=)
|
||
; ( nonvar(A) ->
|
||
( nonvar(B) ->
|
||
kill(MState),
|
||
( A > B -> Order = (>)
|
||
; Order = (<)
|
||
)
|
||
; fd_get(B, _, BL, BU, _),
|
||
( BL cis_gt n(A) -> kill(MState), Order = (<)
|
||
; BU cis_lt n(A) -> kill(MState), Order = (>)
|
||
; true
|
||
)
|
||
)
|
||
; nonvar(B) ->
|
||
fd_get(A, _, AL, AU, _),
|
||
( AL cis_gt n(B) -> kill(MState), Order = (>)
|
||
; AU cis_lt n(B) -> kill(MState), Order = (<)
|
||
; true
|
||
)
|
||
; fd_get(A, _, AL, AU, _),
|
||
fd_get(B, _, BL, BU, _),
|
||
( AL cis_gt BU -> kill(MState), Order = (>)
|
||
; AU cis_lt BL -> kill(MState), Order = (<)
|
||
; true
|
||
)
|
||
)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
% reified constraints
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(reified_in(V,Dom,B), MState) :-
|
||
( integer(V) ->
|
||
kill(MState),
|
||
( domain_contains(Dom, V) -> B = 1
|
||
; B = 0
|
||
)
|
||
; B == 1 -> kill(MState), domain(V, Dom)
|
||
; B == 0 -> kill(MState), domain_complement(Dom, C), domain(V, C)
|
||
; fd_get(V, VD, _),
|
||
( domains_intersection(VD, Dom, I) ->
|
||
( I == VD -> kill(MState), B = 1
|
||
; true
|
||
)
|
||
; kill(MState), B = 0
|
||
)
|
||
).
|
||
|
||
run_propagator(reified_tuple_in(Tuple, R, B), MState) :-
|
||
get_attr(R, clpfd_relation, Relation),
|
||
( B == 1 -> kill(MState), tuples_in([Tuple], Relation)
|
||
; ( ground(Tuple) ->
|
||
kill(MState),
|
||
( memberchk(Tuple, Relation) -> B = 1
|
||
; B = 0
|
||
)
|
||
; relation_unifiable(Relation, Tuple, Us, _, _),
|
||
( Us = [] -> kill(MState), B = 0
|
||
; true
|
||
)
|
||
)
|
||
).
|
||
|
||
run_propagator(reified_fd(V,B), MState) :-
|
||
( fd_inf(V, I), I \== inf, fd_sup(V, S), S \== sup ->
|
||
kill(MState),
|
||
B = 1
|
||
; B == 0 ->
|
||
( fd_inf(V, inf) -> true
|
||
; fd_sup(V, sup) -> true
|
||
; fail
|
||
)
|
||
; true
|
||
).
|
||
|
||
% The result of X/Y and X mod Y is undefined iff Y is 0.
|
||
|
||
run_propagator(reified_div(X,Y,D,Skel,Z), MState) :-
|
||
( Y == 0 -> kill(MState), D = 0
|
||
; D == 1 -> kill(MState), neq_num(Y, 0), skeleton([X,Y,Z], Skel)
|
||
; integer(Y), Y =\= 0 -> kill(MState), D = 1, skeleton([X,Y,Z], Skel)
|
||
; fd_get(Y, YD, _), \+ domain_contains(YD, 0) ->
|
||
kill(MState),
|
||
D = 1, skeleton([X,Y,Z], Skel)
|
||
; true
|
||
).
|
||
|
||
run_propagator(reified_mod(X,Y,D,Skel,Z), MState) :-
|
||
( Y == 0 -> kill(MState), D = 0
|
||
; D == 1 -> kill(MState), neq_num(Y, 0), skeleton([X,Y,Z], Skel)
|
||
; integer(Y), Y =\= 0 -> kill(MState), D = 1, skeleton([X,Y,Z], Skel)
|
||
; fd_get(Y, YD, _), \+ domain_contains(YD, 0) ->
|
||
kill(MState),
|
||
D = 1, skeleton([X,Y,Z], Skel)
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
run_propagator(reified_geq(DX,X,DY,Y,Ps,B), MState) :-
|
||
( DX == 0 -> kill(MState, Ps), B = 0
|
||
; DY == 0 -> kill(MState, Ps), B = 0
|
||
; B == 1 -> kill(MState), DX = 1, DY = 1, geq(X, Y)
|
||
; DX == 1, DY == 1 ->
|
||
( var(B) ->
|
||
( nonvar(X) ->
|
||
( nonvar(Y) ->
|
||
kill(MState),
|
||
( X >= Y -> B = 1 ; B = 0 )
|
||
; fd_get(Y, _, YL, YU, _),
|
||
( n(X) cis_geq YU -> kill(MState, Ps), B = 1
|
||
; n(X) cis_lt YL -> kill(MState, Ps), B = 0
|
||
; true
|
||
)
|
||
)
|
||
; nonvar(Y) ->
|
||
fd_get(X, _, XL, XU, _),
|
||
( XL cis_geq n(Y) -> kill(MState, Ps), B = 1
|
||
; XU cis_lt n(Y) -> kill(MState, Ps), B = 0
|
||
; true
|
||
)
|
||
; X == Y -> kill(MState, Ps), B = 1
|
||
; fd_get(X, _, XL, XU, _),
|
||
fd_get(Y, _, YL, YU, _),
|
||
( XL cis_geq YU -> kill(MState, Ps), B = 1
|
||
; XU cis_lt YL -> kill(MState, Ps), B = 0
|
||
; true
|
||
)
|
||
)
|
||
; B =:= 0 -> kill(MState), X #< Y
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(reified_eq(DX,X,DY,Y,Ps,B), MState) :-
|
||
( DX == 0 -> kill(MState, Ps), B = 0
|
||
; DY == 0 -> kill(MState, Ps), B = 0
|
||
; B == 1 -> kill(MState), DX = 1, DY = 1, X = Y
|
||
; DX == 1, DY == 1 ->
|
||
( var(B) ->
|
||
( nonvar(X) ->
|
||
( nonvar(Y) ->
|
||
kill(MState),
|
||
( X =:= Y -> B = 1 ; B = 0)
|
||
; fd_get(Y, YD, _),
|
||
( domain_contains(YD, X) -> true
|
||
; kill(MState, Ps), B = 0
|
||
)
|
||
)
|
||
; nonvar(Y) -> run_propagator(reified_eq(DY,Y,DX,X,Ps,B), MState)
|
||
; X == Y -> kill(MState), B = 1
|
||
; fd_get(X, _, XL, XU, _),
|
||
fd_get(Y, _, YL, YU, _),
|
||
( XL cis_gt YU -> kill(MState, Ps), B = 0
|
||
; YL cis_gt XU -> kill(MState, Ps), B = 0
|
||
; true
|
||
)
|
||
)
|
||
; B =:= 0 -> kill(MState), X #\= Y
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(reified_neq(DX,X,DY,Y,Ps,B), MState) :-
|
||
( DX == 0 -> kill(MState, Ps), B = 0
|
||
; DY == 0 -> kill(MState, Ps), B = 0
|
||
; B == 1 -> kill(MState), DX = 1, DY = 1, X #\= Y
|
||
; DX == 1, DY == 1 ->
|
||
( var(B) ->
|
||
( nonvar(X) ->
|
||
( nonvar(Y) ->
|
||
kill(MState),
|
||
( X =\= Y -> B = 1 ; B = 0)
|
||
; fd_get(Y, YD, _),
|
||
( domain_contains(YD, X) -> true
|
||
; kill(MState, Ps),
|
||
B = 1
|
||
)
|
||
)
|
||
; nonvar(Y) -> run_propagator(reified_neq(DY,Y,DX,X,Ps,B), MState)
|
||
; X == Y -> B = 0
|
||
; fd_get(X, _, XL, XU, _),
|
||
fd_get(Y, _, YL, YU, _),
|
||
( XL cis_gt YU -> kill(MState, Ps), B = 1
|
||
; YL cis_gt XU -> kill(MState, Ps), B = 1
|
||
; true
|
||
)
|
||
)
|
||
; B =:= 0 -> kill(MState), X = Y
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(reified_and(X,Ps1,Y,Ps2,B), MState) :-
|
||
( nonvar(X) ->
|
||
kill(MState),
|
||
( X =:= 0 -> maplist(kill_entailed, Ps2), B = 0
|
||
; B = Y
|
||
)
|
||
; nonvar(Y) -> run_propagator(reified_and(Y,Ps2,X,Ps1,B), MState)
|
||
; B == 1 -> kill(MState), X = 1, Y = 1
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(reified_or(X,Ps1,Y,Ps2,B), MState) :-
|
||
( nonvar(X) ->
|
||
kill(MState),
|
||
( X =:= 1 -> maplist(kill_entailed, Ps2), B = 1
|
||
; B = Y
|
||
)
|
||
; nonvar(Y) -> run_propagator(reified_or(Y,Ps2,X,Ps1,B), MState)
|
||
; B == 0 -> kill(MState), X = 0, Y = 0
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(reified_not(X,Y), MState) :-
|
||
( X == 0 -> kill(MState), Y = 1
|
||
; X == 1 -> kill(MState), Y = 0
|
||
; Y == 0 -> kill(MState), X = 1
|
||
; Y == 1 -> kill(MState), X = 0
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
run_propagator(pimpl(X, Y, Ps), MState) :-
|
||
( nonvar(X) ->
|
||
kill(MState),
|
||
( X =:= 1 -> Y = 1
|
||
; maplist(kill_entailed, Ps)
|
||
)
|
||
; nonvar(Y) ->
|
||
kill(MState),
|
||
( Y =:= 0 -> X = 0
|
||
; maplist(kill_entailed, Ps)
|
||
)
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
min_times(L1,U1,L2,U2,Min) :-
|
||
Min cis min(min(L1*L2,L1*U2),min(U1*L2,U1*U2)).
|
||
max_times(L1,U1,L2,U2,Max) :-
|
||
Max cis max(max(L1*L2,L1*U2),max(U1*L2,U1*U2)).
|
||
|
||
|
||
min_divide_less(L1,U1,L2,U2,Min) :-
|
||
( L2 cis_leq n(0), cis_geq_zero(U2) -> Min = inf
|
||
; Min cis min(min(div(L1,L2),div(L1,U2)),min(div(U1,L2),div(U1,U2)))
|
||
).
|
||
max_divide_less(L1,U1,L2,U2,Max) :-
|
||
( L2 cis_leq n(0), cis_geq_zero(U2) -> Max = sup
|
||
; Max cis max(max(div(L1,L2),div(L1,U2)),max(div(U1,L2),div(U1,U2)))
|
||
).
|
||
|
||
finite(n(_)).
