475 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			475 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| /**
 | |
|  * @file   wdgraphs.yap
 | |
|  * @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
 | |
|  * @date   2006
 | |
|  *
 | |
|  *
 | |
| */
 | |
| 
 | |
| :- module( wdgraphs,
 | |
| 	   [
 | |
| 	    wdgraph_new/1,
 | |
| 	    wdgraph_add_edge/5,
 | |
| 	    wdgraph_add_edges/3,
 | |
| 	    wdgraph_add_vertices_and_edges/4,
 | |
| 	    wdgraph_del_edge/5,
 | |
| 	    wdgraph_del_edges/3,
 | |
| 	    wdgraph_del_vertex/3,
 | |
| 	    wdgraph_del_vertices/3,
 | |
| 	    wdgraph_edge/4,
 | |
| 	    wdgraph_to_dgraph/2,
 | |
| 	    dgraph_to_wdgraph/2,
 | |
| 	    wdgraph_neighbors/3,
 | |
| 	    wdgraph_neighbours/3,
 | |
| 	    wdgraph_wneighbors/3,
 | |
| 	    wdgraph_wneighbours/3,
 | |
| 	    wdgraph_transpose/2,
 | |
| 	    wdgraph_transitive_closure/2,
 | |
| 	    wdgraph_symmetric_closure/2,
 | |
| 	    wdgraph_top_sort/2,
 | |
| 	    wdgraph_min_path/5,
 | |
| 	    wdgraph_min_paths/3,
 | |
| 	    wdgraph_max_path/5,
 | |
| 	    wdgraph_path/3,
 | |
| 	    wdgraph_reachable/3]).
 | |
| 
 | |
| /**
 | |
|  * @defgroup wdgraphs Weighted Directed Graphs
 | |
|  * @ingroup library
 | |
|  *
 | |
|  * @brief  Weighted Directed Graph Processing Utilities.
 | |
|  *
 | |
|  * @{
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| :- reexport(library(dgraphs),
 | |
| 	    [dgraph_add_vertex/3 as wdgraph_add_vertex,
 | |
| 	     dgraph_add_vertices/3 as wdgraph_add_vertices,
 | |
| 	     dgraph_vertices/2 as wdgraph_vertices,
 | |
| 	     dgraph_edges/2 as wdgraph_edges
 | |
| 	    ]).
 | |
| 
 | |
| 
 | |
| :- use_module(library(dgraphs),
 | |
| 	[
 | |
| 	dgraph_top_sort/2,
 | |
| 	dgraph_path/3
 | |
| 	]
 | |
|     ).
 | |
| 
 | |
| :- use_module(library(rbtrees),
 | |
| 	[rb_new/1,
 | |
| 	 rb_empty/1,
 | |
| 	 rb_lookup/3,
 | |
| 	 rb_apply/4,
 | |
| 	 rb_insert/4,
 | |
| 	 rb_visit/2,
 | |
| 	 rb_keys/2,
 | |
| 	 rb_delete/3,
 | |
| 	 rb_map/3,
 | |
| 	 rb_clone/3,
 | |
| 	 rb_clone/4,
 | |
| 	 rb_update/5,
 | |
| 	 ord_list_to_rbtree/2]).
 | |
| 
 | |
| :- use_module(library(ordsets),
 | |
| 	[ord_insert/3]).
 | |
| 
 | |
| :- use_module(library(heaps),
 | |
| 	[
 | |
|          empty_heap/1,
 | |
| 	 add_to_heap/4,
 | |
| 	 get_from_heap/4
 | |
|      ]).
 | |
| 
 | |
| wdgraph_new(Vertices) :-
 | |
| 	rb_new(Vertices).
 | |
| 
 | |
| wdgraph_add_vertices_and_edges(Vs0,Vertices,Edges,Vs2) :-
 | |
| 	wdgraph_add_vertices(Vs0, Vertices, Vs1),
 | |
| 	wdgraph_add_edges(Vs1, Edges, Vs2).
 | |
| 
 | |
| 
 | |
| wdgraph_add_edge(Vs0,V1,V2,Weight,Vs2) :-
 | |
| 	wdgraph_new_edge(V1,V2,Weight,Vs0,Vs1),
 | |
| 	dgraph_add_vertex(Vs1,V2,Vs2).
