This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/stdpreds.c
Vitor Santos Costa a40fbe420f memory mgmt
2017-09-23 02:17:55 +01:00

1641 lines
42 KiB
C
Executable File

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V. Santos Costa and Universidade do Porto 1985-- *
* *
**************************************************************************
* *
* File: stdpreds.c *
* comments: General-purpose C implemented system predicates *
* *
* Last rev: $Date: 2008-07-24 16:02:00 $,$Author: vsc $
* *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
#define HAS_CACHE_REGS 1
/*
* This file includes the definition of a miscellania of standard predicates
* for yap refering to: Consulting, Executing a C predicate from call,
* Comparisons (both general and numeric), Structure manipulation, Direct
* access to atoms and predicates, Basic support for the debugger
*
* It also includes a table where all C-predicates are initializated
*
*/
#include "Yap.h"
#if YAP_JIT
#include "amijit.h"
#endif
#include "Foreign.h"
#include "YapHeap.h"
#include "Yatom.h"
#include "YapEval.h"
#include "yapio.h"
#ifdef TABLING
#include "tab.macros.h"
#endif /* TABLING */
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <stdio.h>
#if HAVE_STRING_H
#include <string.h>
#endif
#if HAVE_MALLOC_H
#include <malloc.h>
#endif
#if YAP_JIT
#include <JIT_Compiler.hpp>
#endif
#include <fcntl.h>
#include <wchar.h>
extern int init_tries(void);
static Int p_setval(USES_REGS1);
static Int p_value(USES_REGS1);
static Int p_values(USES_REGS1);
#ifdef undefined
static CODEADDR *FindAtom(CODEADDR, int *);
#endif /* undefined */
static Int p_opdec(USES_REGS1);
static Int p_univ(USES_REGS1);
static Int p_abort(USES_REGS1);
#ifdef BEAM
Int p_halt(USES_REGS1);
#else
static Int p_halt(USES_REGS1);
#endif
static Int current_predicate(USES_REGS1);
static Int cont_current_predicate(USES_REGS1);
static OpEntry *NextOp(Prop CACHE_TYPE);
static Int init_current_op(USES_REGS1);
static Int cont_current_op(USES_REGS1);
static Int init_current_atom_op(USES_REGS1);
static Int cont_current_atom_op(USES_REGS1);
static Int TrailMax(void);
static Int GlobalMax(void);
static Int LocalMax(void);
static Int p_statistics_heap_max(USES_REGS1);
static Int p_statistics_global_max(USES_REGS1);
static Int p_statistics_local_max(USES_REGS1);
static Int p_statistics_heap_info(USES_REGS1);
static Int p_statistics_stacks_info(USES_REGS1);
static Int p_statistics_trail_info(USES_REGS1);
static Int p_cputime(USES_REGS1);
static Int p_systime(USES_REGS1);
static Int p_runtime(USES_REGS1);
static Int p_walltime(USES_REGS1);
static Int p_break(USES_REGS1);
#if YAP_JIT
void *(*Yap_JitCall)(JIT_Compiler *jc, yamop *p);
void (*Yap_llvmShutdown)(void);
Int (*Yap_traced_absmi)(void);
static Int p_jit(USES_REGS1) { /* '$set_value'(+Atom,+Atomic) */
void *jit_handle;
if ((jit_handle = Yap_LoadForeignFile(YAP_YAPJITLIB, 0))) {
if (!Yap_CallForeignFile(jit_handle, "init_jit"))
fprintf(stderr, "Could not load JIT\n");
return FALSE;
}
return TRUE;
}
#endif /* YAP_JIT */
#ifdef BEAM
Int use_eam(USES_REGS1);
Int eager_split(USES_REGS1);
Int force_wait(USES_REGS1);
Int commit(USES_REGS1);
Int skip_while_var(USES_REGS1);
Int wait_while_var(USES_REGS1);
Int show_time(USES_REGS1);
Int start_eam(USES_REGS1);
Int cont_eam(USES_REGS1);
extern int EAM;
extern int eam_am(PredEntry *);
extern int showTime(void);
Int start_eam(USES_REGS1) {
if (eam_am((PredEntry *)0x1))
return (TRUE);
else {
cut_fail();
return (FALSE);
}
}
Int cont_eam(USES_REGS1) {
if (eam_am((PredEntry *)0x2))
return (TRUE);
else {
cut_fail();
return (FALSE);
}
}
Int use_eam(USES_REGS1) {
if (EAM)
EAM = 0;
else {
Yap_PutValue(AtomCArith, 0);
EAM = 1;
}
return (TRUE);
}
Int commit(USES_REGS1) {
if (EAM) {
printf("Nao deveria ter sido chamado commit do stdpreds\n");
exit(1);
}
return (TRUE);
}
Int skip_while_var(USES_REGS1) {
if (EAM) {
printf("Nao deveria ter sido chamado skip_while_var do stdpreds\n");
exit(1);
}
return (TRUE);
}
Int wait_while_var(USES_REGS1) {
if (EAM) {
printf("Nao deveria ter sido chamado wait_while_var do stdpreds\n");
exit(1);
}
return (TRUE);
}
Int force_wait(USES_REGS1) {
if (EAM) {
printf("Nao deveria ter sido chamado force_wait do stdpreds\n");
exit(1);
}
return (TRUE);
}
Int eager_split(USES_REGS1) {
if (EAM) {
printf("Nao deveria ter sido chamado eager_split do stdpreds\n");
exit(1);
}
return (TRUE);
}
Int show_time(USES_REGS1) /* MORE PRECISION */
{
return (showTime());
}
#endif /* BEAM */
/**
@defgroup YAPSetVal Atom to Atomic Family of Built-ins.
@ingroup Internal_Database
@{
Maintain a light-weight map where the key is an atom, and the value can be
any constant.
*/
/** @pred set_value(+ _A_,+ _C_)
Associate atom _A_ with constant _C_.
The `set_value` and `get_value` built-ins give a fast alternative to
the internal data-base. This is a simple form of implementing a global
counter.
~~~~~
read_and_increment_counter(Value) :-
get_value(counter, Value),
Value1 is Value+1,
set_value(counter, Value1).
~~~~~
This predicate is YAP specific.
