e74b412591
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@361 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2882 lines
68 KiB
C
2882 lines
68 KiB
C
/*************************************************************************
|
|
* *
|
|
* YAP Prolog *
|
|
* *
|
|
* Yap Prolog was developed at NCCUP - Universidade do Porto *
|
|
* *
|
|
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
|
|
* *
|
|
**************************************************************************
|
|
* *
|
|
* File: compiler.c *
|
|
* Last rev: 4/03/88 *
|
|
* mods: *
|
|
* comments: Clause compiler *
|
|
* *
|
|
*************************************************************************/
|
|
#ifdef SCCS
|
|
static char SccsId[] = "%W% %G%";
|
|
|
|
#endif /* SCCS */
|
|
#include "Yap.h"
|
|
#include "compile.h"
|
|
#include "clause.h"
|
|
#include "yapio.h"
|
|
#if HAVE_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
|
|
STATIC_PROTO(int active_branch, (int));
|
|
STATIC_PROTO(void c_var, (Term, Int, unsigned int));
|
|
STATIC_PROTO(void reset_vars, (void));
|
|
STATIC_PROTO(Term optimize_ce, (Term, unsigned int));
|
|
STATIC_PROTO(void c_arg, (Int, Term, unsigned int));
|
|
STATIC_PROTO(void c_args, (Term));
|
|
STATIC_PROTO(void c_eq, (Term, Term));
|
|
STATIC_PROTO(void c_test, (Int, Term));
|
|
STATIC_PROTO(void c_bifun, (Int, Term, Term, Term, int));
|
|
STATIC_PROTO(void c_goal, (Term, int));
|
|
STATIC_PROTO(void get_type_info, (Term));
|
|
STATIC_PROTO(void c_body, (Term, int));
|
|
STATIC_PROTO(void get_cl_info, (Term));
|
|
STATIC_PROTO(void c_head, (Term));
|
|
STATIC_PROTO(int usesvar, (int));
|
|
STATIC_PROTO(CELL *init_bvarray, (int));
|
|
STATIC_PROTO(void clear_bvarray, (int, CELL *));
|
|
STATIC_PROTO(void add_bvarray_op, (PInstr *,CELL *, int));
|
|
STATIC_PROTO(void AssignPerm, (PInstr *));
|
|
STATIC_PROTO(void CheckUnsafe, (PInstr *));
|
|
STATIC_PROTO(void CheckVoids, (void));
|
|
STATIC_PROTO(int checktemp, (void));
|
|
STATIC_PROTO(void checkreg, (int));
|
|
STATIC_PROTO(void c_layout, (void));
|
|
STATIC_PROTO(void c_optimize, (PInstr *));
|
|
|
|
#ifdef SFUNC
|
|
STATIC_PROTO(void compile_sf_term, (Term, int));
|
|
|
|
#endif
|
|
|
|
PInstr *CodeStart, *cpc, *BodyStart;
|
|
|
|
PInstr *icpc, *BlobsStart;
|
|
|
|
int c_mask;
|
|
|
|
CELL c_store;
|
|
|
|
PredEntry *pred_p;
|
|
|
|
PredEntry *CurrentPred;
|
|
|
|
static Ventry *vtable;
|
|
|
|
CExpEntry *common_exps;
|
|
|
|
int n_common_exps, profiling;
|
|
|
|
static int goalno, level, onlast, onhead, onbranch, cur_branch;
|
|
|
|
typedef struct branch_descriptor {
|
|
int id; /* the branch id */
|