 | |
| 
 | |
| wdgraph_add_edges(V0, Edges, VF) :-
 | |
| 	rb_empty(V0), !,
 | |
| 	sort(Edges,SortedEdges),
 | |
| 	all_vertices_in_wedges(SortedEdges,Vertices),
 | |
| 	sort(Vertices,SortedVertices),
 | |
| 	edges2wgraphl(SortedVertices, SortedEdges, GraphL),
 | |
| 	ord_list_to_rbtree(GraphL, VF).
 | |
| wdgraph_add_edges(G0, Edges, GF) :-
 | |
| 	sort(Edges,SortedEdges),
 | |
| 	all_vertices_in_wedges(SortedEdges,Vertices),
 | |
| 	sort(Vertices,SortedVertices),
 | |
| 	add_edges(SortedVertices,SortedEdges, G0, GF).
 | |
| 
 | |
| all_vertices_in_wedges([],[]).
 | |
| all_vertices_in_wedges([V1-(V2-_)|Edges],[V1,V2|Vertices]) :-
 | |
| 	all_vertices_in_wedges(Edges,Vertices).
 | |
| 
 | |
| edges2wgraphl([], [], []).
 | |
| edges2wgraphl([V|Vertices], [V-(V1-W)|SortedEdges], [V-[V1-W|Children]|GraphL]) :- !,
 | |
| 	get_extra_children(SortedEdges,V,Children,RemEdges),
 | |
| 	edges2wgraphl(Vertices, RemEdges, GraphL).
 | |
| edges2wgraphl([V|Vertices], SortedEdges, [V-[]|GraphL]) :-
 | |
| 	edges2wgraphl(Vertices, SortedEdges, GraphL).
 | |
| 
 | |
| 
 | |
| add_edges([],[]) --> [].
 | |
| add_edges([VA|Vs],[VB-(V1-W)|Es]) --> { VA == VB }, !,
 | |
| 	{ get_extra_children(Es,VA,Children,REs) },
 | |
| 	wdgraph_update_vertex(VA,[V1-W|Children]),
 | |
| 	add_edges(Vs,REs).
 | |
| add_edges([V|Vs],Es) --> !,
 | |
| 	wdgraph_update_vertex(V,[]),
 | |
| 	add_edges(Vs,Es).
 | |
| 
 | |
| get_extra_children([VA-(C-W)|Es],VB,[C-W|Children],REs) :- VA == VB, !,
 | |
| 	get_extra_children(Es,VB,Children,REs).
 | |
| get_extra_children(Es,_,[],Es).
 | |
| 
 | |
| 
 | |
| wdgraph_update_vertex(V,Edges,WG0,WGF) :-
 | |
| 	rb_update(WG0, V, Edges0, EdgesF, WGF), !,
 | |
| 	key_union(Edges, Edges0, EdgesF).
 | |
| wdgraph_update_vertex(V,Edges,WG0,WGF) :-
 | |
| 	rb_insert(WG0, V, Edges, WGF).
 | |
| 
 | |
| key_union([], [], []) :- !.
 | |
| key_union([], [C|Children], [C|Children]).
 | |
| key_union([C|Children], [], [C|Children]) :- !.
 | |
| key_union([K-W|ToAdd], [K1-W1|Children0], NewUnion) :-
 | |
| 	( K == K1 ->
 | |
| 	    NewUnion = [K-W|NewChildren],
 | |
| 	    key_union(ToAdd, Children0, NewChildren)
 | |
| 	;
 | |
| 	    K1 @< K ->
 | |
| 	    NewUnion = [K1-W1|NewChildren],
 | |
| 	    key_union([K-W|ToAdd], Children0, NewChildren)
 | |
| 	;
 | |
| 	    NewUnion = [K-W|NewChildren],
 | |
| 	    key_union(ToAdd, [K1-W1|Children0], NewChildren)
 | |
| 	).
 | |
| 
 | |
| wdgraph_new_edge(V1,V2,W,Vs0,Vs) :-
 | |
| 	rb_apply(Vs0, V1, insert_edge(V2,W), Vs), !.
 | |
| wdgraph_new_edge(V1,V2,W,Vs0,Vs) :-
 | |
| 	rb_insert(Vs0,V1,[V2-W],Vs).
 | |
| 
 | |
| insert_edge(V2, W, Children0, Children) :-
 | |
| 	ord_insert(Children0,V2-W,Children).
 | |
| 
 | |
| wdgraph_top_sort(WG,Q) :-
 | |
| 	wdgraph_to_dgraph(WG, G),
 | |
| 	dgraph_top_sort(G, Q).
 | |
| 
 | |
| wgraph_to_wdgraph(UG, DG) :-
 | |
| 	ord_list_to_rbtree(UG, DG).