*/
static Int p_setval(USES_REGS1) { /* '$set_value'(+Atom,+Atomic) */
Term t1 = Deref(ARG1), t2 = Deref(ARG2);
if (!IsVarTerm(t1) && IsAtomTerm(t1) &&
(!IsVarTerm(t2) && (IsAtomTerm(t2) || IsNumTerm(t2)))) {
Yap_PutValue(AtomOfTerm(t1), t2);
return (TRUE);
}
return (FALSE);
}
/** @pred get_value(+ _A_,- _V_)
In YAP, atoms can be associated with constants. If one such
association exists for atom _A_, unify the second argument with the
constant. Otherwise, unify _V_ with `[]`.
This predicate is YAP specific.
*/
static Int p_value(USES_REGS1) { /* '$get_value'(+Atom,?Val) */
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "get_value/2");
return (FALSE);
}
if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1, "get_value/2");
return (FALSE);
}
return (Yap_unify_constant(ARG2, Yap_GetValue(AtomOfTerm(t1))));
}
static Int p_values(USES_REGS1) { /* '$values'(Atom,Old,New) */
Term t1 = Deref(ARG1), t3 = Deref(ARG3);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "set_value/2");
return (FALSE);
}
if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1, "set_value/2");
return (FALSE);
}
if (!Yap_unify_constant(ARG2, Yap_GetValue(AtomOfTerm(t1)))) {
return (FALSE);
}
if (!IsVarTerm(t3)) {
if (IsAtomTerm(t3) || IsNumTerm(t3)) {
Yap_PutValue(AtomOfTerm(t1), t3);
} else
return (FALSE);
}
return (TRUE);
}
///@}
static Int p_opdec(USES_REGS1) { /* '$opdec'(p,type,atom) */
/* we know the arguments are integer, atom, atom */
Term p = Deref(ARG1), t = Deref(ARG2), at = Deref(ARG3);
Term tmod = Deref(ARG4);
if (tmod == TermProlog) {
tmod = PROLOG_MODULE;
}
return Yap_OpDec((int)IntOfTerm(p), (char *)RepAtom(AtomOfTerm(t))->StrOfAE,
AtomOfTerm(at), tmod);
}
#ifdef NO_STRTOD
#if HAVE_CTYPE_H
#include <ctype.h>
#endif
double strtod(s, pe) char *s, **pe;
{
double r = atof(s);
*pe = s;
while (*s == ' ') {
++s;
}
if (*s == '+' || *s == '-') {
++s;
}
if (!isdigit(*s)) {
return (r);
}
while (isdigit(*s)) {
++s;
}
if (*s == '.') {
++s;
}
while (isdigit(*s)) {
++s;
}
if (*s == 'e' || *s == 'E') {
++s;
}
if (*s == '+' || *s == '-') {
++s;
}
while (isdigit(*s)) {
++s;
}
*pe = s;
return (r);
}
#else
#include <stdlib.h>
#endif
#ifndef INFINITY
#define INFINITY (1.0 / 0.0)
#endif
static UInt runtime(USES_REGS1) {
return (Yap_cputime() - Yap_total_gc_time() - Yap_total_stack_shift_time());
}
/* $runtime(-SinceInterval,-SinceStart) */
static Int p_runtime(USES_REGS1) {
Int now, interval, gc_time, ss_time;
Term tnow, tinterval;
Yap_cputime_interval(&now, &interval);
gc_time = Yap_total_gc_time();
now -= gc_time;
ss_time = Yap_total_stack_shift_time();
now -= ss_time;
interval -= (gc_time - LOCAL_LastGcTime) + (ss_time - LOCAL_LastSSTime);
LOCAL_LastGcTime = gc_time;
LOCAL_LastSSTime = ss_time;
tnow = MkIntegerTerm(now);
tinterval = MkIntegerTerm(interval);
return (Yap_unify_constant(ARG1, tnow) &&
Yap_unify_constant(ARG2, tinterval));
}
/* $cputime(-SinceInterval,-SinceStart) */
static Int p_cputime(USES_REGS1) {
Int now, interval;
Yap_cputime_interval(&now, &interval);
return (Yap_unify_constant(ARG1, MkIntegerTerm(now)) &&
Yap_unify_constant(ARG2, MkIntegerTerm(interval)));
}
static Int p_systime(USES_REGS1) {
Int now, interval;
Yap_systime_interval(&now, &interval);
return (Yap_unify_constant(ARG1, MkIntegerTerm(now)) &&
Yap_unify_constant(ARG2, MkIntegerTerm(interval)));
}
static Int p_walltime(USES_REGS1) {
uint64_t now, interval;
uint64_t t = Yap_walltime();
now = t - Yap_StartOfWTimes;
interval = t - LOCAL_LastWTime;
return (Yap_unify_constant(ARG1, MkIntegerTerm(now / 1000)) &&
Yap_unify_constant(ARG2, MkIntegerTerm(interval / 1000)));
}
static Int p_univ(USES_REGS1) { /* A =.. L */
unsigned int arity;
register Term tin;
Term twork, t2;
Atom at;
tin = Deref(ARG1);
t2 = Deref(ARG2);
if (IsVarTerm(tin)) {
/* we need to have a list */
Term *Ar;
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "(=..)/2");
return (FALSE);
}
if (!IsPairTerm(t2)) {
if (t2 == TermNil)
Yap_Error(DOMAIN_ERROR_NON_EMPTY_LIST, t2, "(=..)/2");
else
Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2");
return (FALSE);
}
twork = HeadOfTerm(t2);
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2");
return (FALSE);
}
if (IsNumTerm(twork)) {
Term tt = TailOfTerm(t2);
if (IsVarTerm(tt)) {
Yap_Error(INSTANTIATION_ERROR, tt, "(=..)/2");
return (FALSE);
}
if (tt != MkAtomTerm(AtomNil)) {
Yap_Error(TYPE_ERROR_ATOMIC, twork, "(=..)/2");
return (FALSE);
}
return (Yap_unify_constant(ARG1, twork));
}
if (!IsAtomTerm(twork)) {
Term tt = TailOfTerm(t2);
if (IsVarTerm(tt)) {
Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2");
return (FALSE);
} else if (tt == MkAtomTerm(AtomNil)) {