|
||
|
||
min_divide(L1,U1,L2,U2,Min) :-
|
||
( L2 = n(NL2), NL2 > 0, finite(U2), cis_geq_zero(L1) ->
|
||
Min cis div(L1+U2-n(1),U2)
|
||
% TODO: cover more cases
|
||
; L1 = n(NL1), NL1 > 0, U2 cis_leq n(-1) -> Min cis div(U1,U2)
|
||
; L1 = n(NL1), NL1 > 0 -> Min cis -U1
|
||
; U1 = n(NU1), NU1 < 0, U2 cis_leq n(0) ->
|
||
( finite(L2) -> Min cis div(U1+L2+n(1),L2)
|
||
; Min = n(1)
|
||
)
|
||
; U1 = n(NU1), NU1 < 0, cis_geq_zero(L2) -> Min cis div(L1,L2)
|
||
; U1 = n(NU1), NU1 < 0 -> Min = L1
|
||
; L2 cis_leq n(0), cis_geq_zero(U2) -> Min = inf
|
||
; Min cis min(min(div(L1,L2),div(L1,U2)),min(div(U1,L2),div(U1,U2)))
|
||
).
|
||
max_divide(L1,U1,L2,U2,Max) :-
|
||
( L2 = n(_), cis_geq_zero(L1), cis_geq_zero(L2) ->
|
||
Max cis div(U1,L2)
|
||
% TODO: cover more cases
|
||
; L1 = n(NL1), NL1 > 0, U2 cis_leq n(0) ->
|
||
( finite(L2) -> Max cis div(L1-L2-n(1),L2)
|
||
; Max = n(-1)
|
||
)
|
||
; L1 = n(NL1), NL1 > 0 -> Max = U1
|
||
; U1 = n(NU1), NU1 < 0, U2 cis_leq n(-1) -> Max cis div(L1,U2)
|
||
; U1 = n(NU1), NU1 < 0, cis_geq_zero(L2) ->
|
||
( finite(U2) -> Max cis div(U1-U2+n(1),U2)
|
||
; Max = n(-1)
|
||
)
|
||
; U1 = n(NU1), NU1 < 0 -> Max cis -L1
|
||
; L2 cis_leq n(0), cis_geq_zero(U2) -> Max = sup
|
||
; Max cis max(max(div(L1,L2),div(L1,U2)),max(div(U1,L2),div(U1,U2)))
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
J-C. Régin: "A filtering algorithm for constraints of difference in
|
||
CSPs", AAAI-94, Seattle, WA, USA, pp 362--367, 1994
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
distinct_attach([], _, _).
|
||
distinct_attach([X|Xs], Prop, Right) :-
|
||
( var(X) ->
|
||
init_propagator(X, Prop),
|
||
make_propagator(pexclude(Xs,Right,X), P1),
|
||
init_propagator(X, P1),
|
||
trigger_prop(P1)
|
||
; exclude_fire(Xs, Right, X)
|
||
),
|
||
distinct_attach(Xs, Prop, [X|Right]).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
For each integer of the union of domains, an attributed variable is
|
||
introduced, to benefit from constant-time access. Attributes are:
|
||
|
||
value ... integer corresponding to the node
|
||
free ... whether this (right) node is still free
|
||
edges ... [flow_from(F,From)] and [flow_to(F,To)] where F has an
|
||
attribute "flow" that is either 0 or 1 and an attribute "used"
|
||
if it is part of a maximum matching
|
||
parent ... used in breadth-first search
|
||
g0_edges ... [flow_to(F,To)] as above
|
||
visited ... true if node was visited in DFS
|
||
index, in_stack, lowlink ... used in Tarjan's SCC algorithm
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
difference_arcs(Vars, FreeLeft, FreeRight) :-
|
||
empty_assoc(E),
|
||
phrase(difference_arcs(Vars, FreeLeft), [E], [NumVar]),
|
||
assoc_to_list(NumVar, LsNumVar),
|
||
pairs_values(LsNumVar, FreeRight).
|
||
|
||
domain_to_list(Domain, List) :- phrase(domain_to_list(Domain), List).
|
||
|
||
domain_to_list(split(_, Left, Right)) -->
|
||
domain_to_list(Left), domain_to_list(Right).
|
||
domain_to_list(empty) --> [].
|
||
domain_to_list(from_to(n(F),n(T))) --> { numlist(F, T, Ns) }, list(Ns).
|
||
|
||
difference_arcs([], []) --> [].
|
||
difference_arcs([V|Vs], FL0) -->
|
||
( { fd_get(V, Dom, _), domain_to_list(Dom, Ns) } ->
|
||
{ FL0 = [V|FL] },
|
||
enumerate(Ns, V),
|
||
difference_arcs(Vs, FL)
|
||
; difference_arcs(Vs, FL0)
|
||
).
|
||
|
||
enumerate([], _) --> [].
|
||
enumerate([N|Ns], V) -->
|
||
state(NumVar0, NumVar),
|
||
{ ( get_assoc(N, NumVar0, Y) -> NumVar0 = NumVar
|
||
; put_assoc(N, NumVar0, Y, NumVar),
|
||
put_attr(Y, value, N)
|
||
),
|
||
put_attr(F, flow, 0),
|
||
append_edge(Y, edges, flow_from(F,V)),
|
||
append_edge(V, edges, flow_to(F,Y)) },
|
||
enumerate(Ns, V).
|
||
|
||
append_edge(V, Attr, E) :-
|
||
( get_attr(V, Attr, Es) ->
|
||
put_attr(V, Attr, [E|Es])
|
||
; put_attr(V, Attr, [E])
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Strategy: Breadth-first search until we find a free right vertex in
|
||
the value graph, then find an augmenting path in reverse.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
clear_parent(V) :- del_attr(V, parent).
|
||
|
||
maximum_matching([]).
|
||
maximum_matching([FL|FLs]) :-
|
||
augmenting_path_to(1, [[FL]], Levels, To),
|
||
phrase(augmenting_path(To, FL), Path),
|
||
maplist(maplist(clear_parent), Levels),
|
||
del_attr(To, free),
|
||
adjust_alternate_1(Path),
|
||
maximum_matching(FLs).
|
||
|
||
reachables([]) --> [].
|
||
reachables([V|Vs]) -->
|
||
{ get_attr(V, edges, Es) },
|
||
reachables_(Es, V),
|
||
reachables(Vs).
|
||
|
||
reachables_([], _) --> [].
|
||
reachables_([E|Es], V) -->
|
||
edge_reachable(E, V),
|
||
reachables_(Es, V).
|
||
|
||
edge_reachable(flow_to(F,To), V) -->
|
||
( { get_attr(F, flow, 0),
|
||
\+ get_attr(To, parent, _) } ->
|
||
{ put_attr(To, parent, V-F) },
|
||
[To]
|
||
; []
|
||
).
|
||
edge_reachable(flow_from(F,From), V) -->
|
||
( { get_attr(F, flow, 1),
|
||
\+ get_attr(From, parent, _) } ->
|
||
{ put_attr(From, parent, V-F) },
|
||
[From]
|
||
; []
|
||
).
|
||
|
||
augmenting_path_to(Level, Levels0, Levels, Right) :-
|
||
Levels0 = [Vs|_],
|
||
Levels1 = [Tos|Levels0],
|
||
phrase(reachables(Vs), Tos),
|
||
Tos = [_|_],
|
||
( odd(Level), member(Free, Tos), get_attr(Free, free, true) ->
|
||
Right = Free, Levels = Levels1
|
||
; Level1 is Level + 1,
|
||
augmenting_path_to(Level1, Levels1, Levels, Right)
|
||
).
|
||
|
||
augmenting_path(N, To) -->
|
||
( { N == To } -> []
|
||
; { get_attr(N, parent, P-F) },
|
||
[F],
|
||
augmenting_path(P, To)
|
||
).
|
||
|
||
adjust_alternate_1([A|Arcs]) :-
|
||
put_attr(A, flow, 1),
|
||
adjust_alternate_0(Arcs).
|
||
|
||
adjust_alternate_0([]).
|
||
adjust_alternate_0([A|Arcs]) :-
|
||
put_attr(A, flow, 0),
|
||
adjust_alternate_1(Arcs).
|
||
|
||
remove_ground([], _).
|
||
remove_ground([V|Vs], R) :-
|
||
neq_num(V, R),
|
||
remove_ground(Vs, R).
|
||
|
||
% Instead of applying Berge's property directly, we can translate the
|
||
% problem in such a way, that we have to search for the so-called
|
||
% strongly connected components of the graph.
|
||
|
||
g_g0(V) :-
|
||
get_attr(V, edges, Es),
|
||
maplist(g_g0_(V), Es).
|
||
|
||
g_g0_(V, flow_to(F,To)) :-
|
||
( get_attr(F, flow, 1) ->
|
||
append_edge(V, g0_edges, flow_to(F,To))
|
||
; append_edge(To, g0_edges, flow_to(F,V))
|
||
).
|
||
|
||
|
||
g0_successors(V, Tos) :-
|
||
( get_attr(V, g0_edges, Tos0) ->
|
||
maplist(arg(2), Tos0, Tos)
|
||
; Tos = []
|
||
).
|
||
|
||
put_free(F) :- put_attr(F, free, true).
|
||
|
||
free_node(F) :-
|
||
get_attr(F, free, true),
|
||
del_attr(F, free).
|
||
|
||
distinct(Vars) :-
|
||
difference_arcs(Vars, FreeLeft, FreeRight0),
|
||
length(FreeLeft, LFL),
|
||
length(FreeRight0, LFR),
|
||
LFL =< LFR,
|
||
maplist(put_free, FreeRight0),
|
||
maximum_matching(FreeLeft),
|
||
include(free_node, FreeRight0, FreeRight),
|
||
maplist(g_g0, FreeLeft),
|
||
phrase(scc(FreeLeft), [s(0,[],g0_successors)], _),
|
||
maplist(dfs_used, FreeRight),
|
||
phrase(distinct_goals(FreeLeft), Gs),
|
||
maplist(distinct_clear_attributes, FreeLeft),
|
||
disable_queue,
|
||
maplist(call, Gs),
|
||
enable_queue.
|
||
|
||
distinct_clear_attributes(V) :-
|
||
( get_attr(V, edges, Es) ->
|
||
% parent and in_stack are already cleared
|
||
maplist(del_attr(V), [edges,index,lowlink,value,visited]),
|
||
maplist(clear_edge, Es),
|
||
( get_attr(V, g0_edges, Es1) ->
|
||
del_attr(V, g0_edges),
|
||
maplist(clear_edge, Es1)
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
|
||
|
||
clear_edge(flow_to(F, To)) :-
|
||
del_attr(F, flow),
|
||
del_attr(F, used),
|
||
distinct_clear_attributes(To).
|
||
clear_edge(flow_from(X, Y)) :- clear_edge(flow_to(X, Y)).
|
||
|
||
|
||
distinct_goals([]) --> [].