 | |
| 
 | |
| wdgraph_to_wgraph(DG, UG) :-
 | |
| 	rb_visit(DG, UG).
 | |
| 
 | |
| wdgraph_edge(N1, N2, W, G) :-
 | |
| 	rb_lookup(N1, Ns, G),
 | |
| 	find_edge(N2-W, Ns).
 | |
| 
 | |
| find_edge(N-W,[N1-W|_]) :- N == N1, !.
 | |
| find_edge(El,[_|Edges]) :-
 | |
| 	find_edge(El,Edges).
 | |
| 
 | |
| wdgraph_del_edge(Vs0, V1, V2, W, Vs) :-
 | |
| 	rb_update(Vs0, V1, Children0, NewChildren, Vs),
 | |
| 	del_edge(Children0, V2, W, NewChildren).
 | |
| 
 | |
| % I assume first argument is subset of second.
 | |
| del_edge([K-W|Children], K1, W1, NewChildren) :-
 | |
| 	( K == K1 ->
 | |
| 	    W = W1,
 | |
| 	    Children = NewChildren
 | |
| 	;
 | |
| 	    % K1 @< K
 | |
| 	    NewChildren = [K-W|ChildrenLeft],
 | |
| 	    del_edge(Children, K1, W1, ChildrenLeft)
 | |
| 	).
 | |
| 
 | |
| wdgraph_del_edges(G0, Edges, GF) :-
 | |
| 	sort(Edges,SortedEdges),
 | |
| 	continue_del_edges(SortedEdges, G0, GF).
 | |
| 
 | |
| continue_del_edges([]) --> [].
 | |
| continue_del_edges([V-V1|Es]) --> !,
 | |
| 	{ get_extra_children(Es,V,Children,REs) },
 | |
| 	contract_vertex(V,[V1|Children]),
 | |
| 	continue_del_edges(REs).
 | |
| 
 | |
| contract_vertex(V,Children, Vs0, Vs) :-
 | |
| 	rb_update(Vs0, V, Children0, NewChildren, Vs),
 | |
| 	del_vertices(Children, Children0, NewChildren).
 | |
| 
 | |
| % I assume first argument is subset of second.
 | |
| del_vertices(Children, [], Children).
 | |
| del_vertices([K1-W1|Children0], [K-W|ToDel], NewChildren) :-
 | |
| 	( K == K1 ->
 | |
| 	    W = W1,
 | |
| 	    del_vertices(Children0, ToDel, NewChildren)
 | |
| 	;
 | |
| 	    % K1 @< K
 | |
| 	    NewChildren = [K1-W1|ChildrenLeft],
 | |
| 	    del_vertices(Children0, [K-W|ToDel], ChildrenLeft)
 | |
| 	).
 | |
| 
 | |
| wdgraph_del_vertex(Vs0, V, Vsf) :-
 | |
| 	rb_delete(Vs0, V, Vs1),
 | |
| 	rb_map(Vs1, delete_wedge(V), Vsf).
 | |
| 
 | |
| delete_wedge(_, [], []).
 | |
| delete_wedge(V, [K-W|Children], NewChildren) :-
 | |
| 	( K == V ->
 | |
| 	    NewChildren = Children
 | |
| 	;
 | |
| 	    K @< V ->
 | |
| 	    NewChildren = [K-W|Children2],
 | |
| 	    delete_wedge(V, Children, Children2)
 | |
| 	;
 | |
| 	   Children = NewChildren
 | |
| 	).
 | |
| 
 | |
| wdgraph_del_vertices(G0, Vs, GF) :-
 | |
| 	sort(Vs,SortedVs),
 | |
| 	delete_all(SortedVs, G0, G1),
 | |
| 	delete_remaining_edges(SortedVs, G1, GF).
 | |
| 
 | |
| % it would be nice to be able to delete a set of elements from an RB tree
 | |
| % but I don't how to do it yet.
 | |
| delete_all([]) --> [].
 | |
| delete_all([V|Vs],Vs0,Vsf) :-
 | |
| 	rb_delete(Vs0, V, Vsi),
 | |
| 	delete_all(Vs,Vsi,Vsf).
 | |
| 
 | |
| delete_remaining_edges(SortedVs,Vs0,Vsf) :-
 | |
| 	rb_map(Vs0, del_possible_edges(SortedVs), Vsf).
 | |
| 
 | |
| del_possible_edges([], [], []).
 | |
| del_possible_edges([], [C|Children], [C|Children]).