Yap_Error(TYPE_ERROR_ATOMIC, twork, "(=..)/2");
return (FALSE);
} else {
Yap_Error(TYPE_ERROR_ATOM, twork, "(=..)/2");
return (FALSE);
}
}
at = AtomOfTerm(twork);
twork = TailOfTerm(t2);
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2");
return (FALSE);
} else if (!IsPairTerm(twork)) {
if (twork != TermNil) {
Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2");
return (FALSE);
}
return (Yap_unify_constant(ARG1, MkAtomTerm(at)));
}
build_compound:
/* build the term directly on the heap */
Ar = HR;
HR++;
while (!IsVarTerm(twork) && IsPairTerm(twork)) {
*HR++ = HeadOfTerm(twork);
if (HR > ASP - 1024) {
/* restore space */
HR = Ar;
if (!Yap_gcl((ASP - HR) * sizeof(CELL), 2, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage);
return FALSE;
}
twork = TailOfTerm(Deref(ARG2));
goto build_compound;
}
twork = TailOfTerm(twork);
}
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2");
return (FALSE);
}
if (twork != TermNil) {
Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2");
return (FALSE);
}
#ifdef SFUNC
DOES_NOT_WORK();
{
SFEntry *pe = (SFEntry *)Yap_GetAProp(at, SFProperty);
if (pe)
twork = MkSFTerm(Yap_MkFunctor(at, SFArity), arity, CellPtr(TR),
pe->NilValue);
else
twork = Yap_MkApplTerm(Yap_MkFunctor(at, arity), arity, CellPtr(TR));
}
#else
arity = HR - Ar - 1;
if (at == AtomDot && arity == 2) {
Ar[0] = Ar[1];
Ar[1] = Ar[2];
HR--;
twork = AbsPair(Ar);
} else {
*Ar = (CELL)(Yap_MkFunctor(at, arity));
twork = AbsAppl(Ar);
}
#endif
return (Yap_unify(ARG1, twork));
}
if (IsAtomicTerm(tin)) {
twork = MkPairTerm(tin, MkAtomTerm(AtomNil));
return (Yap_unify(twork, ARG2));
}
if (IsRefTerm(tin))
return (FALSE);
if (IsApplTerm(tin)) {
Functor fun = FunctorOfTerm(tin);
if (IsExtensionFunctor(fun)) {
twork = MkPairTerm(tin, MkAtomTerm(AtomNil));
return (Yap_unify(twork, ARG2));
}
arity = ArityOfFunctor(fun);
at = NameOfFunctor(fun);
#ifdef SFUNC
if (arity == SFArity) {
CELL *p = CellPtr(TR);
CELL *q = ArgsOfSFTerm(tin);
int argno = 1;
while (*q) {
while (*q > argno++)
*p++ = MkVarTerm();
++q;
*p++ = Deref(*q++);
}
twork = Yap_ArrayToList(CellPtr(TR), argno - 1);
while (IsIntTerm(twork)) {
if (!Yap_gc(2, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage);
return (FALSE);
}
twork = Yap_ArrayToList(CellPtr(TR), argno - 1);
}
} else
#endif
{
while (HR + arity * 2 > ASP - 1024) {
if (!Yap_gcl((arity * 2) * sizeof(CELL), 2, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage);
return (FALSE);
}
tin = Deref(ARG1);
}
twork = Yap_ArrayToList(RepAppl(tin) + 1, arity);
}
} else {
/* We found a list */
at = AtomDot;
twork = Yap_ArrayToList(RepPair(tin), 2);
}
twork = MkPairTerm(MkAtomTerm(at), twork);
return (Yap_unify(ARG2, twork));
}
static Int p_abort(USES_REGS1) { /* abort */
/* make sure we won't go creeping around */
Yap_Error(ABORT_EVENT, TermNil, "");
return (FALSE);
}
#ifdef BEAM
extern void exit_eam(char *s);
Int
#else
static Int
#endif
p_halt(USES_REGS1) { /* halt */
Term t = Deref(ARG1);
Int out;
#ifdef BEAM
if (EAM)
exit_eam("\n\n[ Prolog execution halted ]\n");
#endif
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "halt/1");
return (FALSE);
}
if (!IsIntegerTerm(t)) {
Yap_Error(TYPE_ERROR_INTEGER, t, "halt/1");
return (FALSE);
}
out = IntegerOfTerm(t);
#if YAP_JIT
if (ExpEnv.analysis_struc.stats_enabled ||
ExpEnv.analysis_struc.time_pass_enabled) {
if (strcmp(((char *)ExpEnv.analysis_struc.outfile), "STDERR")) {
int stderrcopy = dup(2);
if (strcmp(((char *)ExpEnv.analysis_struc.outfile), "STDOUT") == 0) {
dup2(1, 2);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-function-declaration"
shutdown_llvm();
#pragma GCC diagnostic pop
dup2(stderrcopy, 2);
} else {
int Outputfile = open(((char *)ExpEnv.analysis_struc.outfile),
O_CREAT | O_APPEND | O_WRONLY, 0777);
if (Outputfile < 0) {
fprintf(stderr,
"Error:: I can not write analysis passes's output on %s...\n",
((char *)ExpEnv.analysis_struc.outfile));
fprintf(stderr, " %s...\n", strerror(errno));
errno = 0;
exit(1);
}
dup2(Outputfile, 2);
shutdown_llvm();
close(Outputfile);
dup2(stderrcopy, 2);
}
close(stderrcopy);
} else
shutdown_llvm();
}
#endif
Yap_exit(out);
return TRUE;
}
static bool valid_prop(Prop p, Term task) {
PredEntry *pe = RepPredProp(p);
if ((pe->PredFlags & HiddenPredFlag) || (pe->OpcodeOfPred == UNDEF_OPCODE)) {
return false;
}
if (task == TermSystem || task == TermProlog) {
return pe->PredFlags & StandardPredFlag;
}
if (task == TermUser) {
return !(pe->PredFlags & StandardPredFlag);
}
if (IsVarTerm(task)) {
return true;
}
return false;
}
static PropEntry *followLinkedListOfProps(PropEntry *p, Term task) {
while (p) {
if (p->KindOfPE == PEProp && valid_prop(p, task)) {
// found our baby..