|
Term cm; /* if a banch is associated with a commit */
|
|
} branch;
|
|
|
|
static branch parent_branches[256], *branch_pointer;
|
|
|
|
static Prop current_p0;
|
|
|
|
static void
|
|
push_branch(int id, Term cmvar) {
|
|
branch_pointer->id = onbranch;
|
|
branch_pointer->cm = cmvar;
|
|
branch_pointer++;
|
|
}
|
|
|
|
static int
|
|
pop_branch(void) {
|
|
branch_pointer--;
|
|
return(branch_pointer->id);
|
|
}
|
|
|
|
#ifdef TABLING
|
|
#define is_tabled(pe) (pe->PredFlags & TabledPredFlag)
|
|
#endif /* TABLING */
|
|
|
|
#ifdef DEBUG
|
|
static int pbvars;
|
|
#endif /* DEBUG */
|
|
|
|
static inline int
|
|
active_branch(int i)
|
|
{
|
|
/* register int *bp;*/
|
|
|
|
return (i == onbranch);
|
|
/* bp = branch_pointer;
|
|
while (bp > parent_branches) {
|
|
if (*--bp == onbranch)
|
|
return (TRUE);
|
|
}
|
|
return(i==onbranch);*/
|
|
}
|
|
|
|
static Int labelno;
|
|
|
|
static int or_found;
|
|
|
|
static Int rn, ic, vreg, vadr;
|
|
static Term arg;
|
|
static Int Uses[MaxTemps];
|
|
static Term Contents[MaxTemps];
|
|
|
|
static Int tmpreg;
|
|
|
|
static int nvars, MaxCTemps;
|
|
static unsigned int max_args;
|
|
|
|
jmp_buf CompilerBotch;
|
|
|
|
#define FAIL(M,T,E) { ErrorMessage=M; Error_TYPE = T; Error_Term = E; return; }
|
|
|
|
#define IsNewVar(v) (Addr(v)<freep0 || Addr(v)>freep)
|
|
|
|
static char ErrorSay[80];
|
|
|
|
inline static void pop_code(void);
|
|
|
|
inline static void
|
|
pop_code(void)
|
|
{
|
|
if (level == 0)
|
|
return;
|
|
if (cpc->op == pop_op)
|
|
++(cpc->rnd1);
|
|
else
|
|
emit(pop_op, One, Zero);
|
|
}
|
|
|
|
static void
|
|
adjust_current_commits(void) {
|
|
branch *bp = branch_pointer;
|
|
while (bp > parent_branches) {
|
|
bp--;
|
|
if (bp->cm != TermNil) {
|
|
c_var(bp->cm, patch_b_flag, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
c_var(Term t, Int argno, unsigned int arity)
|
|
{
|
|
int flags, new = FALSE;
|
|
Ventry *v = (Ventry *) Deref(t);
|
|
|
|
if (IsNewVar(v)) { /* new var */
|
|
v = (Ventry *) AllocCMem(sizeof(*v));
|
|
#if SBA
|
|
v->SelfOfVE = 0;
|
|
#else
|
|
v->SelfOfVE = (CELL) v;
|
|
#endif
|
|
v->AdrsOfVE = t;
|
|
*CellPtr(t) = (CELL) v;
|
|
v->KindOfVE = v->NoOfVE = Unassigned;
|
|
flags = 0;
|
|
/* Be careful with eithers. I may make a variable global in a branch,
|
|
and not in another.
|
|
a :- (b([X]) ; c), go(X).
|
|
This variaiable will not be globalised if we are coming from
|
|
the second branch.
|
|
|
|
I also need to protect the onhead because Luis uses that to
|
|
optimise unification in the body of a clause, eg
|
|
a :- (X = 2 ; c), go(X).
|
|
|
|
And, yes, there is code like this...