 | |
| del_possible_edges([_|_], [], []).
 | |
| del_possible_edges([K|ToDel], [K1-W1|Children0], NewChildren) :-
 | |
| 	( K == K1 ->
 | |
| 	    del_possible_edges(ToDel, Children0, NewChildren)
 | |
| 	;
 | |
| 	    K1 @< K ->
 | |
| 	    NewChildren = [K1-W1|ChildrenLeft],
 | |
| 	    del_possible_edges([K|ToDel], Children0, ChildrenLeft)
 | |
| 	;
 | |
| 	    del_possible_edges(ToDel, [K1-W1|Children0], NewChildren)
 | |
| 	).
 | |
| 
 | |
| wdgraph_to_dgraph(WG, DG) :-
 | |
| 	rb_clone(WG, EdgesList0, DG, EdgeList),
 | |
| 	cvt_wedges(EdgesList0, EdgeList).
 | |
| 
 | |
| cvt_wedges([], []).
 | |
| cvt_wedges([V-WEs|EdgesList0], [V-Es|EdgesList]) :-
 | |
| 	cvt_wneighbs(WEs, Es),
 | |
| 	cvt_wedges(EdgesList0, EdgesList).
 | |
| 
 | |
| cvt_wneighbs([], []).
 | |
| cvt_wneighbs([V-_|WEs], [V|Es]) :-
 | |
| 	cvt_wneighbs(WEs, Es).
 | |
| 
 | |
| dgraph_to_wdgraph(DG, WG) :-
 | |
| 	rb_clone(DG, EdgesList0, WG, EdgesList),
 | |
| 	cvt_edges(EdgesList0, EdgesList).
 | |
| 
 | |
| cvt_edges([], []).
 | |
| cvt_edges([V-Es|EdgesList0], [V-WEs|WEdgeList]) :-
 | |
| 	cvt_neighbs(Es, WEs),
 | |
| 	cvt_edges(EdgesList0, WEdgeList).
 | |
| 
 | |
| cvt_neighbs([], []).
 | |
| cvt_neighbs([V|WEs], [V-1|Es]) :-
 | |
| 	cvt_neighbs(WEs, Es).
 | |
| 
 | |
| wdgraph_neighbors(V, WG, Neighbors) :-
 | |
| 	rb_lookup(V, EdgesList0, WG),
 | |
| 	cvt_wneighbs(EdgesList0, Neighbors).
 | |
| 
 | |
| wdgraph_neighbours(V, WG, Neighbors) :-
 | |
| 	rb_lookup(V, EdgesList0, WG),
 | |
| 	cvt_wneighbs(EdgesList0, Neighbors).
 | |
| 
 | |
| wdgraph_wneighbors(V, WG, Neighbors) :-
 | |
| 	rb_lookup(V, Neighbors, WG).
 | |
| 
 | |
| wdgraph_wneighbours(V, WG, Neighbors) :-
 | |
| 	rb_lookup(V, Neighbors, WG).
 | |
| 
 | |
| wdgraph_transpose(Graph, TGraph) :-
 | |
| 	rb_visit(Graph, Edges),
 | |
| 	rb_clone(Graph, TGraph, NewNodes),
 | |
| 	wtedges(Edges,UnsortedTEdges),
 | |
| 	sort(UnsortedTEdges,TEdges),
 | |
| 	fill_nodes(NewNodes,TEdges).
 | |
| 
 | |
| wtedges([],[]).
 | |
| wtedges([V-Vs|Edges],TEdges) :-
 | |
| 	fill_wtedges(Vs, V, TEdges, TEdges0),
 | |
| 	wtedges(Edges,TEdges0).
 | |
| 
 | |
| fill_wtedges([], _, TEdges, TEdges).
 | |
| fill_wtedges([V1-W|Vs], V, [V1-(V-W)|TEdges], TEdges0) :-
 | |
| 	fill_wtedges(Vs, V, TEdges, TEdges0).
 | |
| 
 | |
| 
 | |
| fill_nodes([],[]).
 | |
| fill_nodes([V-[Child|MoreChildren]|Nodes],[V-Child|Edges]) :- !,
 | |
| 	get_extra_children(Edges,V,MoreChildren,REdges),
 | |
| 	fill_nodes(Nodes,REdges).
 | |
| fill_nodes([_-[]|Edges],TEdges) :-
 | |
| 	fill_nodes(Edges,TEdges).