return p;
}
p = p->NextOfPE;
}
return NIL;
}
static PropEntry *getPredProp(PropEntry *p, Term task) {
if (p == NIL)
return NIL;
while (p != NIL) {
if (p->KindOfPE == PEProp && valid_prop(p, task)) {
return p;
} else if (p->KindOfPE == FunctorProperty) {
// first search remainder of functor list
Prop pf;
if ((pf = followLinkedListOfProps(RepFunctorProp(p)->PropsOfFE, task))) {
return pf;
}
}
p = p->NextOfPE;
}
return NIL;
}
static PropEntry *nextPredForAtom(PropEntry *p, Term task) {
PredEntry *pe;
if (p == NIL)
return NIL;
pe = RepPredProp(p);
if (pe->ArityOfPE == 0 ||
(pe->PredFlags & (NumberDBPredFlag | AtomDBPredFlag))) {
// if atom prop, search atom list
return followLinkedListOfProps(p->NextOfPE, task);
} else {
FunctorEntry *f = pe->FunctorOfPred;
// first search remainder of functor list
PropEntry *pf;
if ((pf = followLinkedListOfProps(p->NextOfPE, task))) {
return pf;
}
// if that fails, follow the functor
return getPredProp(f->NextOfPE, task);
}
}
static Prop initFunctorSearch(Term t3, Term t2, Term task) {
if (IsAtomTerm(t3)) {
Atom at = AtomOfTerm(t3);
// access the entry at key address.
return followLinkedListOfProps(RepAtom(at)->PropsOfAE, task);
} else if (IsIntTerm(t3)) {
if (IsNonVarTerm(t2) && t2 != IDB_MODULE) {
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
return NULL;
} else {
Prop p;
// access the entry at key address.
// a single property (this will be deterministic
p = AbsPredProp(Yap_FindLUIntKey(IntOfTerm(t3)));
if (valid_prop(p, task))
return p;
}
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
return NULL;
} else {
Functor f;
if (IsPairTerm(t3)) {
f = FunctorDot;
} else {
f = FunctorOfTerm(t3);
if (IsExtensionFunctor(f)) {
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
return NULL;
}
}
return followLinkedListOfProps(f->PropsOfFE, task);
}
}
static PredEntry *firstModulePred(PredEntry *npp, Term task) {
if (!npp)
return NULL;
do {
npp = npp->NextPredOfModule;
} while (npp && !valid_prop(AbsPredProp(npp), task));
return npp;
}
static PredEntry *firstModulesPred(PredEntry *npp, ModEntry *m, Term task) {
do {
while (npp && !valid_prop(AbsPredProp(npp), task))
npp = npp->NextPredOfModule;
if (npp)
return npp;
m = m->NextME;
if (m) {
npp = m->PredForME;
} else
return NULL;
} while (npp || m);
return npp;
}
static Int cont_current_predicate(USES_REGS1) {
UInt Arity;
Term name, task;
Term t1 = ARG1, t2 = Deref(ARG2), t3 = ARG3;
bool rc, will_cut = false;
Functor f;
PredEntry *pp;
t1 = Yap_YapStripModule(t1, &t2);
t3 = Yap_YapStripModule(t3, &t2);
t1 = Deref(t1);
t2 = Deref(t2);
task = Deref(ARG4);
pp = AddressOfTerm(EXTRA_CBACK_ARG(4, 1));
if (IsNonVarTerm(t3)) {
PropEntry *np, *p;
if (IsNonVarTerm(t2)) {
// module and functor known, should be easy
if (IsAtomTerm(t3)) {
if ((p = Yap_GetPredPropByAtom(AtomOfTerm(t3), t2)) &&
valid_prop(p, task)) {
cut_succeed();
} else {
cut_fail();
}
} else {
if ((p = Yap_GetPredPropByFunc(FunctorOfTerm(t3), t2)) &&
valid_prop(p, task)) {
cut_succeed();
} else {
cut_fail();
}
}
}
// t3 is a functor, or compound term,
// just follow the functor chain
p = AbsPredProp(pp);
if (!p) {
// initial search, tracks down what is the first call with
// that name, functor..
p = initFunctorSearch(t3, t2, task);
// now, we can do lookahead.
if (p == NIL)
cut_fail();
pp = RepPredProp(p);
}
np = followLinkedListOfProps(p->NextOfPE, task);
Term mod = pp->ModuleOfPred;
if (mod == PROLOG_MODULE)
mod = TermProlog;
bool b = Yap_unify(t2, mod);
if (!np) {
if (b)
cut_succeed();
else
cut_fail();
} else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(RepPredProp(np));
B->cp_h = HR;
return b;
}
} else if (IsNonVarTerm(t1)) {
PropEntry *np, *p;
// run over the same atom any predicate defined for that atom
// may be fair bait, depends on whether we know the module.
p = AbsPredProp(pp);
if (!p) {
// initialization time
if (IsIntTerm(t1)) {
// or this or nothing....
p = AbsPredProp(Yap_FindLUIntKey(IntOfTerm(t3)));
} else if (IsAtomTerm(t1)) {
// should be the usual situation.
Atom at = AtomOfTerm(t1);
p = getPredProp(RepAtom(at)->PropsOfAE, task);
} else {
Yap_Error(TYPE_ERROR_CALLABLE, t1, "current_predicate/2");
return false;
}
if (!p)
cut_fail();
pp = RepPredProp(p);
}
// now, we can do lookahead.
np = nextPredForAtom(p, task);
if (!np)
will_cut = true;
else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(RepPredProp(np));
B->cp_h = HR;
}
} else if (IsNonVarTerm(t2)) {
// operating within the same module.
PredEntry *npp;
if (!pp) {
if (!IsAtomTerm(t2)) {
Yap_Error(TYPE_ERROR_ATOM, t2, "module name");
}
ModEntry *m = Yap_GetModuleEntry(t2);
pp = m->PredForME;
while (pp && !valid_prop(AbsPredProp(pp), task)) {
pp = pp->NextPredOfModule;
}
if (!pp) {
/* try Prolog Module */
cut_fail();
}
}
npp = firstModulePred(pp, task);
if (!npp) {
will_cut = true;
}
// just try next one
else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(npp);
B->cp_h = HR;
}
} else {
// operating across all modules.