|
|
*/
|
|
if (((level > 0 || onhead) && cur_branch == 0)
|
|
|| argno == save_pair_flag ||
|
|
argno == save_appl_flag)
|
|
flags |= SafeVar;
|
|
if ((level > 0 && cur_branch == 0) || argno == save_pair_flag ||
|
|
argno == save_appl_flag)
|
|
flags |= GlobalVal;
|
|
v->FlagsOfVE = flags;
|
|
v->BranchOfVE = onbranch;
|
|
v->NextOfVE = vtable;
|
|
v->RCountOfVE = 0;
|
|
v->AgeOfVE = v->FirstOfVE = goalno;
|
|
new = TRUE;
|
|
vtable = v;
|
|
} else {
|
|
v->FlagsOfVE |= NonVoid;
|
|
if (v->BranchOfVE > 0) {
|
|
if (!active_branch(v->BranchOfVE)) {
|
|
v->AgeOfVE = v->FirstOfVE = 1;
|
|
new = FALSE;
|
|
v->FlagsOfVE |= BranchVar;
|
|
/* set the original instruction correctly */
|
|
switch (v->FirstOpForV->op) {
|
|
case get_var_op:
|
|
v->FirstOpForV->op = get_val_op;
|
|
break;
|
|
case unify_var_op:
|
|
v->FirstOpForV->op = unify_val_op;
|
|
break;
|
|
case unify_last_var_op:
|
|
v->FirstOpForV->op = unify_last_val_op;
|
|
break;
|
|
case put_var_op:
|
|
v->FirstOpForV->op = put_val_op;
|
|
break;
|
|
case write_var_op:
|
|
v->FirstOpForV->op = write_val_op;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (onhead)
|
|
v->FlagsOfVE |= OnHeadFlag;
|
|
switch (argno) {
|
|
case save_b_flag:
|
|
emit(save_b_op, (CELL) v, Zero);
|
|
break;
|
|
case comit_b_flag:
|
|
emit(comit_b_op, (CELL) v, Zero);
|
|
emit(empty_call_op, Zero, Zero);
|
|
emit(restore_tmps_and_skip_op, Zero, Zero);
|
|
break;
|
|
case patch_b_flag:
|
|
emit(patch_b_op, (CELL) v, 0);
|
|
break;
|
|
case save_pair_flag:
|
|
emit(save_pair_op, (CELL) v, 0);
|
|
break;
|
|
case save_appl_flag:
|
|
emit(save_appl_op, (CELL) v, 0);
|
|
break;
|
|
case f_flag:
|
|
if (new) {
|
|
++nvars;
|
|
emit(f_var_op, (CELL) v, (CELL)arity);
|
|
} else
|
|
emit(f_val_op, (CELL) v, (CELL)arity);
|
|
break;
|
|
case bt1_flag:
|
|
emit(fetch_args_for_bccall, (CELL)v, 0);
|
|
break;
|
|
case bt2_flag:
|
|
emit(bccall_op, (CELL)v, (CELL)current_p0);
|
|
break;
|
|
default:
|
|
#ifdef SFUNC
|
|
if (argno < 0) {
|
|
if (new)
|
|
emit((onhead ? unify_s_var_op : write_s_var_op), v, -argno);
|
|
else
|
|
emit((onhead ? unify_s_val_op : write_s_val_op), v, -argno);
|
|
} else
|
|
#endif
|
|
if (onhead) {
|
|
if (level == 0)
|
|
emit((new ? (++nvars, get_var_op) : get_val_op), (CELL) v, argno);
|
|
else
|
|
emit((new ? (++nvars, (argno == (Int)arity ?