|
||
distinct_goals([V|Vs]) -->
|
||
{ get_attr(V, edges, Es) },
|
||
distinct_edges(Es, V),
|
||
distinct_goals(Vs).
|
||
|
||
distinct_edges([], _) --> [].
|
||
distinct_edges([flow_to(F,To)|Es], V) -->
|
||
( { get_attr(F, flow, 0),
|
||
\+ get_attr(F, used, true),
|
||
get_attr(V, lowlink, L1),
|
||
get_attr(To, lowlink, L2),
|
||
L1 =\= L2 } ->
|
||
{ get_attr(To, value, N) },
|
||
[neq_num(V, N)]
|
||
; []
|
||
),
|
||
distinct_edges(Es, V).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Mark used edges.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
dfs_used(V) :-
|
||
( get_attr(V, visited, true) -> true
|
||
; put_attr(V, visited, true),
|
||
( get_attr(V, g0_edges, Es) ->
|
||
dfs_used_edges(Es)
|
||
; true
|
||
)
|
||
).
|
||
|
||
dfs_used_edges([]).
|
||
dfs_used_edges([flow_to(F,To)|Es]) :-
|
||
put_attr(F, used, true),
|
||
dfs_used(To),
|
||
dfs_used_edges(Es).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Tarjan's strongly connected components algorithm.
|
||
|
||
DCGs are used to implicitly pass around the global index, stack
|
||
and the predicate relating a vertex to its successors.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
scc([]) --> [].
|
||
scc([V|Vs]) -->
|
||
( vindex_defined(V) -> scc(Vs)
|
||
; scc_(V), scc(Vs)
|
||
).
|
||
|
||
vindex_defined(V) --> { get_attr(V, index, _) }.
|
||
|
||
vindex_is_index(V) -->
|
||
state(s(Index,_,_)),
|
||
{ put_attr(V, index, Index) }.
|
||
|
||
vlowlink_is_index(V) -->
|
||
state(s(Index,_,_)),
|
||
{ put_attr(V, lowlink, Index) }.
|
||
|
||
index_plus_one -->
|
||
state(s(I,Stack,Succ), s(I1,Stack,Succ)),
|
||
{ I1 is I+1 }.
|
||
|
||
s_push(V) -->
|
||
state(s(I,Stack,Succ), s(I,[V|Stack],Succ)),
|
||
{ put_attr(V, in_stack, true) }.
|
||
|
||
vlowlink_min_lowlink(V, VP) -->
|
||
{ get_attr(V, lowlink, VL),
|
||
get_attr(VP, lowlink, VPL),
|
||
VL1 is min(VL, VPL),
|
||
put_attr(V, lowlink, VL1) }.
|
||
|
||
successors(V, Tos) --> state(s(_,_,Succ)), { call(Succ, V, Tos) }.
|
||
|
||
scc_(V) -->
|
||
vindex_is_index(V),
|
||
vlowlink_is_index(V),
|
||
index_plus_one,
|
||
s_push(V),
|
||
successors(V, Tos),
|
||
each_edge(Tos, V),
|
||
( { get_attr(V, index, VI),
|
||
get_attr(V, lowlink, VI) } -> pop_stack_to(V, VI)
|
||
; []
|
||
).
|
||
|
||
pop_stack_to(V, N) -->
|
||
state(s(I,[First|Stack],Succ), s(I,Stack,Succ)),
|
||
{ del_attr(First, in_stack) },
|
||
( { First == V } -> []
|
||
; { put_attr(First, lowlink, N) },
|
||
pop_stack_to(V, N)
|
||
).
|
||
|
||
each_edge([], _) --> [].
|
||
each_edge([VP|VPs], V) -->
|
||
( vindex_defined(VP) ->
|
||
( v_in_stack(VP) ->
|
||
vlowlink_min_lowlink(V, VP)
|
||
; []
|
||
)
|
||
; scc_(VP),
|
||
vlowlink_min_lowlink(V, VP)
|
||
),
|
||
each_edge(VPs, V).
|
||
|
||
state(S), [S] --> [S].
|
||
|
||
state(S0, S), [S] --> [S0].
|
||
|
||
v_in_stack(V) --> { get_attr(V, in_stack, true) }.
|
||
|
||
%% all_distinct(+Ls).
|
||
%
|
||
% Like all_different/1, with stronger propagation. For example,
|
||
% all_distinct/1 can detect that not all variables can assume distinct
|
||
% values given the following domains:
|
||
%
|
||
% ==
|
||
% ?- maplist(in, Vs, [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]), all_distinct(Vs).
|
||
% false.
|
||
% ==
|
||
|
||
all_distinct(Ls) :-
|
||
must_be(list, Ls),
|
||
maplist(fd_variable, Ls),
|
||
make_propagator(pdistinct(Ls), Prop),
|
||
distinct_attach(Ls, Prop, []),
|
||
trigger_prop(Prop),
|
||
do_queue.
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Weak arc consistent constraint of difference, currently only
|
||
available internally. Candidate for all_different/2 option.
|
||
|
||
See Neng-Fa Zhou: "Programming Finite-Domain Constraint Propagators
|
||
in Action Rules", Theory and Practice of Logic Programming, Vol.6,
|
||
No.5, pp 483-508, 2006
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
weak_arc_all_distinct(Ls) :-
|
||
must_be(list, Ls),
|
||
put_attr(O, clpfd_original, weak_arc_all_distinct(Ls)),
|
||
all_distinct(Ls, [], O),
|
||
do_queue.
|
||
|
||
all_distinct([], _, _).
|
||
all_distinct([X|Right], Left, Orig) :-
|
||
%\+ list_contains(Right, X),
|
||
( var(X) ->
|
||
make_propagator(weak_distinct(Left,Right,X,Orig), Prop),
|
||
init_propagator(X, Prop),
|
||
trigger_prop(Prop)
|
||
% make_propagator(check_distinct(Left,Right,X), Prop2),
|
||
% init_propagator(X, Prop2),
|
||
% trigger_prop(Prop2)
|
||
; exclude_fire(Left, Right, X)
|
||
),
|
||
outof_reducer(Left, Right, X),
|
||
all_distinct(Right, [X|Left], Orig).
|
||
|
||
exclude_fire(Left, Right, E) :-
|
||
remove_ground(Left, E),
|
||
remove_ground(Right, E).
|
||
|
||
list_contains([X|Xs], Y) :-
|
||
( X == Y -> true
|
||
; list_contains(Xs, Y)
|
||
).
|
||
|
||
kill_if_isolated(Left, Right, X, MState) :-
|
||
append(Left, Right, Others),
|
||
fd_get(X, XDom, _),
|
||
( all_empty_intersection(Others, XDom) -> kill(MState)
|
||
; true
|
||
).
|
||
|
||
all_empty_intersection([], _).
|
||
all_empty_intersection([V|Vs], XDom) :-
|
||
( fd_get(V, VDom, _) ->
|
||
domains_intersection_(VDom, XDom, empty),
|
||
all_empty_intersection(Vs, XDom)
|
||
; all_empty_intersection(Vs, XDom)
|
||
).
|
||
|
||
outof_reducer(Left, Right, Var) :-
|
||
( fd_get(Var, Dom, _) ->
|
||
append(Left, Right, Others),
|
||
domain_num_elements(Dom, N),
|
||
num_subsets(Others, Dom, 0, Num, NonSubs),
|
||
( n(Num) cis_geq N -> fail
|
||
; n(Num) cis N - n(1) ->
|
||
reduce_from_others(NonSubs, Dom)
|
||
; true
|
||
)
|
||
; %\+ list_contains(Right, Var),
|
||
%\+ list_contains(Left, Var)
|
||
true
|
||
).
|
||
|
||
reduce_from_others([], _).
|
||
reduce_from_others([X|Xs], Dom) :-
|
||
( fd_get(X, XDom, XPs) ->
|
||
domain_subtract(XDom, Dom, NXDom),
|
||
fd_put(X, NXDom, XPs)
|
||
; true
|
||
),
|
||
reduce_from_others(Xs, Dom).
|
||
|
||
num_subsets([], _Dom, Num, Num, []).
|
||
num_subsets([S|Ss], Dom, Num0, Num, NonSubs) :-
|
||
( fd_get(S, SDom, _) ->
|
||
( domain_subdomain(Dom, SDom) ->
|
||
Num1 is Num0 + 1,
|
||
num_subsets(Ss, Dom, Num1, Num, NonSubs)
|
||
; NonSubs = [S|Rest],
|
||
num_subsets(Ss, Dom, Num0, Num, Rest)
|
||
)
|
||
; num_subsets(Ss, Dom, Num0, Num, NonSubs)
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% serialized(+Starts, +Durations)
|
||
%
|
||
% Constrain a set of intervals to a non-overlapping sequence.
|
||
% Starts = [S_1,...,S_n], is a list of variables or integers,
|
||
% Durations = [D_1,...,D_n] is a list of non-negative integers.
|
||
% Constrains Starts and Durations to denote a set of
|
||
% non-overlapping tasks, i.e.: S_i + D_i =< S_j or S_j + D_j =<
|
||
% S_i for all 1 =< i < j =< n. Example:
|
||
%
|
||
% ==
|
||
% ?- length(Vs, 3), Vs ins 0..3, serialized(Vs, [1,2,3]), label(Vs).
|
||
% Vs = [0, 1, 3] ;
|
||
% Vs = [2, 0, 3] ;
|
||
% false.
|
||
% ==
|
||
%
|
||
% @see Dorndorf et al. 2000, "Constraint Propagation Techniques for the
|
||
% Disjunctive Scheduling Problem"
|
||
|
||
serialized(Starts, Durations) :-
|
||
must_be(list(integer), Durations),
|
||
pairs_keys_values(SDs, Starts, Durations),
|
||
put_attr(Orig, clpfd_original, serialized(Starts, Durations)),
|
||
serialize(SDs, Orig).
|
||
|
||
serialize([], _).
|
||
serialize([S-D|SDs], Orig) :-
|
||
D >= 0,
|
||
serialize(SDs, S, D, Orig),
|
||
serialize(SDs, Orig).
|
||
|
||
serialize([], _, _, _).
|
||
serialize([S-D|Rest], S0, D0, Orig) :-
|
||
D >= 0,
|
||
propagator_init_trigger([S0,S], pserialized(S,D,S0,D0,Orig)),
|
||
serialize(Rest, S0, D0, Orig).
|
||
|
||
% consistency check / propagation
|
||
% Currently implements 2-b-consistency
|
||
|
||
earliest_start_time(Start, EST) :-
|
||
( fd_get(Start, D, _) ->
|
||
domain_infimum(D, EST)
|
||
; EST = n(Start)
|
||
).
|
||
|
||
latest_start_time(Start, LST) :-
|
||
( fd_get(Start, D, _) ->
|
||
domain_supremum(D, LST)
|
||
; LST = n(Start)
|
||
).
