e5f4633c39
which included commits to RCS files with non-trunk default branches. git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@5 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
108 lines
2.7 KiB
Prolog
108 lines
2.7 KiB
Prolog
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% clp(q,r) version 1.3.2 %
|
|
% %
|
|
% (c) Copyright 1992,1993,1994,1995 %
|
|
% Austrian Research Institute for Artificial Intelligence (OFAI) %
|
|
% Schottengasse 3 %
|
|
% A-1010 Vienna, Austria %
|
|
% %
|
|
% File: squares.pl %
|
|
% Author: Christian Holzbaur christian@ai.univie.ac.at %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
/*
|
|
This beautiful example of disequations at work is due
|
|
to [Colmerauer 90]. It addresses the task of tiling a rectangle
|
|
with squares of all-different, a priori unknown sizes. Here is a
|
|
translation of the original Prolog-III program to clp(q,r)
|
|
|
|
[Colmerauer 90]
|
|
Colmerauer A.: An Introduction to Prolog III,
|
|
Communications of the ACM, 33(7), 69-90, 1990.
|
|
|
|
|
|
|
|
|
|
| ?- length(L,9),filled_rectangle(A,L).
|
|
|
|
A = 33/32,
|
|
L = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] ? ;
|
|
|
|
A = 69/61,
|
|
L = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61] ?
|
|
*/
|
|
|
|
|
|
rectangle( A, Rs) :-
|
|
Rs = [X1,X2,X3,X4,X5,X6,X7,X8,X9],
|
|
filled_rectangle( A, Rs).
|
|
|
|
filled_rectangle( A, C) :-
|
|
{ A >= 1 },
|
|
distinct_squares( C), % also acts as generator [], [_], [_,_], ...
|
|
filled_zone( [-1,A,1], _, C, []).
|
|
|
|
distinct_squares( []).
|
|
distinct_squares( [B|C]) :-
|
|
{ B > 0 },
|
|
outof( C, B),
|
|
distinct_squares( C).
|
|
|
|
outof( [], _).
|
|
outof( [B1|C], B) :-
|
|
{ B =\= B1 },
|
|
outof( C, B).
|
|
|
|
filled_zone( [V|L], [V|L], C0, C0) :-
|
|
{ V >= 0 }.
|
|
filled_zone( [V|L], L3, [B|C], C2) :-
|
|
{ V < 0 },
|
|
placed_square( B, L, L1),
|
|
filled_zone( L1, L2, C, C1),
|
|
{ Vb=V+B },
|
|
filled_zone( [Vb,B|L2], L3, C1, C2).
|
|
|
|
placed_square( B, [H,H0,H1|L], L1) :-
|
|
{ B > H, H0=0, H2=H+H1 },
|
|
placed_square( B, [H2|L], L1).
|
|
placed_square( B, [B,V|L], [X|L]) :-
|
|
{ X=V-B }.
|
|
placed_square( B, [H|L], [X,Y|L]) :-
|
|
{ B < H, X= -B, Y=H-B }.
|
|
|
|
%
|
|
% first nontrivial solution has 21 squares ...
|
|
%
|
|
perfect( S) :-
|
|
{ A = 1 },
|
|
distinct_squares( S),
|
|
length( S, Len), Len > 1,
|
|
print( try(Len)), nl,
|
|
flush_output,
|
|
time( filled_zone( [-1,A,1], _, S, [])).
|
|
|
|
/*
|
|
try(2)
|
|
%%% Timing 00:00:00.030 0.030
|
|
try(3)
|
|
%%% Timing 00:00:00.070 0.070
|
|
try(4)
|
|
%%% Timing 00:00:00.270 0.270
|
|
try(5)
|
|
%%% Timing 00:00:01.060 1.060
|
|
try(6)
|
|
%%% Timing 00:00:04.470 4.470
|
|
try(7)
|
|
%%% Timing 00:00:19.960 19.960
|
|
try(8)
|
|
%%% Timing 00:01:33.380 93.380
|
|
try(9)
|
|
%%% Timing 00:07:27.380 447.380
|
|
try(10)
|
|
%%% Timing 00:37:03.770 2223.770
|
|
try(11)
|
|
%%% Timing 03:11:38.380 11498.380
|
|
try(12)
|
|
%%% Timing 16:18:43.110 58723.110
|
|
*/ |