|
|
unify_last_var_op :
|
|
unify_var_op)) :
|
|
(argno == (Int)arity ? unify_last_val_op :
|
|
unify_val_op)),
|
|
(CELL) v, Zero);
|
|
}
|
|
else {
|
|
if (level == 0)
|
|
emit((new ? (++nvars, put_var_op) : put_val_op), (CELL) v, argno);
|
|
else
|
|
emit((new ? (++nvars, write_var_op) : write_val_op), (CELL) v, Zero);
|
|
}
|
|
}
|
|
if (new) {
|
|
v->FirstOpForV = cpc;
|
|
}
|
|
++(v->RCountOfVE);
|
|
if (onlast)
|
|
v->FlagsOfVE |= OnLastGoal;
|
|
if (v->AgeOfVE < goalno)
|
|
v->AgeOfVE = goalno;
|
|
}
|
|
|
|
static void
|
|
reset_vars(void)
|
|
{
|
|
Ventry *v = vtable;
|
|
CELL *t;
|
|
|
|
while (v != NIL) {
|
|
t = (CELL *) v->AdrsOfVE;
|
|
RESET_VARIABLE(t);
|
|
v = v->NextOfVE;
|
|
}
|
|
}
|
|
|
|
static Term
|
|
optimize_ce(Term t, unsigned int arity)
|
|
{
|
|
CExpEntry *p = common_exps, *parent = common_exps;
|
|
int cmp = 0;
|
|
|
|
if (IsApplTerm(t) && IsExtensionFunctor(FunctorOfTerm(t)))
|
|
return (t);
|
|
while (p != NULL) {
|
|
CELL *OldH = H;
|
|
H = (CELL *)freep;
|
|
cmp = compare_terms(t, (p->TermOfCE));
|
|
H = OldH;
|
|
|
|
if (cmp > 0) {
|
|
parent = p;
|
|
p = p->RightCE;
|
|
}
|
|
else if (cmp < 0) {
|
|
parent = p;
|
|
p = p->LeftCE;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
if (p != NULL) { /* already there */
|
|
return (p->VarOfCE);
|
|
}
|
|
/* first occurrence */
|
|
if (onbranch)
|
|
return (t);
|
|
++n_common_exps;
|
|
p = (CExpEntry *) AllocCMem(sizeof(CExpEntry));
|
|
|
|
p->TermOfCE = t;
|
|
p->VarOfCE = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
p->RightCE = NULL;
|
|
p->LeftCE = NULL;
|
|
if (parent == NULL)
|
|
common_exps = p;
|
|
else if (cmp > 0)
|
|
parent->RightCE = p;
|
|
else /* if (cmp < 0) */
|
|
parent->LeftCE = p;
|
|
if (IsApplTerm(t))
|
|
c_var(p->VarOfCE, save_appl_flag, arity);
|
|
else if (IsPairTerm(t))
|
|
c_var(p->VarOfCE, save_pair_flag, arity);
|
|
return (t);
|
|
}
|
|
|
|
#ifdef SFUNC
|
|
static void
|
|
compile_sf_term(Term t, int argno)
|
|
{
|
|
Functor f = FunctorOfTerm(t);
|
|
CELL *p = ArgsOfSFTerm(t) - 1;
|
|
SFEntry *pe = RepSFProp(GetAProp(NameOfFunctor(f), SFProperty));
|
|
Term nullvalue = pe->NilValue;
|
|
|
|
if (level == 0)
|
|
emit((onhead ? get_s_f_op : put_s_f_op), f, argno);
|
|
else
|
|
emit((onhead ? unify_s_f_op : write_s_f_op), f, Zero);
|
|
++level;
|
|
while ((argno = *++p)) {
|
|
t = Derefa(++p);
|
|
if (t != nullvalue) {
|
|
if (IsAtomicTerm(t))
|
|
emit((onhead ? unify_s_a_op : write_s_a_op), t, (CELL) argno);
|
|
else if (!IsVarTerm(t)) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "illegal argument of soft functor";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 2);
|
|
}
|
|
else
|
|
c_var(t, -argno, arity);
|
|
}
|
|
}
|
|
--level;
|
|
if (level == 0)
|
|
emit((onhead ? get_s_end_op : put_s_end_op), Zero, Zero);
|
|
else
|
|
emit((onhead ? unify_s_end_op : write_s_end_op), Zero, Zero);
|
|
}
|
|
#endif
|
|
|
|
inline static void
|
|
c_args(Term app)
|
|
{
|
|
Functor f = FunctorOfTerm(app);
|
|
unsigned int Arity = ArityOfFunctor(f);
|
|
unsigned int i;
|
|
|
|
if (level == 0) {
|
|