|
||
|
||
serialize_lower_upper(S_I, D_I, S_J, D_J, MState) :-
|
||
( var(S_I) ->
|
||
serialize_lower_bound(S_I, D_I, S_J, D_J, MState),
|
||
( var(S_I) -> serialize_upper_bound(S_I, D_I, S_J, D_J, MState)
|
||
; true
|
||
)
|
||
; true
|
||
).
|
||
|
||
serialize_lower_bound(I, D_I, J, D_J, MState) :-
|
||
fd_get(I, DomI, Ps),
|
||
( domain_infimum(DomI, n(EST_I)),
|
||
latest_start_time(J, n(LST_J)),
|
||
EST_I + D_I > LST_J,
|
||
earliest_start_time(J, n(EST_J)) ->
|
||
( nonvar(J) -> kill(MState)
|
||
; true
|
||
),
|
||
EST is EST_J+D_J,
|
||
domain_remove_smaller_than(DomI, EST, DomI1),
|
||
fd_put(I, DomI1, Ps)
|
||
; true
|
||
).
|
||
|
||
serialize_upper_bound(I, D_I, J, D_J, MState) :-
|
||
fd_get(I, DomI, Ps),
|
||
( domain_supremum(DomI, n(LST_I)),
|
||
earliest_start_time(J, n(EST_J)),
|
||
EST_J + D_J > LST_I,
|
||
latest_start_time(J, n(LST_J)) ->
|
||
( nonvar(J) -> kill(MState)
|
||
; true
|
||
),
|
||
LST is LST_J-D_I,
|
||
domain_remove_greater_than(DomI, LST, DomI1),
|
||
fd_put(I, DomI1, Ps)
|
||
; true
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% element(?N, +Vs, ?V)
|
||
%
|
||
% The N-th element of the list of finite domain variables Vs is V.
|
||
% Analogous to nth1/3.
|
||
|
||
element(N, Is, V) :-
|
||
must_be(list, Is),
|
||
length(Is, L),
|
||
N in 1..L,
|
||
element_(Is, 1, N, V),
|
||
propagator_init_trigger([N|Is], pelement(N,Is,V)).
|
||
|
||
element_domain(V, VD) :-
|
||
( fd_get(V, VD, _) -> true
|
||
; VD = from_to(n(V), n(V))
|
||
).
|
||
|
||
element_([], _, _, _).
|
||
element_([I|Is], N0, N, V) :-
|
||
I #\= V #==> N #\= N0,
|
||
N1 is N0 + 1,
|
||
element_(Is, N1, N, V).
|
||
|
||
integers_remaining([], _, _, D, D).
|
||
integers_remaining([V|Vs], N0, Dom, D0, D) :-
|
||
( domain_contains(Dom, N0) ->
|
||
element_domain(V, VD),
|
||
domains_union(D0, VD, D1)
|
||
; D1 = D0
|
||
),
|
||
N1 is N0 + 1,
|
||
integers_remaining(Vs, N1, Dom, D1, D).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% global_cardinality(+Vs, +Pairs)
|
||
%
|
||
% Vs is a list of finite domain variables, Pairs is a list of
|
||
% Key-Num pairs, where Key is an integer and Num is a finite
|
||
% domain variable. The constraint holds iff each V in Vs is equal
|
||
% to some key, and for each Key-Num pair in Pairs, the number of
|
||
% occurrences of Key in Vs is Num.
|
||
%
|
||
% Example:
|
||
%
|
||
% ==
|
||
% ?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs).
|
||
% Vs = [1, 1, 3] ;
|
||
% Vs = [1, 3, 1] ;
|
||
% Vs = [3, 1, 1].
|
||
% ==
|
||
|
||
global_cardinality(Xs, Pairs) :-
|
||
must_be(list, Xs),
|
||
maplist(fd_variable, Xs),
|
||
must_be(list, Pairs),
|
||
maplist(gcc_pair, Pairs),
|
||
pairs_keys_values(Pairs, Keys, Nums),
|
||
( sort(Keys, Keys1), length(Keys, LK), length(Keys1, LK) -> true
|
||
; domain_error(gcc_unique_key_pairs, Pairs)
|
||
),
|
||
length(Xs, L),
|
||
Nums ins 0..L,
|
||
list_to_domain(Keys, Dom),
|
||
domain_to_drep(Dom, Drep),
|
||
Xs ins Drep,
|
||
gcc_pairs(Pairs, Xs, Pairs1),
|
||
% pgcc_check must be installed before triggering other
|
||
% propagators
|
||
propagator_init_trigger(Xs, pgcc_check(Pairs1)),
|
||
propagator_init_trigger(Nums, pgcc_single(Xs, Pairs1)),
|
||
propagator_init_trigger(Nums, pgcc_check_single(Pairs1)),
|
||
propagator_init_trigger(Xs, pgcc(Xs, Pairs, Pairs1)).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
For each Key-Num0 pair, we introduce an auxiliary variable Num and
|
||
attach the following attributes to it:
|
||
|
||
clpfd_gcc_num: equal Num0, the user-visible counter variable
|
||
clpfd_gcc_vs: the remaining variables in the constraint that can be
|
||
equal Key.
|
||
clpfd_gcc_occurred: stores how often Key already occurred in vs.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
gcc_pairs([], _, []).
|
||
gcc_pairs([Key-Num0|KNs], Vs, [Key-Num|Rest]) :-
|
||
put_attr(Num, clpfd_gcc_num, Num0),
|
||
put_attr(Num, clpfd_gcc_vs, Vs),
|
||
put_attr(Num, clpfd_gcc_occurred, 0),
|
||
gcc_pairs(KNs, Vs, Rest).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
J.-C. Régin: "Generalized Arc Consistency for Global Cardinality
|
||
Constraint", AAAI-96 Portland, OR, USA, pp 209--215, 1996
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
gcc_global(Vs, KNs) :-
|
||
gcc_check(KNs),
|
||
% reach fix-point: all elements of clpfd_gcc_vs must be variables
|
||
do_queue,
|
||
gcc_arcs(KNs, S, Vals),
|
||
variables_with_num_occurrences(Vs, VNs),
|
||
maplist(target_to_v(T), VNs),
|
||
( get_attr(S, edges, Es) ->
|
||
put_attr(S, parent, none), % Mark S as seen to avoid going back to S.
|
||
feasible_flow(Es, S, T), % First construct a feasible flow (if any)
|
||
maximum_flow(S, T), % only then, maximize it.
|
||
gcc_consistent(T),
|
||
del_attr(S, parent),
|
||
phrase(scc(Vals), [s(0,[],gcc_successors)], _),
|
||
phrase(gcc_goals(Vals), Gs),
|
||
gcc_clear(S),
|
||
disable_queue,
|
||
maplist(call, Gs),
|
||
enable_queue
|
||
; true
|
||
).
|
||
|
||
gcc_consistent(T) :-
|
||
get_attr(T, edges, Es),
|
||
maplist(saturated_arc, Es).
|
||
|
||
saturated_arc(arc_from(_,U,_,Flow)) :- get_attr(Flow, flow, U).
|
||
|
||
gcc_goals([]) --> [].
|
||
gcc_goals([Val|Vals]) -->
|
||
{ get_attr(Val, edges, Es) },
|
||
gcc_edges_goals(Es, Val),
|
||
gcc_goals(Vals).
|
||
|
||
gcc_edges_goals([], _) --> [].
|
||
gcc_edges_goals([E|Es], Val) -->
|
||
gcc_edge_goal(E, Val),
|
||
gcc_edges_goals(Es, Val).
|
||
|
||
gcc_edge_goal(arc_from(_,_,_,_), _) --> [].
|
||
gcc_edge_goal(arc_to(_,_,V,F), Val) -->
|
||
( { get_attr(F, flow, 0),
|
||
get_attr(V, lowlink, L1),
|
||
get_attr(Val, lowlink, L2),
|
||
L1 =\= L2,
|
||
get_attr(Val, value, Value) } ->
|
||
[neq_num(V, Value)]
|
||
; []
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Like in all_distinct/1, first use breadth-first search, then
|
||
construct an augmenting path in reverse.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
maximum_flow(S, T) :-
|
||
( gcc_augmenting_path([[S]], Levels, T) ->
|
||
phrase(gcc_augmenting_path(S, T), Path),
|
||
Path = [augment(_,First,_)|Rest],
|
||
path_minimum(Rest, First, Min),
|
||
maplist(gcc_augment(Min), Path),
|
||
maplist(maplist(clear_parent), Levels),
|
||
maximum_flow(S, T)
|
||
; true
|
||
).
|
||
|
||
feasible_flow([], _, _).
|
||
feasible_flow([A|As], S, T) :-
|
||
make_arc_feasible(A, S, T),
|
||
feasible_flow(As, S, T).
|
||
|
||
make_arc_feasible(A, S, T) :-
|
||
A = arc_to(L,_,V,F),
|
||
get_attr(F, flow, Flow),
|
||
( Flow >= L -> true
|
||
; Diff is L - Flow,
|
||
put_attr(V, parent, S-augment(F,Diff,+)),
|
||
gcc_augmenting_path([[V]], Levels, T),
|
||
phrase(gcc_augmenting_path(S, T), Path),
|
||
path_minimum(Path, Diff, Min),
|
||
maplist(gcc_augment(Min), Path),
|
||
maplist(maplist(clear_parent), Levels),
|
||
make_arc_feasible(A, S, T)
|
||
).
|
||
|
||
gcc_augmenting_path(Levels0, Levels, T) :-
|
||
Levels0 = [Vs|_],
|
||
Levels1 = [Tos|Levels0],
|
||
phrase(gcc_reachables(Vs), Tos),
|
||
Tos = [_|_],
|
||
( member(To, Tos), To == T -> Levels = Levels1
|
||
; gcc_augmenting_path(Levels1, Levels, T)
|
||
).
|
||
|
||
gcc_reachables([]) --> [].
|
||
gcc_reachables([V|Vs]) -->
|
||
{ get_attr(V, edges, Es) },
|
||
gcc_reachables_(Es, V),
|
||
gcc_reachables(Vs).
|
||
|
||
gcc_reachables_([], _) --> [].
|
||
gcc_reachables_([E|Es], V) -->
|
||
gcc_reachable(E, V),
|
||
gcc_reachables_(Es, V).
|
||
|
||
gcc_reachable(arc_from(_,_,V,F), P) -->
|
||
( { \+ get_attr(V, parent, _),
|
||
get_attr(F, flow, Flow),
|
||
Flow > 0 } ->
|
||
{ put_attr(V, parent, P-augment(F,Flow,-)) },
|
||
[V]
|
||
; []
|
||
).