 | |
| 
 | |
| wdgraph_transitive_closure(G,Closure) :-
 | |
| 	dgraph_edges(G,Edges),
 | |
| 	continue_closure(Edges,G,Closure).
 | |
| 
 | |
| continue_closure([], Closure, Closure) :- !.
 | |
| continue_closure(Edges, G, Closure) :-
 | |
| 	transit_wgraph(Edges,G,NewEdges),
 | |
| 	wdgraph_add_edges(G, NewEdges, GN),
 | |
| 	continue_closure(NewEdges, GN, Closure).
 | |
| 
 | |
| transit_wgraph([],_,[]).
 | |
| transit_wgraph([V-(V1-W)|Edges],G,NewEdges) :-
 | |
| 	rb_lookup(V1, GrandChildren, G),
 | |
| 	transit_wgraph2(GrandChildren, V, W, G, NewEdges, MoreEdges),
 | |
| 	transit_wgraph(Edges, G, MoreEdges).
 | |
| 
 | |
| transit_wgraph2([], _, _, _, NewEdges, NewEdges).
 | |
| transit_wgraph2([GC|GrandChildren], V, W, G, NewEdges, MoreEdges) :-
 | |
| 	is_edge(V,GC,G), !,
 | |
| 	transit_wgraph2(GrandChildren, V, W, G, NewEdges, MoreEdges).
 | |
| transit_wgraph2([GC-W1|GrandChildren], V, W2, G, [V-(GC-W)|NewEdges], MoreEdges) :-
 | |
| 	W is W1+W2,
 | |
| 	transit_wgraph2(GrandChildren, V, W2, G, NewEdges, MoreEdges).
 | |
| 
 | |
| is_edge(V1,V2,G) :-
 | |
| 	rb_lookup(V1,Children,G),
 | |
| 	find_edge(V2-_, Children).
 | |
| 
 | |
| wdgraph_symmetric_closure(G,S) :-
 | |
| 	dgraph_edges(G, WEdges),
 | |
| 	invert_wedges(WEdges, InvertedWEdges),
 | |
| 	wdgraph_add_edges(G, InvertedWEdges, S).
 | |
| 
 | |
| invert_wedges([], []).
 | |
| invert_wedges([V1-(V2-W)|WEdges], [V2-(V1-W)|InvertedWEdges]) :-
 | |
| 	invert_wedges(WEdges, InvertedWEdges).
 | |
| 
 | |
| wdgraph_min_path(V1, V2, WGraph, Path, Cost) :-
 | |
| 	rb_new(Status0),
 | |
| 	rb_lookup(V1, Edges, WGraph),
 | |
| 	rb_insert(Status0, V1, V2, Status),
 | |
| 	empty_heap(H0),
 | |
| 	queue_edges(Edges, V1, 0, H0, H1),
 | |
| 	dijkstra(H1, V2, WGraph, Status, [], EPath),
 | |
| 	backtrace(EPath, V2, [V2], Path, 0, Cost).
 | |
| 
 | |
| wdgraph_max_path(V1, V2, WGraph0, Path, Cost) :-
 | |
| 	rb_clone(WGraph0, Edges0, WGraph, Edges),
 | |
| 	inv_costs(Edges0, Edges),
 | |
| 	wdgraph_min_path(V1, V2, WGraph, Path, NCost),
 | |
| 	Cost is -NCost.
 | |
| 
 | |
| inv_costs([], []).
 | |
| inv_costs([V-Es|Edges0], [V-NEs|Edges]) :-
 | |
| 	inv_costs2(Es,NEs),
 | |
| 	inv_costs(Edges0, Edges).
 | |
| 
 | |
| inv_costs2([],[]).
 | |
| inv_costs2([V-E|Es],[V-NE|NEs]) :-
 | |
| 	NE is -E,
 | |
| 	inv_costs2(Es,NEs).
 | |
| 
 | |
| queue_edges([], _, _, H, H).
 | |
| queue_edges([V-W|Edges], V0, D0, H, NH) :-
 | |
| 	D is W+D0,
 | |
| 	add_to_heap(H, D, e(V0,V,W), HI),
 | |
| 	queue_edges(Edges, V0, D0, HI, NH).
 | |
| 
 | |
| dijkstra(H0, V2, WGraph, Status, Path0, PathF) :-
 | |
| 	get_from_heap(H0, D, e(V0, V, W), H1),
 | |
| 	continue_dijkstra(H1, V2, WGraph, Status, Path0, PathF, D, V0, V, W).