PredEntry *npp = pp;
ModEntry *me;
if (!pp) {
pp = firstModulesPred(CurrentModules->PredForME, CurrentModules, task);
}
if (!pp)
cut_fail();
if (pp->ModuleOfPred == PROLOG_MODULE)
me = Yap_GetModuleEntry(TermProlog);
else
me = Yap_GetModuleEntry(pp->ModuleOfPred);
npp = firstModulesPred(pp->NextPredOfModule, me, task);
if (!npp)
will_cut = true;
// just try next module.
else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(npp);
B->cp_h = HR;
}
}
if (pp->ModuleOfPred != IDB_MODULE) {
f = pp->FunctorOfPred;
Arity = pp->ArityOfPE;
if (Arity)
name = MkAtomTerm(NameOfFunctor(f));
else
name = MkAtomTerm((Atom)f);
} else {
if (pp->PredFlags & NumberDBPredFlag) {
name = MkIntegerTerm(pp->src.IndxId);
Arity = 0;
} else if (pp->PredFlags & AtomDBPredFlag) {
f = pp->FunctorOfPred;
name = MkAtomTerm((Atom)f);
Arity = 0;
} else {
f = pp->FunctorOfPred;
name = MkAtomTerm(NameOfFunctor(f));
Arity = ArityOfFunctor(pp->FunctorOfPred);
}
}
if (Arity) {
rc = Yap_unify(ARG3, Yap_MkNewApplTerm(f, Arity));
} else {
rc = Yap_unify(ARG3, name);
}
rc = rc && (IsAtomTerm(t2) || Yap_unify(ARG2, ModToTerm(pp->ModuleOfPred))) &&
Yap_unify(ARG1, name);
if (will_cut) {
if (rc)
cut_succeed();
cut_fail();
}
return rc;
}
static Int current_predicate(USES_REGS1) {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(NULL);
// ensure deref access to choice-point fields.
return cont_current_predicate(PASS_REGS1);
}
static OpEntry *NextOp(Prop pp USES_REGS) {
while (!EndOfPAEntr(pp) &&
pp->KindOfPE != OpProperty &&
(RepOpProp(pp)->OpModule != PROLOG_MODULE || RepOpProp(pp)->OpModule != CurrentModule)
)
pp = pp->NextOfPE;
return RepOpProp(pp);
}
int Yap_IsOp(Atom at) {
CACHE_REGS
OpEntry *op = NextOp(RepAtom(at)->PropsOfAE PASS_REGS);
return (!EndOfPAEntr(op));
}
int Yap_IsOpMaxPrio(Atom at) {
CACHE_REGS
OpEntry *op = NextOp(RepAtom(at)->PropsOfAE PASS_REGS);
int max;
if (EndOfPAEntr(op))
return 0;
max = (op->Prefix & 0xfff);
if ((op->Infix & 0xfff) > max)
max = op->Infix & 0xfff;
if ((op->Posfix & 0xfff) > max)
max = op->Posfix & 0xfff;
return max;
}
static Int unify_op(OpEntry *op USES_REGS) {
Term tmod = op->OpModule;
if (tmod == PROLOG_MODULE)
tmod = TermProlog;
return Yap_unify_constant(ARG2, tmod) &&
Yap_unify_constant(ARG3, MkIntegerTerm(op->Prefix)) &&
Yap_unify_constant(ARG4, MkIntegerTerm(op->Infix)) &&
Yap_unify_constant(ARG5, MkIntegerTerm(op->Posfix));
}
static Int cont_current_op(USES_REGS1) {
OpEntry *op = (OpEntry *)IntegerOfTerm(EXTRA_CBACK_ARG(5, 1)), *next;
READ_LOCK(op->OpRWLock);
next = op->OpNext;
if (Yap_unify_constant(ARG1, MkAtomTerm(op->OpName)) &&
unify_op(op PASS_REGS)) {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next);
B->cp_h = HR;
return TRUE;
} else {
cut_succeed();
}
} else {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next);
B->cp_h = HR;
return FALSE;
} else {
cut_fail();
}
}
}
static Int init_current_op(
USES_REGS1) { /* current_op(-Precedence,-Type,-Atom) */
EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)OpList);
B->cp_h = HR;
return cont_current_op(PASS_REGS1);
}
static Int cont_current_atom_op(USES_REGS1) {
OpEntry *op = (OpEntry *)IntegerOfTerm(EXTRA_CBACK_ARG(5, 1)), *next;
READ_LOCK(op->OpRWLock);
next = NextOp(op->NextOfPE PASS_REGS);
if (unify_op(op PASS_REGS)) {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next);
B->cp_h = HR;
return TRUE;
} else {
cut_succeed();
}
} else {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next);
B->cp_h = HR;
return FALSE;
} else {
cut_fail();
}
}
}
static Int init_current_atom_op(
USES_REGS1) { /* current_op(-Precedence,-Type,-Atom) */
Term t = Deref(ARG1);
AtomEntry *ae;
OpEntry *ope;
if (IsVarTerm(t) || !IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM, t, "current_op/3");
cut_fail();
}
ae = RepAtom(AtomOfTerm(t));
if (EndOfPAEntr((ope = NextOp(ae->PropsOfAE PASS_REGS)))) {
cut_fail();
}
EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((Int)ope);
B->cp_h = HR;
return cont_current_atom_op(PASS_REGS1);
}
#if 0
static Int
copy_local_ops(USES_REGS1) { /* current_op(-Precedence,-Type,-Atom) */
Term tmodin = Deref(ARG1);
Term t = Deref(ARG1);
AtomEntry *ae;
OpEntry *ope;
if (IsVarTerm(t) || !IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM, t, "current_op/3");
cut_fail();
}
ae = RepAtom(AtomOfTerm(t));
if (EndOfPAEntr((ope = NextOp(ae->PropsOfAE PASS_REGS)))) {
cut_fail();
}
EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((Int)ope);
B->cp_h = HR;
return cont_current_atom_op(PASS_REGS1);
}
#endif
void Yap_show_statistics(void) {
CACHE_REGS
unsigned long int heap_space_taken;
double frag;
#if USE_SYSTEM_MALLOC && HAVE_MALLINFO
struct mallinfo mi = mallinfo();
heap_space_taken = (mi.arena + mi.hblkhd) - Yap_HoleSize;
#else
heap_space_taken =
(unsigned long int)(Unsigned(HeapTop) - Unsigned(Yap_HeapBase)) -