|
||
gcc_reachable(arc_to(_L,U,V,F), P) -->
|
||
( { \+ get_attr(V, parent, _),
|
||
get_attr(F, flow, Flow),
|
||
Flow < U } ->
|
||
{ Diff is U - Flow,
|
||
put_attr(V, parent, P-augment(F,Diff,+)) },
|
||
[V]
|
||
; []
|
||
).
|
||
|
||
|
||
path_minimum([], Min, Min).
|
||
path_minimum([augment(_,A,_)|As], Min0, Min) :-
|
||
Min1 is min(Min0,A),
|
||
path_minimum(As, Min1, Min).
|
||
|
||
gcc_augment(Min, augment(F,_,Sign)) :-
|
||
get_attr(F, flow, Flow0),
|
||
gcc_flow_(Sign, Flow0, Min, Flow),
|
||
put_attr(F, flow, Flow).
|
||
|
||
gcc_flow_(+, F0, A, F) :- F is F0 + A.
|
||
gcc_flow_(-, F0, A, F) :- F is F0 - A.
|
||
|
||
gcc_augmenting_path(S, V) -->
|
||
( { V == S } -> []
|
||
; { get_attr(V, parent, V1-Augment) },
|
||
[Augment],
|
||
gcc_augmenting_path(S, V1)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Build value network for global cardinality constraint.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
gcc_arcs([], _, []).
|
||
gcc_arcs([Key-Num0|KNs], S, Vals) :-
|
||
( get_attr(Num0, clpfd_gcc_vs, Vs) ->
|
||
get_attr(Num0, clpfd_gcc_num, Num),
|
||
get_attr(Num0, clpfd_gcc_occurred, Occ),
|
||
( nonvar(Num) -> U is Num - Occ, U = L
|
||
; fd_get(Num, _, n(L0), n(U0), _),
|
||
L is L0 - Occ, U is U0 - Occ
|
||
),
|
||
put_attr(Val, value, Key),
|
||
Vals = [Val|Rest],
|
||
put_attr(F, flow, 0),
|
||
append_edge(S, edges, arc_to(L, U, Val, F)),
|
||
put_attr(Val, edges, [arc_from(L, U, S, F)]),
|
||
variables_with_num_occurrences(Vs, VNs),
|
||
maplist(val_to_v(Val), VNs)
|
||
; Vals = Rest
|
||
),
|
||
gcc_arcs(KNs, S, Rest).
|
||
|
||
variables_with_num_occurrences(Vs0, VNs) :-
|
||
include(var, Vs0, Vs1),
|
||
msort(Vs1, Vs),
|
||
( Vs == [] -> VNs = []
|
||
; Vs = [V|Rest],
|
||
variables_with_num_occurrences(Rest, V, 1, VNs)
|
||
).
|
||
|
||
variables_with_num_occurrences([], Prev, Count, [Prev-Count]).
|
||
variables_with_num_occurrences([V|Vs], Prev, Count0, VNs) :-
|
||
( V == Prev ->
|
||
Count1 is Count0 + 1,
|
||
variables_with_num_occurrences(Vs, Prev, Count1, VNs)
|
||
; VNs = [Prev-Count0|Rest],
|
||
variables_with_num_occurrences(Vs, V, 1, Rest)
|
||
).
|
||
|
||
|
||
target_to_v(T, V-Count) :-
|
||
put_attr(F, flow, 0),
|
||
append_edge(V, edges, arc_to(0, Count, T, F)),
|
||
append_edge(T, edges, arc_from(0, Count, V, F)).
|
||
|
||
val_to_v(Val, V-Count) :-
|
||
put_attr(F, flow, 0),
|
||
append_edge(V, edges, arc_from(0, Count, Val, F)),
|
||
append_edge(Val, edges, arc_to(0, Count, V, F)).
|
||
|
||
|
||
gcc_clear(V) :-
|
||
( get_attr(V, edges, Es) ->
|
||
maplist(del_attr(V), [edges,index,lowlink,value]),
|
||
maplist(gcc_clear_edge, Es)
|
||
; true
|
||
).
|
||
|
||
gcc_clear_edge(arc_to(_,_,V,F)) :-
|
||
del_attr(F, flow),
|
||
gcc_clear(V).
|
||
gcc_clear_edge(arc_from(L,U,V,F)) :- gcc_clear_edge(arc_to(L,U,V,F)).
|
||
|
||
|
||
gcc_successors(V, Tos) :-
|
||
get_attr(V, edges, Tos0),
|
||
phrase(gcc_successors_(Tos0), Tos).
|
||
|
||
gcc_successors_([]) --> [].
|
||
gcc_successors_([E|Es]) --> gcc_succ_edge(E), gcc_successors_(Es).
|
||
|
||
gcc_succ_edge(arc_to(_,U,V,F)) -->
|
||
( { get_attr(F, flow, Flow),
|
||
Flow < U } -> [V]
|
||
; []
|
||
).
|
||
gcc_succ_edge(arc_from(_,_,V,F)) -->
|
||
( { get_attr(F, flow, Flow),
|
||
Flow > 0 } -> [V]
|
||
; []
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Simple consistency check, run before global propagation.
|
||
Importantly, it removes all ground values from clpfd_gcc_vs.
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
gcc_done(Num) :-
|
||
del_attr(Num, clpfd_gcc_vs),
|
||
del_attr(Num, clpfd_gcc_num),
|
||
del_attr(Num, clpfd_gcc_occurred).
|
||
|
||
gcc_check(Pairs) :-
|
||
disable_queue,
|
||
gcc_check_(Pairs),
|
||
enable_queue.
|
||
|
||
gcc_check_([]).
|
||
gcc_check_([Key-Num0|KNs]) :-
|
||
( get_attr(Num0, clpfd_gcc_vs, Vs) ->
|
||
get_attr(Num0, clpfd_gcc_num, Num),
|
||
get_attr(Num0, clpfd_gcc_occurred, Occ0),
|
||
vs_key_min_others(Vs, Key, 0, Min, Os),
|
||
put_attr(Num0, clpfd_gcc_vs, Os),
|
||
put_attr(Num0, clpfd_gcc_occurred, Occ1),
|
||
Occ1 is Occ0 + Min,
|
||
% The queue must be disabled when posting constraints
|
||
% here, otherwise the stored (new) occurrences can differ
|
||
% from the (old) ones used in the following.
|
||
geq(Num, Occ1),
|
||
( Occ1 == Num -> gcc_done(Num0), all_neq(Os, Key)
|
||
; Os == [] -> gcc_done(Num0), Num = Occ1
|
||
; length(Os, L),
|
||
Max is Occ1 + L,
|
||
geq(Max, Num),
|
||
( nonvar(Num) -> Diff is Num - Occ1
|
||
; fd_get(Num, ND, _),
|
||
domain_infimum(ND, n(NInf)),
|
||
Diff is NInf - Occ1
|
||
),
|
||
L >= Diff,
|
||
( L =:= Diff ->
|
||
gcc_done(Num0),
|
||
Num is Occ1 + Diff,
|
||
maplist(=(Key), Os)
|
||
; true
|
||
)
|
||
)
|
||
; true
|
||
),
|
||
gcc_check_(KNs).
|
||
|
||
vs_key_min_others([], _, Min, Min, []).
|
||
vs_key_min_others([V|Vs], Key, Min0, Min, Others) :-
|
||
( fd_get(V, VD, _) ->
|
||
( domain_contains(VD, Key) ->
|
||
Others = [V|Rest],
|
||
vs_key_min_others(Vs, Key, Min0, Min, Rest)
|
||
; vs_key_min_others(Vs, Key, Min0, Min, Others)
|
||
)
|
||
; ( V =:= Key ->
|
||
Min1 is Min0 + 1,
|
||
vs_key_min_others(Vs, Key, Min1, Min, Others)
|
||
; vs_key_min_others(Vs, Key, Min0, Min, Others)
|
||
)
|
||
).
|
||
|
||
all_neq([], _).
|
||
all_neq([X|Xs], C) :-
|
||
neq_num(X, C),
|
||
all_neq(Xs, C).
|
||
|
||
gcc_pair(Pair) :-
|
||
( Pair = Key-Val ->
|
||
must_be(integer, Key),
|
||
fd_variable(Val)
|
||
; domain_error(gcc_pair, Pair)
|
||
).
|
||
|
||
%% global_cardinality(+Vs, +Pairs, +Options)
|
||
%
|
||
% Like global_cardinality/2, with Options a list of options.
|
||
% Currently, the only supported option is
|
||
%
|
||
% * cost(Cost, Matrix)
|
||
% Matrix is a list of rows, one for each variable, in the order
|
||
% they occur in Vs. Each of these rows is a list of integers, one
|
||
% for each key, in the order these keys occur in Pairs. When
|
||
% variable v_i is assigned the value of key k_j, then the
|
||
% associated cost is Matrix_{ij}. Cost is the sum of all costs.
|
||
|
||
|
||
global_cardinality(Xs, Pairs, Options) :-
|
||
global_cardinality(Xs, Pairs),
|
||
Options = [cost(Cost, Matrix)],
|
||
must_be(list(list(integer)), Matrix),
|
||
pairs_keys_values(Pairs, Keys, _),
|
||
maplist(keys_costs(Keys), Xs, Matrix, Costs),
|
||
sum(Costs, #=, Cost).
|
||
|
||
keys_costs(Keys, X, Row, C) :-
|
||
element(N, Keys, X),
|
||
element(N, Row, C).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% circuit(+Vs)
|
||
%
|
||
% True if the list Vs of finite domain variables induces a
|
||
% Hamiltonian circuit, where the k-th element of Vs denotes the
|
||
% successor of node k. Node indexing starts with 1. Examples:
|
||
%
|
||
% ==
|
||
% ?- length(Vs, _), circuit(Vs), label(Vs).
|
||
% Vs = [] ;
|
||
% Vs = [1] ;
|
||
% Vs = [2, 1] ;
|
||
% Vs = [2, 3, 1] ;
|
||
% Vs = [3, 1, 2] ;
|
||
% Vs = [2, 3, 4, 1] .
|
||
% ==
|
||
|
||
circuit(Vs) :-
|
||
must_be(list, Vs),
|
||
maplist(fd_variable, Vs),
|
||
length(Vs, L),
|
||
Vs ins 1..L,
|
||
( L =:= 1 -> true
|
||
; all_circuit(Vs, 1),
|
||
make_propagator(pcircuit(Vs), Prop),
|
||
distinct_attach(Vs, Prop, []),
|
||
trigger_prop(Prop),
|
||
do_queue
|
||
).
|
||
|
||
all_circuit([], _).
|
||
all_circuit([X|Xs], N) :-
|
||
neq_num(X, N),
|
||
N1 is N + 1,
|
||
all_circuit(Xs, N1).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Necessary condition for existence of a Hamiltonian circuit: The
|
||
graph has a single strongly connected component. If the list is
|
||
ground, the condition is also sufficient.