 | |
| 
 | |
| continue_dijkstra(_, V2, _, _, Path0, [e(V0,V2,W)|Path0], _, V0, V, W) :- V == V2, !.
 | |
| continue_dijkstra(H1, V2, WGraph, Status, Path0, PathF, _, _, V, _) :-
 | |
| 	rb_lookup(V, _, Status), !,
 | |
| 	% pick some other node.
 | |
| 	dijkstra(H1, V2, WGraph, Status, Path0, PathF).
 | |
| continue_dijkstra(H1, V2, WGraph, Status0, Path0, PathF, D, V0, V, W) :-
 | |
| 	rb_insert(Status0, V, V0, Status),
 | |
| 	rb_lookup(V, Edges, WGraph),
 | |
| 	queue_edges(Edges, V, D, H1, H2),
 | |
| 	dijkstra(H2, V2, WGraph, Status, [e(V0,V,W)|Path0], PathF).
 | |
| 
 | |
| 
 | |
| backtrace([], _, Path, Path, Cost, Cost).
 | |
| backtrace([e(V0,V,C)|EPath], V1, Path0, Path, Cost0, Cost) :-
 | |
| 	V == V1, !,
 | |
| 	CostI is C+Cost0,
 | |
| 	backtrace(EPath, V0, [V0|Path0], Path, CostI, Cost).
 | |
| backtrace([_|EPath], V1, Path0, Path, Cost0, Cost) :-
 | |
| 	backtrace(EPath, V1, Path0, Path, Cost0, Cost).
 | |
| 
 | |
| 
 | |
| wdgraph_min_paths(V1, WGraph, T) :-
 | |
| 	rb_new(Status0),
 | |
| 	rb_lookup(V1, Edges, WGraph),
 | |
| 	rb_insert(Status0, V1, V1, Status),
 | |
| 	empty_heap(H0),
 | |
| 	queue_edges(Edges, V1, 0, H0, H1),
 | |
| 	dijkstra(H1, WGraph, Status, [], EPath),
 | |
| 	rb_empty(T0),
 | |
| 	wdgraph_add_edges(T0, EPath, T).
 | |
| 
 | |
| 
 | |
| dijkstra(H0, WGraph, Status, Path0, PathF) :-
 | |
| 	get_from_heap(H0, D, e(V0, V, W), H1), !,
 | |
| 	continue_dijkstra(H1, WGraph, Status, Path0, PathF, D, V0, V, W).
 | |
| dijkstra(_, _, _, Path, Path).
 | |
| 
 | |
| continue_dijkstra(H1, WGraph, Status, Path0, PathF, _, _, V, _) :-
 | |
| 	rb_lookup(V, _, Status), !,
 | |
| 	% pick some other node.
 | |
| 	dijkstra(H1, WGraph, Status, Path0, PathF).
 | |
| continue_dijkstra(H1, WGraph, Status0, Path0, PathF, D, V0, V, W) :-
 | |
| 	rb_insert(Status0, V, V0, Status),
 | |
| 	rb_lookup(V, Edges, WGraph),
 | |
| 	queue_edges(Edges, V, D, H1, H2),
 | |
| 	dijkstra(H2, WGraph, Status, [V0-(V-W)|Path0], PathF).
 | |
| 
 | |
| wdgraph_path(V, WG, P) :-
 | |
| 	wdgraph_to_dgraph(WG, G),
 | |
| 	dgraph_path(V, G, P).
 | |
| 
 | |
| wdgraph_reachable(V, G, Edges) :-
 | |
| 	rb_lookup(V, Children, G),
 | |
| 	ord_list_to_rbtree([V-[]],Done0),
 | |
| 	reachable(Children, Done0, _, G, Edges, []).
 | |
| 
 | |
| reachable([], Done, Done, _, Edges, Edges).
 | |
| reachable([V-_|Vertices], Done0, DoneF, G, EdgesF, Edges0) :-
 | |
| 	rb_lookup(V,_, Done0), !,
 | |
| 	reachable(Vertices, Done0, DoneF, G, EdgesF, Edges0).
 | |
| reachable([V-_|Vertices], Done0, DoneF, G, [V|EdgesF], Edges0) :-
 | |
| 	rb_lookup(V, Kids, G),
 | |
| 	rb_insert(Done0, V, [], Done1),
 | |
| 	reachable(Kids, Done1, DoneI, G, EdgesF, EdgesI),
 | |
| 	reachable(Vertices, DoneI, DoneF, G, EdgesI, Edges0).
 | |
| 
 | |
| %% @}
 |