Yap_HoleSize;
#endif
frag = (100.0 * (heap_space_taken - HeapUsed)) / heap_space_taken;
fprintf(stderr, "Code Space: " UInt_FORMAT " (" UInt_FORMAT
" bytes needed, " UInt_FORMAT " bytes used, "
"fragmentation %.3f%%).\n",
Unsigned(H0) - Unsigned(Yap_HeapBase),
Unsigned(HeapTop) - Unsigned(Yap_HeapBase), Unsigned(HeapUsed), frag);
fprintf(stderr, "Stack Space: " UInt_FORMAT " (" UInt_FORMAT
" for Global, " UInt_FORMAT " for local).\n",
Unsigned(sizeof(CELL) * (LCL0 - H0)),
Unsigned(sizeof(CELL) * (HR - H0)),
Unsigned(sizeof(CELL) * (LCL0 - ASP)));
fprintf(
stderr, "Trail Space: " UInt_FORMAT " (" UInt_FORMAT " used).\n",
Unsigned(sizeof(tr_fr_ptr) *
(Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase))),
Unsigned(sizeof(tr_fr_ptr) * (Unsigned(TR) - Unsigned(LOCAL_TrailBase))));
fprintf(stderr, "Runtime: " UInt_FORMAT "\n", runtime(PASS_REGS1));
fprintf(stderr, "Cputime: " UInt_FORMAT "\n", Yap_cputime());
fprintf(stderr, "Walltime: %" PRIu64 ".\n", Yap_walltime() / (UInt)1000);
}
static Int p_statistics_heap_max(USES_REGS1) {
Term tmax = MkIntegerTerm(HeapMax);
return (Yap_unify(tmax, ARG1));
}
/* The results of the next routines are not to be trusted too */
/* much. Basically, any stack shifting will seriously confuse the */
/* results */
static Int TrailTide = -1, LocalTide = -1, GlobalTide = -1;
/* maximum Trail usage */
static Int TrailMax(void) {
CACHE_REGS
Int i;
Int TrWidth = Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase);
CELL *pt;
if (TrailTide != TrWidth) {
pt = (CELL *)TR;
while (pt + 2 < (CELL *)LOCAL_TrailTop) {
if (pt[0] == 0 && pt[1] == 0 && pt[2] == 0)
break;
else
pt++;
}
if (pt + 2 < (CELL *)LOCAL_TrailTop)
i = Unsigned(pt) - Unsigned(LOCAL_TrailBase);
else
i = TrWidth;
} else
return (TrWidth);
if (TrailTide > i)
i = TrailTide;
else
TrailTide = i;
return (i);
}
static Int p_statistics_trail_max(USES_REGS1) {
Term tmax = MkIntegerTerm(TrailMax());
return (Yap_unify(tmax, ARG1));
}
/* maximum Global usage */
static Int GlobalMax(void) {
CACHE_REGS
Int i;
Int StkWidth = Unsigned(LCL0) - Unsigned(H0);
CELL *pt;
if (GlobalTide != StkWidth) {
pt = HR;
while (pt + 2 < ASP) {
if (pt[0] == 0 && pt[1] == 0 && pt[2] == 0)
break;
else
pt++;
}
if (pt + 2 < ASP)
i = Unsigned(pt) - Unsigned(H0);
else
/* so that both Local and Global have reached maximum width */
GlobalTide = LocalTide = i = StkWidth;
} else
return (StkWidth);
if (GlobalTide > i)
i = GlobalTide;
else
GlobalTide = i;
return (i);
}
static Int p_statistics_global_max(USES_REGS1) {
Term tmax = MkIntegerTerm(GlobalMax());
return (Yap_unify(tmax, ARG1));
}
static Int LocalMax(void) {
CACHE_REGS
Int i;
Int StkWidth = Unsigned(LCL0) - Unsigned(H0);
CELL *pt;
if (LocalTide != StkWidth) {
pt = LCL0;
while (pt - 3 > HR) {
if (pt[-1] == 0 && pt[-2] == 0 && pt[-3] == 0)
break;
else
--pt;
}
if (pt - 3 > HR)
i = Unsigned(LCL0) - Unsigned(pt);
else
/* so that both Local and Global have reached maximum width */
GlobalTide = LocalTide = i = StkWidth;
} else
return (StkWidth);
if (LocalTide > i)
i = LocalTide;
else
LocalTide = i;
return (i);
}
static Int p_statistics_local_max(USES_REGS1) {
Term tmax = MkIntegerTerm(LocalMax());
return (Yap_unify(tmax, ARG1));
}
static Int p_statistics_heap_info(USES_REGS1) {
Term tusage = MkIntegerTerm(HeapUsed);
#if USE_SYSTEM_MALLOC && HAVE_MALLINFO
struct mallinfo mi = mallinfo();
UInt sstack = Yap_HoleSize + (LOCAL_TrailTop - LOCAL_GlobalBase);
UInt mmax = (mi.arena + mi.hblkhd);
Term tmax = MkIntegerTerm(mmax - sstack);
tusage = MkIntegerTerm(mmax - (mi.fordblks + sstack));
#else
Term tmax = MkIntegerTerm((LOCAL_GlobalBase - Yap_HeapBase) - Yap_HoleSize);
#endif
return (Yap_unify(tmax, ARG1) && Yap_unify(tusage, ARG2));
}
static Int p_statistics_stacks_info(USES_REGS1) {
Term tmax = MkIntegerTerm(Unsigned(LCL0) - Unsigned(H0));
Term tgusage = MkIntegerTerm(Unsigned(HR) - Unsigned(H0));
Term tlusage = MkIntegerTerm(Unsigned(LCL0) - Unsigned(ASP));
return (Yap_unify(tmax, ARG1) && Yap_unify(tgusage, ARG2) &&
Yap_unify(tlusage, ARG3));
}
static Int p_statistics_trail_info(USES_REGS1) {
Term tmax =
MkIntegerTerm(Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase));
Term tusage = MkIntegerTerm(Unsigned(TR) - Unsigned(LOCAL_TrailBase));
return (Yap_unify(tmax, ARG1) && Yap_unify(tusage, ARG2));
}
static Int p_statistics_atom_info(USES_REGS1) {
UInt count = 0, spaceused = 0, i;
for (i = 0; i < AtomHashTableSize; i++) {
Atom catom;
READ_LOCK(HashChain[i].AERWLock);
catom = HashChain[i].Entry;
if (catom != NIL) {
READ_LOCK(RepAtom(catom)->ARWLock);
}
READ_UNLOCK(HashChain[i].AERWLock);
while (catom != NIL) {
Atom ncatom;
count++;
spaceused +=
sizeof(AtomEntry) + strlen((char *)RepAtom(catom)->StrOfAE) + 1;
ncatom = RepAtom(catom)->NextOfAE;
if (ncatom != NIL) {
READ_LOCK(RepAtom(ncatom)->ARWLock);
}