|
||
|
||
Ts are used as temporary variables to attach attributes:
|
||
|
||
lowlink, index: used for SCC
|
||
[arc_to(V)]: possible successors
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
propagate_circuit(Vs) :-
|
||
length(Vs, N),
|
||
length(Ts, N),
|
||
circuit_graph(Vs, Ts, Ts),
|
||
phrase(scc(Ts), [s(0,[],circuit_successors)], _),
|
||
( maplist(single_component, Ts) -> Continuation = true
|
||
; Continuation = false
|
||
),
|
||
maplist(del_attrs, Ts),
|
||
Continuation.
|
||
|
||
single_component(V) :- get_attr(V, lowlink, 0).
|
||
|
||
circuit_graph([], _, _).
|
||
circuit_graph([V|Vs], Ts0, [T|Ts]) :-
|
||
put_attr(T, clpfd_var, V),
|
||
( nonvar(V) -> Ns = [V]
|
||
; fd_get(V, Dom, _),
|
||
domain_to_list(Dom, Ns)
|
||
),
|
||
phrase(circuit_edges(Ns, Ts0), Es),
|
||
put_attr(T, edges, Es),
|
||
circuit_graph(Vs, Ts0, Ts).
|
||
|
||
circuit_edges([], _) --> [].
|
||
circuit_edges([N|Ns], Ts) -->
|
||
{ nth1(N, Ts, T) },
|
||
[arc_to(T)],
|
||
circuit_edges(Ns, Ts).
|
||
|
||
circuit_successors(V, Tos) :-
|
||
get_attr(V, edges, Tos0),
|
||
maplist(arg(1), Tos0, Tos).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% automaton(+Signature, +Nodes, +Arcs)
|
||
%
|
||
% Equivalent to automaton(_, _, Signature, Nodes, Arcs, [], [], _), a
|
||
% common use case of automaton/8. In the following example, a list of
|
||
% binary finite domain variables is constrained to contain at least
|
||
% two consecutive ones:
|
||
%
|
||
% ==
|
||
% two_consecutive_ones(Vs) :-
|
||
% automaton(Vs, [source(a),sink(c)],
|
||
% [arc(a,0,a), arc(a,1,b),
|
||
% arc(b,0,a), arc(b,1,c),
|
||
% arc(c,0,c), arc(c,1,c)]).
|
||
%
|
||
% ?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs).
|
||
% Vs = [0, 1, 1] ;
|
||
% Vs = [1, 1, 0] ;
|
||
% Vs = [1, 1, 1].
|
||
% ==
|
||
|
||
automaton(Sigs, Ns, As) :- automaton(_, _, Sigs, Ns, As, [], [], _).
|
||
|
||
|
||
%% automaton(?Sequence, ?Template, +Signature, +Nodes, +Arcs, +Counters, +Initials, ?Finals)
|
||
%
|
||
% True if the finite automaton induced by Nodes and Arcs (extended
|
||
% with Counters) accepts Signature. Sequence is a list of terms, all
|
||
% of the same shape. Additional constraints must link Sequence to
|
||
% Signature, if necessary. Nodes is a list of source(Node) and
|
||
% sink(Node) terms. Arcs is a list of arc(Node,Integer,Node) and
|
||
% arc(Node,Integer,Node,Exprs) terms that denote the automaton's
|
||
% transitions. Each node is represented by an arbitrary term.
|
||
% Transitions that are not mentioned go to an implicit failure node.
|
||
% Exprs is a list of arithmetic expressions, of the same length as
|
||
% Counters. In each expression, variables occurring in Counters
|
||
% correspond to old counter values, and variables occurring in
|
||
% Template correspond to the current element of Sequence. When a
|
||
% transition containing expressions is taken, counters are updated as
|
||
% stated. By default, counters remain unchanged. Counters is a list
|
||
% of variables that must not occur anywhere outside of the constraint
|
||
% goal. Initials is a list of the same length as Counters. Counter
|
||
% arithmetic on the transitions relates the counter values in
|
||
% Initials to Finals.
|
||
%
|
||
% The following example is taken from Beldiceanu, Carlsson, Debruyne
|
||
% and Petit: "Reformulation of Global Constraints Based on
|
||
% Constraints Checkers", Constraints 10(4), pp 339-362 (2005). It
|
||
% relates a sequence of integers and finite domain variables to its
|
||
% number of inflexions, which are switches between strictly ascending
|
||
% and strictly descending subsequences:
|
||
%
|
||
% ==
|
||
% sequence_inflexions(Vs, N) :-
|
||
% variables_signature(Vs, Sigs),
|
||
% Sigs ins 0..2,
|
||
% automaton(_, _, Sigs,
|
||
% [source(s),sink(i),sink(j),sink(s)],
|
||
% [arc(s,0,s), arc(s,1,j), arc(s,2,i),
|
||
% arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i),
|
||
% arc(j,0,j), arc(j,1,j), arc(j,2,i,[C+1])], [C], [0], [N]).
|
||
%
|
||
% variables_signature([], []).
|
||
% variables_signature([V|Vs], Sigs) :-
|
||
% variables_signature_(Vs, V, Sigs).
|
||
%
|
||
% variables_signature_([], _, []).
|
||
% variables_signature_([V|Vs], Prev, [S|Sigs]) :-
|
||
% V #= Prev #<==> S #= 0,
|
||
% Prev #< V #<==> S #= 1,
|
||
% Prev #> V #<==> S #= 2,
|
||
% variables_signature_(Vs, V, Sigs).
|
||
% ==
|
||
%
|
||
% Example queries:
|
||
%
|
||
% ==
|
||
% ?- sequence_inflexions([1,2,3,3,2,1,3,0], N).
|
||
% N = 3.
|
||
%
|
||
% ?- length(Ls, 5), Ls ins 0..1, sequence_inflexions(Ls, 3), label(Ls).
|
||
% Ls = [0, 1, 0, 1, 0] ;
|
||
% Ls = [1, 0, 1, 0, 1].
|
||
% ==
|
||
|
||
template_var_path(V, Var, []) :- var(V), !, V == Var.
|
||
template_var_path(T, Var, [N|Ns]) :-
|
||
arg(N, T, Arg),
|
||
template_var_path(Arg, Var, Ns).
|
||
|
||
path_term_variable([], V, V).
|
||
path_term_variable([P|Ps], T, V) :-
|
||
arg(P, T, Arg),
|
||
path_term_variable(Ps, Arg, V).
|
||
|
||
initial_expr(_, []-1).
|
||
|
||
automaton(Seqs, Template, Sigs, Ns, As0, Cs, Is, Fs) :-
|
||
must_be(list(list), [Sigs,Ns,As0,Cs,Is]),
|
||
( var(Seqs) -> Seqs = Sigs
|
||
; must_be(list, Seqs)
|
||
),
|
||
memberchk(source(Source), Ns),
|
||
maplist(arc_normalized(Cs), As0, As),
|
||
include(sink, Ns, Sinks0),
|
||
maplist(arg(1), Sinks0, Sinks),
|
||
maplist(initial_expr, Cs, Exprs0),
|
||
phrase((arcs_relation(As, Relation),
|
||
nodes_nums(Sinks, SinkNums0),
|
||
node_num(Source, Start)),
|
||
[s([]-0, Exprs0)], [s(_,Exprs1)]),
|
||
maplist(expr0_expr, Exprs1, Exprs),
|
||
phrase(transitions(Seqs, Template, Sigs, Start, End, Exprs, Cs, Is, Fs), Tuples),
|
||
list_to_domain(SinkNums0, SinkDom),
|
||
domain_to_drep(SinkDom, SinkDrep),
|
||
tuples_in(Tuples, Relation),
|
||
End in SinkDrep.
|
||
|
||
expr0_expr(Es0-_, Es) :-
|
||
pairs_keys_values(Es0, Es1, _),
|
||
reverse(Es1, Es).
|
||
|
||
transitions([], _, [], S, S, _, _, Cs, Cs) --> [].
|
||
transitions([Seq|Seqs], Template, [Sig|Sigs], S0, S, Exprs, Counters, Cs0, Cs) -->
|
||
[[S0,Sig,S1|Is]],
|
||
{ phrase(exprs_next(Exprs, Is, Cs1), [s(Seq,Template,Counters,Cs0)], _) },
|
||
transitions(Seqs, Template, Sigs, S1, S, Exprs, Counters, Cs1, Cs).
|
||
|
||
exprs_next([], [], []) --> [].
|
||
exprs_next([Es|Ess], [I|Is], [C|Cs]) -->
|
||
exprs_values(Es, Vs),
|
||
{ element(I, Vs, C) },
|
||
exprs_next(Ess, Is, Cs).
|
||
|
||
exprs_values([], []) --> [].
|
||
exprs_values([E0|Es], [V|Vs]) -->
|
||
{ term_variables(E0, EVs0),
|
||
copy_term(E0, E),
|
||
term_variables(E, EVs),
|
||
V #= E },
|
||
match_variables(EVs0, EVs),
|
||
exprs_values(Es, Vs).
|
||
|
||
match_variables([], _) --> [].
|
||
match_variables([V0|Vs0], [V|Vs]) -->
|
||
state(s(Seq,Template,Counters,Cs0)),
|
||
{ ( template_var_path(Template, V0, Ps) ->
|
||
path_term_variable(Ps, Seq, V)
|
||
; template_var_path(Counters, V0, Ps) ->
|
||
path_term_variable(Ps, Cs0, V)
|
||
; domain_error(variable_from_template_or_counters, V0)
|
||
) },
|
||
match_variables(Vs0, Vs).
|
||
|
||
nodes_nums([], []) --> [].
|
||
nodes_nums([Node|Nodes], [Num|Nums]) -->
|
||
node_num(Node, Num),
|
||
nodes_nums(Nodes, Nums).
|
||
|
||
arcs_relation([], []) --> [].
|
||
arcs_relation([arc(S0,L,S1,Es)|As], [[From,L,To|Ns]|Rs]) -->
|
||
node_num(S0, From),
|
||
node_num(S1, To),
|
||
state(s(Nodes, Exprs0), s(Nodes, Exprs)),
|
||
{ exprs_nums(Es, Ns, Exprs0, Exprs) },
|
||
arcs_relation(As, Rs).
|
||
|
||
exprs_nums([], [], [], []).
|
||
exprs_nums([E|Es], [N|Ns], [Ex0-C0|Exs0], [Ex-C|Exs]) :-
|
||
( member(Exp-N, Ex0), Exp == E -> C = C0, Ex = Ex0
|
||
; N = C0, C is C0 + 1, Ex = [E-C0|Ex0]
|
||
),
|
||
exprs_nums(Es, Ns, Exs0, Exs).
|
||
|
||
node_num(Node, Num) -->
|
||
state(s(Nodes0-C0, Exprs), s(Nodes-C, Exprs)),
|
||
{ ( member(N-Num, Nodes0), N == Node -> C = C0, Nodes = Nodes0
|
||
; Num = C0, C is C0 + 1, Nodes = [Node-C0|Nodes0]
|
||
)
|
||
}.