READ_UNLOCK(RepAtom(catom)->ARWLock);
catom = ncatom;
}
}
for (i = 0; i < WideAtomHashTableSize; i++) {
Atom catom;
READ_LOCK(WideHashChain[i].AERWLock);
catom = WideHashChain[i].Entry;
if (catom != NIL) {
READ_LOCK(RepAtom(catom)->ARWLock);
}
READ_UNLOCK(WideHashChain[i].AERWLock);
while (catom != NIL) {
Atom ncatom;
count++;
spaceused +=
sizeof(AtomEntry) +
sizeof(wchar_t) * (wcslen((wchar_t *)(RepAtom(catom)->StrOfAE) + 1));
ncatom = RepAtom(catom)->NextOfAE;
if (ncatom != NIL) {
READ_LOCK(RepAtom(ncatom)->ARWLock);
}
READ_UNLOCK(RepAtom(catom)->ARWLock);
catom = ncatom;
}
}
return Yap_unify(ARG1, MkIntegerTerm(count)) &&
Yap_unify(ARG2, MkIntegerTerm(spaceused));
}
static Int p_statistics_db_size(USES_REGS1) {
Term t = MkIntegerTerm(Yap_ClauseSpace);
Term tit = MkIntegerTerm(Yap_IndexSpace_Tree);
Term tis = MkIntegerTerm(Yap_IndexSpace_SW);
Term tie = MkIntegerTerm(Yap_IndexSpace_EXT);
return Yap_unify(t, ARG1) && Yap_unify(tit, ARG2) && Yap_unify(tis, ARG3) &&
Yap_unify(tie, ARG4);
}
static Int p_statistics_lu_db_size(USES_REGS1) {
Term t = MkIntegerTerm(Yap_LUClauseSpace);
Term tit = MkIntegerTerm(Yap_LUIndexSpace_Tree);
Term tic = MkIntegerTerm(Yap_LUIndexSpace_CP);
Term tix = MkIntegerTerm(Yap_LUIndexSpace_EXT);
Term tis = MkIntegerTerm(Yap_LUIndexSpace_SW);
return Yap_unify(t, ARG1) && Yap_unify(tit, ARG2) && Yap_unify(tic, ARG3) &&
Yap_unify(tis, ARG4) && Yap_unify(tix, ARG5);
}
static Int p_executable(USES_REGS1) {
if (GLOBAL_argv && GLOBAL_argv[0])
Yap_findFile(GLOBAL_argv[0], NULL, NULL, LOCAL_FileNameBuf, true, YAP_EXE,
true, true);
else
strncpy(LOCAL_FileNameBuf, Yap_FindExecutable(), YAP_FILENAME_MAX - 1);
return Yap_unify(MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)), ARG1);
}
static Int p_system_mode(USES_REGS1) {
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
if (LOCAL_PrologMode & SystemMode)
return Yap_unify(t1, MkAtomTerm(AtomTrue));
else
return Yap_unify(t1, MkAtomTerm(AtomFalse));
} else {
Atom at = AtomOfTerm(t1);
if (at == AtomFalse)
LOCAL_PrologMode &= ~SystemMode;
else
LOCAL_PrologMode |= SystemMode;
}
return TRUE;
}
static Int p_lock_system(USES_REGS1) {
LOCK(GLOBAL_BGL);
return TRUE;
}
static Int p_unlock_system(USES_REGS1) {
UNLOCK(GLOBAL_BGL);
return TRUE;
}
static Int enter_undefp(USES_REGS1) {
if (LOCAL_DoingUndefp) {
return FALSE;
}
LOCAL_DoingUndefp = TRUE;
return TRUE;
}
static Int exit_undefp(USES_REGS1) {
if (LOCAL_DoingUndefp) {
LOCAL_DoingUndefp = FALSE;
return TRUE;
}
return FALSE;
}
#ifdef DEBUG
extern void DumpActiveGoals(void);
static Int p_dump_active_goals(USES_REGS1) {
DumpActiveGoals();
return (TRUE);
}
#endif
#ifdef INES
static Int p_euc_dist(USES_REGS1) {
Term t1 = Deref(ARG1);
Term t2 = Deref(ARG2);
double d1 = (double)(IntegerOfTerm(ArgOfTerm(1, t1)) -
IntegerOfTerm(ArgOfTerm(1, t2)));
double d2 = (double)(IntegerOfTerm(ArgOfTerm(2, t1)) -
IntegerOfTerm(ArgOfTerm(2, t2)));
double d3 = (double)(IntegerOfTerm(ArgOfTerm(3, t1)) -
IntegerOfTerm(ArgOfTerm(3, t2)));
Int result = (Int)sqrt(d1 * d1 + d2 * d2 + d3 * d3);
return (Yap_unify(ARG3, MkIntegerTerm(result)));
}
volatile int loop_counter = 0;
static Int p_loop(USES_REGS1) {
while (loop_counter == 0)
;
return (TRUE);
}
#endif
static Int p_break(USES_REGS1) {
Atom at = AtomOfTerm(Deref(ARG1));
if (at == AtomTrue) {
LOCAL_BreakLevel++;
return TRUE;
}
if (at == AtomFalse) {
LOCAL_BreakLevel--;
return TRUE;
}
return FALSE;
}
void Yap_InitBackCPreds(void) {
Yap_InitCPredBack("$current_predicate", 4, 1, current_predicate,
cont_current_predicate, SafePredFlag | SyncPredFlag);
Yap_InitCPredBack("$current_op", 5, 1, init_current_op, cont_current_op,
SafePredFlag | SyncPredFlag);
Yap_InitCPredBack("$current_atom_op", 5, 1, init_current_atom_op,
cont_current_atom_op, SafePredFlag | SyncPredFlag);
#ifdef BEAM
Yap_InitCPredBack("eam", 1, 0, start_eam, cont_eam, SafePredFlag);
#endif
Yap_InitBackAtoms();
Yap_InitBackIO();
Yap_InitBackDB();
Yap_InitUserBacks();
}
typedef void (*Proc)(void);
Proc E_Modules[] = {/* init_fc,*/ (Proc)0};
#ifdef YAPOR
static Int p_parallel_mode(USES_REGS1) { return FALSE; }
static Int p_yapor_workers(USES_REGS1) { return FALSE; }
#endif /* YAPOR */
void Yap_InitCPreds(void) {
/* numerical comparison */
Yap_InitCPred("set_value", 2, p_setval, SafePredFlag | SyncPredFlag);
Yap_InitCPred("get_value", 2, p_value,
TestPredFlag | SafePredFlag | SyncPredFlag);
Yap_InitCPred("$values", 3, p_values, SafePredFlag | SyncPredFlag);
/* general purpose */
Yap_InitCPred("$opdec", 4, p_opdec, SafePredFlag | SyncPredFlag);
Yap_InitCPred("=..", 2, p_univ, 0);
/** @pred _T_ =.. _L_ is iso
The list _L_ is built with the functor and arguments of the term
_T_. If _T_ is instantiated to a variable, then _L_ must be
instantiated either to a list whose head is an atom, or to a list
consisting of just a number.
*/
Yap_InitCPred("$statistics_trail_max", 1, p_statistics_trail_max,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_heap_max", 1, p_statistics_heap_max,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_global_max", 1, p_statistics_global_max,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_local_max", 1, p_statistics_local_max,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_heap_info", 2, p_statistics_heap_info,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_stacks_info", 3, p_statistics_stacks_info,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_trail_info", 2, p_statistics_trail_info,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_atom_info", 2, p_statistics_atom_info,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_db_size", 4, p_statistics_db_size,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$statistics_lu_db_size", 5, p_statistics_lu_db_size,
SafePredFlag | SyncPredFlag);
Yap_InitCPred("$executable", 1, p_executable, SafePredFlag);
Yap_InitCPred("$runtime", 2, p_runtime, SafePredFlag | SyncPredFlag);
Yap_InitCPred("$cputime", 2, p_cputime, SafePredFlag | SyncPredFlag);
Yap_InitCPred("$systime", 2, p_systime, SafePredFlag | SyncPredFlag);
Yap_InitCPred("$walltime", 2, p_walltime, SafePredFlag | SyncPredFlag);
Yap_InitCPred("$system_mode", 1, p_system_mode, SafePredFlag | SyncPredFlag);
Yap_InitCPred("abort", 0, p_abort, SyncPredFlag);
/** @pred abort
Abandons the execution of the current goal and returns to top level. All
break levels (see break/0 below) are terminated. It is mainly
used during debugging or after a serious execution error, to return to
the top-level.
*/
Yap_InitCPred("$break", 1, p_break, SafePredFlag);
#ifdef BEAM
Yap_InitCPred("@", 0, eager_split, SafePredFlag);
Yap_InitCPred(":", 0, force_wait, SafePredFlag);
Yap_InitCPred("/", 0, commit, SafePredFlag);
Yap_InitCPred("skip_while_var", 1, skip_while_var, SafePredFlag);
Yap_InitCPred("wait_while_var", 1, wait_while_var, SafePredFlag);
Yap_InitCPred("eamtime", 0, show_time, SafePredFlag);
Yap_InitCPred("eam", 0, use_eam, SafePredFlag);
#endif
Yap_InitCPred("$halt", 1, p_halt, SyncPredFlag);
Yap_InitCPred("$lock_system", 0, p_lock_system, SafePredFlag);
Yap_InitCPred("$unlock_system", 0, p_unlock_system, SafePredFlag);
Yap_InitCPred("$enter_undefp", 0, enter_undefp, SafePredFlag);
Yap_InitCPred("$exit_undefp", 0, exit_undefp, SafePredFlag);
#ifdef YAP_JIT
Yap_InitCPred("$jit_init", 1, p_jit, SafePredFlag | SyncPredFlag);
#endif /* YAPOR */
#ifdef INES
Yap_InitCPred("euc_dist", 3, p_euc_dist, SafePredFlag);
Yap_InitCPred("loop", 0, p_loop, SafePredFlag);
#endif
#if QSAR
Yap_InitCPred("in_range", 8, p_in_range, TestPredFlag | SafePredFlag);
Yap_InitCPred("in_range", 4, p_in_range2, TestPredFlag | SafePredFlag);
#endif
#ifdef DEBUG
Yap_InitCPred("dump_active_goals", 0, p_dump_active_goals,
SafePredFlag | SyncPredFlag);
#endif
Yap_InitArrayPreds();
Yap_InitAtomPreds();
Yap_InitBBPreds();
Yap_InitBigNums();
Yap_InitCdMgr();
Yap_InitCmpPreds();
Yap_InitCoroutPreds();
Yap_InitDBPreds();
Yap_InitErrorPreds();
Yap_InitExecFs();
Yap_InitGlobals();
Yap_InitInlines();
Yap_InitIOPreds();
Yap_InitExoPreds();
Yap_InitLoadForeign();
Yap_InitModulesC();
Yap_InitSavePreds();
Yap_InitRange();
Yap_InitSysPreds();
Yap_InitUnify();
Yap_InitQLY();
Yap_InitQLYR();
Yap_InitStInfo();
Yap_udi_init();
Yap_udi_Interval_init();
Yap_InitSignalCPreds();
Yap_InitUserCPreds();
Yap_InitUtilCPreds();
Yap_InitSortPreds();
Yap_InitMaVarCPreds();
#ifdef DEPTH_LIMIT
Yap_InitItDeepenPreds();
#endif
#ifdef ANALYST
Yap_InitAnalystPreds();
#endif
Yap_InitLowLevelTrace();
Yap_InitEval();
Yap_InitGrowPreds();
Yap_InitLowProf();
#if defined(YAPOR) || defined(TABLING)
Yap_init_optyap_preds();
#endif /* YAPOR || TABLING */
#if YAP_JIT
Yap_InitCPred("jit", 0, p_jit, SafePredFlag | SyncPredFlag);
#endif
Yap_InitThreadPreds();
{
void (*(*(p)))(void) = E_Modules;
while (*p)
(*(*p++))();
}
#if USE_MYDDAS
init_myddas();
#endif
#if CAMACHO
{
extern void InitForeignPreds(void);
Yap_InitForeignPreds();
}
#endif
#if APRIL
{
extern void init_ol(void), init_time(void);
init_ol();
init_time();
}
#endif
#if SUPPORT_CONDOR
init_sys();
init_random();
init_regexp();
#endif
}