|
||
|
||
sink(sink(_)).
|
||
|
||
arc_normalized(Cs, Arc0, Arc) :- arc_normalized_(Arc0, Cs, Arc).
|
||
|
||
arc_normalized_(arc(S0,L,S,Cs), _, arc(S0,L,S,Cs)).
|
||
arc_normalized_(arc(S0,L,S), Cs, arc(S0,L,S,Cs)).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% transpose(+Matrix, ?Transpose)
|
||
%
|
||
% Transpose a list of lists of the same length. Example:
|
||
%
|
||
% ==
|
||
% ?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).
|
||
% Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]].
|
||
% ==
|
||
%
|
||
% This predicate is useful in many constraint programs. Consider for
|
||
% instance Sudoku:
|
||
%
|
||
% ==
|
||
% sudoku(Rows) :-
|
||
% length(Rows, 9), maplist(length_(9), Rows),
|
||
% append(Rows, Vs), Vs ins 1..9,
|
||
% maplist(all_distinct, Rows),
|
||
% transpose(Rows, Columns), maplist(all_distinct, Columns),
|
||
% Rows = [A,B,C,D,E,F,G,H,I],
|
||
% blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).
|
||
%
|
||
% length_(L, Ls) :- length(Ls, L).
|
||
%
|
||
% blocks([], [], []).
|
||
% blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-
|
||
% all_distinct([A,B,C,D,E,F,G,H,I]),
|
||
% blocks(Bs1, Bs2, Bs3).
|
||
%
|
||
% problem(1, [[_,_,_,_,_,_,_,_,_],
|
||
% [_,_,_,_,_,3,_,8,5],
|
||
% [_,_,1,_,2,_,_,_,_],
|
||
% [_,_,_,5,_,7,_,_,_],
|
||
% [_,_,4,_,_,_,1,_,_],
|
||
% [_,9,_,_,_,_,_,_,_],
|
||
% [5,_,_,_,_,_,_,7,3],
|
||
% [_,_,2,_,1,_,_,_,_],
|
||
% [_,_,_,_,4,_,_,_,9]]).
|
||
% ==
|
||
%
|
||
% Sample query:
|
||
%
|
||
% ==
|
||
% ?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).
|
||
% [9, 8, 7, 6, 5, 4, 3, 2, 1]
|
||
% [2, 4, 6, 1, 7, 3, 9, 8, 5]
|
||
% [3, 5, 1, 9, 2, 8, 7, 4, 6]
|
||
% [1, 2, 8, 5, 3, 7, 6, 9, 4]
|
||
% [6, 3, 4, 8, 9, 2, 1, 5, 7]
|
||
% [7, 9, 5, 4, 6, 1, 8, 3, 2]
|
||
% [5, 1, 9, 2, 8, 6, 4, 7, 3]
|
||
% [4, 7, 2, 3, 1, 9, 5, 6, 8]
|
||
% [8, 6, 3, 7, 4, 5, 2, 1, 9]
|
||
% Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].
|
||
% ==
|
||
|
||
transpose(Ms, Ts) :-
|
||
must_be(list(list), Ms),
|
||
( Ms = [] -> Ts = []
|
||
; Ms = [F|_],
|
||
transpose(F, Ms, Ts)
|
||
).
|
||
|
||
transpose([], _, []).
|
||
transpose([_|Rs], Ms, [Ts|Tss]) :-
|
||
lists_firsts_rests(Ms, Ts, Ms1),
|
||
transpose(Rs, Ms1, Tss).
|
||
|
||
lists_firsts_rests([], [], []).
|
||
lists_firsts_rests([[F|Os]|Rest], [F|Fs], [Os|Oss]) :-
|
||
lists_firsts_rests(Rest, Fs, Oss).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
%% zcompare(?Order, ?A, ?B)
|
||
%
|
||
% Analogous to compare/3, with finite domain variables A and B.
|
||
% Example:
|
||
%
|
||
% ==
|
||
% fac(N, F) :-
|
||
% zcompare(C, N, 0),
|
||
% fac_(C, N, F).
|
||
%
|
||
% fac_(=, _, 1).
|
||
% fac_(>, N, F) :- F #= F0*N, N1 #= N - 1, fac(N1, F0).
|
||
% ==
|
||
%
|
||
% This version is deterministic if the first argument is instantiated:
|
||
%
|
||
% ==
|
||
% ?- fac(30, F).
|
||
% F = 265252859812191058636308480000000.
|
||
% ==
|
||
|
||
zcompare(Order, A, B) :-
|
||
( nonvar(Order) ->
|
||
zcompare_(Order, A, B)
|
||
; freeze(Order, zcompare_(Order, A, B)),
|
||
fd_variable(A),
|
||
fd_variable(B),
|
||
propagator_init_trigger(pzcompare(Order, A, B))
|
||
).
|
||
|
||
zcompare_(=, A, B) :- A #= B.
|
||
zcompare_(<, A, B) :- A #< B.
|
||
zcompare_(>, A, B) :- A #> B.
|
||
|
||
%% chain(+Zs, +Relation)
|
||
%
|
||
% Zs is a list of finite domain variables that are a chain with
|
||
% respect to the partial order Relation, in the order they appear in
|
||
% the list. Relation must be #=, #=<, #>=, #< or #>. For example:
|
||
%
|
||
% ==
|
||
% ?- chain([X,Y,Z], #>=).
|
||
% X#>=Y,
|
||
% Y#>=Z.
|
||
% ==
|
||
|
||
chain(Zs, Relation) :-
|
||
must_be(list, Zs),
|
||
maplist(fd_variable, Zs),
|
||
must_be(ground, Relation),
|
||
( chain_relation(Relation) -> true
|
||
; domain_error(chain_relation, Relation)
|
||
),
|
||
( Zs = [] -> true
|
||
; Zs = [X|Xs],
|
||
chain(Xs, X, Relation)
|
||
).
|
||
|
||
chain_relation(#=).
|
||
chain_relation(#<).
|
||
chain_relation(#=<).
|
||
chain_relation(#>).
|
||
chain_relation(#>=).
|
||
|
||
chain([], _, _).
|
||
chain([X|Xs], Prev, Relation) :-
|
||
call(Relation, Prev, X),
|
||
chain(Xs, X, Relation).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Reflection predicates
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
%% fd_var(+Var)
|
||
%
|
||
% True iff Var is a CLP(FD) variable.
|
||
|
||
fd_var(X) :- get_attr(X, clpfd, _).
|
||
|
||
%% fd_inf(+Var, -Inf)
|
||
%
|
||
% Inf is the infimum of the current domain of Var.
|
||
|
||
fd_inf(X, Inf) :-
|
||
( fd_get(X, XD, _) ->
|
||
domain_infimum(XD, Inf0),
|
||
bound_portray(Inf0, Inf)
|
||
; must_be(integer, X),
|
||
Inf = X
|
||
).
|
||
|
||
%% fd_sup(+Var, -Sup)
|
||
%
|
||
% Sup is the supremum of the current domain of Var.
|
||
|
||
fd_sup(X, Sup) :-
|
||
( fd_get(X, XD, _) ->
|
||
domain_supremum(XD, Sup0),
|
||
bound_portray(Sup0, Sup)
|
||
; must_be(integer, X),
|
||
Sup = X
|
||
).
|
||
|
||
%% fd_size(+Var, -Size)
|
||
%
|
||
% Size is the number of elements of the current domain of Var, or the
|
||
% atom *sup* if the domain is unbounded.
|
||
|
||
fd_size(X, S) :-
|
||
( fd_get(X, XD, _) ->
|
||
domain_num_elements(XD, S0),
|
||
bound_portray(S0, S)
|
||
; must_be(integer, X),
|
||
S = 1
|
||
).
|
||
|
||
%% fd_dom(+Var, -Dom)
|
||
%
|
||
% Dom is the current domain (see in/2) of Var. This predicate is
|
||
% useful if you want to reason about domains. It is not needed if you
|
||
% only want to display remaining domains; instead, separate your
|
||
% model from the search part and let the toplevel display this
|
||
% information via residual goals.
|
||
|
||
fd_dom(X, Drep) :-
|
||
( fd_get(X, XD, _) ->
|
||
domain_to_drep(XD, Drep)
|
||
; must_be(integer, X),
|
||
Drep = X..X
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Entailment detection. Subject to change.
|
||
|
||
Currently, Goals entail E if posting ({#\ E} U Goals), then
|
||
labeling all variables, fails. E must be reifiable. Examples:
|
||
|
||
%?- clpfd:goals_entail([X#>2], X #> 3).
|
||
%@ false.
|
||
|
||
%?- clpfd:goals_entail([X#>1, X#<3], X #= 2).
|
||
%@ true.
|
||
|
||
%?- clpfd:goals_entail([X#=Y+1], X #= Y+1).
|
||
%@ ERROR: Arguments are not sufficiently instantiated
|
||
%@ Exception: (15) throw(error(instantiation_error, _G2680)) ?
|
||
|
||
%?- clpfd:goals_entail([[X,Y] ins 0..10, X#=Y+1], X #= Y+1).
|
||
%@ true.
|
||
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
goals_entail(Goals, E) :-
|
||
must_be(list, Goals),
|
||
\+ ( maplist(call, Goals), #\ E,
|
||
term_variables(Goals-E, Vs),
|
||
label(Vs)
|
||
).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Unification hook and constraint projection
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
attr_unify_hook(clpfd_attr(_,_,_,Dom,Ps), Other) :-
|
||
( nonvar(Other) ->
|
||
( integer(Other) -> true
|
||
; type_error(integer, Other)
|
||
),
|
||
domain_contains(Dom, Other),
|
||
trigger_props(Ps),
|
||
do_queue
|
||
; fd_get(Other, OD, OPs),
|
||
domains_intersection(OD, Dom, Dom1),
|
||
append_propagators(Ps, OPs, Ps1),
|
||
fd_put(Other, Dom1, Ps1),
|
||
trigger_props(Ps1),
|
||
do_queue
|
||
).
|
||
|
||
append_propagators(fd_props(Gs0,Bs0,Os0), fd_props(Gs1,Bs1,Os1), fd_props(Gs,Bs,Os)) :-
|
||
append(Gs0, Gs1, Gs),
|
||
append(Bs0, Bs1, Bs),
|
||
append(Os0, Os1, Os).
|
||
|
||
bound_portray(inf, inf).
|
||
bound_portray(sup, sup).
|
||
bound_portray(n(N), N).
|
||
|
||
domain_to_drep(Dom, Drep) :-
|
||
domain_intervals(Dom, [A0-B0|Rest]),
|
||
bound_portray(A0, A),
|
||
bound_portray(B0, B),
|
||
( A == B -> Drep0 = A
|
||
; Drep0 = A..B
|
||
),
|
||
intervals_to_drep(Rest, Drep0, Drep).
|
||
|
||
intervals_to_drep([], Drep, Drep).
|
||
intervals_to_drep([A0-B0|Rest], Drep0, Drep) :-
|
||
bound_portray(A0, A),
|
||
bound_portray(B0, B),
|
||
( A == B -> D1 = A
|
||
; D1 = A..B
|
||
),
|
||
intervals_to_drep(Rest, Drep0 \/ D1, Drep).
|
||
|
||
attribute_goals(X) -->
|
||
% { get_attr(X, clpfd, Attr), format("A: ~w\n", [Attr]) },
|
||
{ get_attr(X, clpfd, clpfd_attr(_,_,_,Dom,fd_props(Gs,Bs,Os))),
|
||
append(Gs, Bs, Ps0),
|
||
append(Ps0, Os, Ps),
|
||
domain_to_drep(Dom, Drep) },
|
||
( { default_domain(Dom), \+ all_dead_(Ps) } -> []
|
||
; [clpfd:(X in Drep)]
|
||
),
|
||
attributes_goals(Ps).
|
||
|
||
clpfd_aux:attribute_goals(_) --> [].
|
||
clpfd_aux:attr_unify_hook(_,_) :- false.
|
||
|
||
clpfd_gcc_vs:attribute_goals(_) --> [].
|
||
clpfd_gcc_vs:attr_unify_hook(_,_) :- false.
|
||
|
||
clpfd_gcc_num:attribute_goals(_) --> [].
|
||
clpfd_gcc_num:attr_unify_hook(_,_) :- false.
|
||
|
||
clpfd_gcc_occurred:attribute_goals(_) --> [].
|
||
clpfd_gcc_occurred:attr_unify_hook(_,_) :- false.
|
||
|
||
clpfd_relation:attribute_goals(_) --> [].
|
||
clpfd_relation:attr_unify_hook(_,_) :- false.
|
||
|
||
clpfd_original:attribute_goals(_) --> [].
|
||
clpfd_original:attr_unify_hook(_,_) :- false.
|
||
|
||
attributes_goals([]) --> [].
|
||
attributes_goals([propagator(P, State)|As]) -->
|
||
( { ground(State) } -> []
|
||
; { phrase(attribute_goal_(P), Gs) } ->
|
||
{ del_attr(State, clpfd_aux), State = processed },
|
||
with_clpfd(Gs)
|
||
; [P] % possibly user-defined constraint
|
||
),
|
||
attributes_goals(As).
|
||
|
||
with_clpfd([]) --> [].
|
||
with_clpfd([G|Gs]) --> [clpfd:G], with_clpfd(Gs).
|
||
|
||
attribute_goal_(presidual(Goal)) --> [Goal].
|
||
attribute_goal_(pgeq(A,B)) --> [A #>= B].
|
||
attribute_goal_(pplus(X,Y,Z)) --> [X + Y #= Z].
|
||
attribute_goal_(pneq(A,B)) --> [A #\= B].
|
||
attribute_goal_(ptimes(X,Y,Z)) --> [X*Y #= Z].
|
||
attribute_goal_(absdiff_neq(X,Y,C)) --> [abs(X-Y) #\= C].
|
||
attribute_goal_(absdiff_geq(X,Y,C)) --> [abs(X-Y) #>= C].
|
||
attribute_goal_(x_neq_y_plus_z(X,Y,Z)) --> [X #\= Y + Z].
|
||
attribute_goal_(x_leq_y_plus_c(X,Y,C)) --> [X #=< Y + C].
|
||
attribute_goal_(pdiv(X,Y,Z)) --> [X/Y #= Z].
|
||
attribute_goal_(pexp(X,Y,Z)) --> [X^Y #= Z].
|
||
attribute_goal_(pabs(X,Y)) --> [Y #= abs(X)].
|
||
attribute_goal_(pmod(X,M,K)) --> [X mod M #= K].
|
||
attribute_goal_(pmax(X,Y,Z)) --> [Z #= max(X,Y)].
|
||
attribute_goal_(pmin(X,Y,Z)) --> [Z #= min(X,Y)].
|
||
attribute_goal_(scalar_product_neq([FC|Cs],[FV|Vs],C)) -->
|
||
[Left #\= C],
|
||
{ coeff_var_term(FC, FV, T0), fold_product(Cs, Vs, T0, Left) }.
|
||
attribute_goal_(scalar_product_eq([FC|Cs],[FV|Vs],C)) -->
|
||
[Left #= C],
|
||
{ coeff_var_term(FC, FV, T0), fold_product(Cs, Vs, T0, Left) }.
|
||
attribute_goal_(scalar_product_leq([FC|Cs],[FV|Vs],C)) -->
|
||
[Left #=< C],
|
||
{ coeff_var_term(FC, FV, T0), fold_product(Cs, Vs, T0, Left) }.
|
||
attribute_goal_(pdifferent(_,_,_,O)) --> original_goal(O).
|
||
attribute_goal_(weak_distinct(_,_,_,O)) --> original_goal(O).
|
||
attribute_goal_(pdistinct(Vs)) --> [all_distinct(Vs)].
|
||
attribute_goal_(pexclude(_,_,_)) --> [].
|
||
attribute_goal_(pelement(N,Is,V)) --> [element(N, Is, V)].
|
||
attribute_goal_(pgcc(Vs, Pairs, _)) --> [global_cardinality(Vs, Pairs)].
|
||
attribute_goal_(pgcc_single(_,_)) --> [].
|
||
attribute_goal_(pgcc_check_single(_)) --> [].
|
||
attribute_goal_(pgcc_check(_)) --> [].
|
||
attribute_goal_(pcircuit(Vs)) --> [circuit(Vs)].
|
||
attribute_goal_(pserialized(_,_,_,_,O)) --> original_goal(O).
|
||
attribute_goal_(rel_tuple(R, Tuple)) -->
|
||
{ get_attr(R, clpfd_relation, Rel) },
|
||
[tuples_in([Tuple], Rel)].
|
||
attribute_goal_(pzcompare(O,A,B)) --> [zcompare(O,A,B)].
|
||
% reified constraints
|
||
attribute_goal_(reified_in(V, D, B)) -->
|
||
[V in Drep #<==> B],
|
||
{ domain_to_drep(D, Drep) }.
|
||
attribute_goal_(reified_tuple_in(Tuple, R, B)) -->
|
||
{ get_attr(R, clpfd_relation, Rel) },
|
||
[tuples_in([Tuple], Rel) #<==> B].
|
||
attribute_goal_(reified_fd(V,B)) --> [finite_domain(V) #<==> B].
|
||
attribute_goal_(reified_neq(DX,X,DY,Y,_,B)) --> conjunction(DX, DY, X#\=Y, B).
|
||
attribute_goal_(reified_eq(DX,X,DY,Y,_,B)) --> conjunction(DX, DY, X #= Y, B).
|
||
attribute_goal_(reified_geq(DX,X,DY,Y,_,B)) --> conjunction(DX, DY, X #>= Y, B).
|
||
attribute_goal_(reified_div(X,Y,D,_,Z)) -->
|
||
[D #= 1 #==> X / Y #= Z, Y #\= 0 #==> D #= 1].
|
||
attribute_goal_(reified_mod(X,Y,D,_,Z)) -->
|
||
[D #= 1 #==> X mod Y #= Z, Y #\= 0 #==> D #= 1].
|
||
attribute_goal_(reified_and(X,_,Y,_,B)) --> [X #/\ Y #<==> B].
|
||
attribute_goal_(reified_or(X, _, Y, _, B)) --> [X #\/ Y #<==> B].
|
||
attribute_goal_(reified_not(X, Y)) --> [#\ X #<==> Y].
|
||
attribute_goal_(pimpl(X, Y, _)) --> [X #==> Y].
|
||
|
||
conjunction(A, B, G, D) -->
|
||
( { A == 1, B == 1 } -> [G #<==> D]
|
||
; { A == 1 } -> [(B #/\ G) #<==> D]
|
||
; { B == 1 } -> [(A #/\ G) #<==> D]
|
||
; [(A #/\ B #/\ G) #<==> D]
|
||
).
|
||
|
||
coeff_var_term(C, V, T) :- ( C =:= 1 -> T = V ; T = C*V ).
|
||
|
||
fold_product([], [], P, P).
|
||
fold_product([C|Cs], [V|Vs], P0, P) :-
|
||
coeff_var_term(C, V, T),
|
||
fold_product(Cs, Vs, P0 + T, P).
|
||
|
||
original_goal(V) -->
|
||
( { get_attr(V, clpfd_original, Goal) } ->
|
||
{ del_attr(V, clpfd_original) },
|
||
[Goal]
|
||
; []
|
||
).
|
||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
||
|
||
% %?- test_intersection([1,2,3,4,5], [1,5], I).
|
||
|
||
% %?- test_intersection([1,2,3,4,5], [], I).
|
||
|
||
% test_intersection(List1, List2, Is) :-
|
||
% list_to_domain(List1, D1),
|
||
% list_to_domain(List2, D2),
|
||
% domains_intersection(D1, D2, I),
|
||
% domain_to_list(I, Is).
|
||
|
||
% test_subdomain(L1, L2) :-
|
||
% list_to_domain(L1, D1),
|
||
% list_to_domain(L2, D2),
|
||
% domain_subdomain(D1, D2).
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Generated predicates
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
term_expansion(make_parse_clpfd, Clauses) :- make_parse_clpfd(Clauses).
|
||
term_expansion(make_parse_reified, Clauses) :- make_parse_reified(Clauses).
|
||
term_expansion(make_matches, Clauses) :- make_matches(Clauses).
|
||
|
||
make_parse_clpfd.
|
||
make_parse_reified.
|
||
make_matches.
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Global variables
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
make_clpfd_var('$clpfd_queue') :-
|
||
make_queue.
|
||
make_clpfd_var('$clpfd_current_propagator') :-
|
||
nb_setval('$clpfd_current_propagator', []).
|
||
make_clpfd_var('$clpfd_queue_status') :-
|
||
nb_setval('$clpfd_queue_status', enabled).
|
||
|
||
:- multifile user:exception/3.
|
||
|
||
user:exception(undefined_global_variable, Name, retry) :-
|
||
make_clpfd_var(Name), !.
|
||
|
||
warn_if_bounded_arithmetic :-
|
||
( current_prolog_flag(bounded, true) ->
|
||
print_message(warning, clpfd(bounded))
|
||
; true
|
||
).
|
||
|
||
:- initialization(warn_if_bounded_arithmetic).
|
||
|
||
|
||
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
Messages
|
||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
||
:- multifile prolog:message//1.
|
||
|
||
prolog:message(clpfd(bounded)) -->
|
||
['Using CLP(FD) with bounded arithmetic may yield wrong results.'-[]].
|