if (Arity >= MaxTemps) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "exceed maximum arity of compiled goal";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 2);
|
|
}
|
|
if (Arity > max_args)
|
|
max_args = Arity;
|
|
}
|
|
for (i = 1; i <= Arity; ++i)
|
|
c_arg(i, ArgOfTerm(i, app), Arity);
|
|
}
|
|
|
|
static void
|
|
c_arg(Int argno, Term t, unsigned int arity)
|
|
{
|
|
if (IsVarTerm(t))
|
|
c_var(t, argno, arity);
|
|
else if (IsAtomTerm(t)) {
|
|
if (level == 0)
|
|
emit((onhead ? get_atom_op : put_atom_op), (CELL) t, argno);
|
|
else
|
|
emit((onhead ? (argno == (Int)arity ? unify_last_atom_op
|
|
: unify_atom_op) :
|
|
write_atom_op), (CELL) t, Zero);
|
|
}
|
|
else if (IsIntegerTerm(t) || IsFloatTerm(t) || IsBigIntTerm(t)) {
|
|
if (!IsIntTerm(t)) {
|
|
/* we are taking a blob, that is a binary that is supposed to be
|
|
guarded in the clause itself. Possible examples include
|
|
floats, long ints, bignums, bitmaps.... */
|
|
CELL l1 = ++labelno;
|
|
CELL *src = RepAppl(t);
|
|
PInstr *ocpc = cpc, *OCodeStart = CodeStart;
|
|
|
|
/* use a special list to store the blobs */
|
|
cpc = icpc;
|
|
emit(label_op, l1, Zero);
|
|
if (IsFloatTerm(t)) {
|
|
/* let us do floats first */
|
|
CELL *dest =
|
|
emit_extra_size(blob_op,
|
|
(CELL)(SIZEOF_DOUBLE/SIZEOF_LONG_INT+1),
|
|
(1+SIZEOF_DOUBLE/SIZEOF_LONG_INT)*CellSize);
|
|
/* copy the float bit by bit */
|
|
dest[0] = src[0];
|
|
dest[1] = src[1];
|
|
#if SIZEOF_DOUBLE == 2*SIZEOF_LONG_INT
|
|
dest[2] = src[2];
|
|
#endif
|
|
/* note that we don't need to copy size info, unless we wanted
|
|
to garbage collect clauses ;-) */
|
|
icpc = cpc;
|
|
if (BlobsStart == NULL)
|
|
BlobsStart = CodeStart;
|
|
cpc = ocpc;
|
|
CodeStart = OCodeStart;
|
|
/* The argument to pass to the structure is now the label for
|
|
where we are storing the blob */
|
|
if (level == 0)
|
|
emit((onhead ? get_float_op : put_float_op), l1, argno);
|
|
else
|
|
emit((onhead ? (argno == (Int)arity ? unify_last_float_op
|
|
: unify_float_op) :
|
|
write_float_op), l1, Zero);
|
|
#if USE_GMP
|
|
} else if (IsBigIntTerm(t)) {
|
|
/* next, let us do bigints */
|
|
Int sz = sizeof(CELL)+
|
|
sizeof(MP_INT)+
|
|
((((MP_INT *)(RepAppl(t)+1))->_mp_alloc)*sizeof(mp_limb_t));
|
|
CELL *dest =
|
|
emit_extra_size(blob_op, sz/CellSize, sz);
|
|
/* copy the bignum */
|
|
memcpy(dest, src, sz);
|
|
/* note that we don't need to copy size info, unless we wanted
|
|
to garbage collect clauses ;-) */
|
|
icpc = cpc;
|
|
if (BlobsStart == NULL)
|
|
BlobsStart = CodeStart;
|
|
cpc = ocpc;
|
|
CodeStart = OCodeStart;
|
|
/* The argument to pass to the structure is now the label for
|
|
where we are storing the blob */
|
|
if (level == 0)
|
|
emit((onhead ? get_bigint_op : put_bigint_op), l1, argno);
|
|
else
|
|
emit((onhead ? (argno == (Int)arity ? unify_last_bigint_op
|
|
: unify_bigint_op) :
|
|
write_bigint_op), l1, Zero);
|
|
#endif
|
|
} else {
|
|
/* for now, it's just a long int */
|
|
CELL *dest =
|
|
emit_extra_size(blob_op,
|
|
2,
|
|
2*CellSize);
|
|
/* copy the long int in one fell swoop */
|
|
dest[0] = src[0];
|
|
dest[1] = src[1];
|
|
icpc = cpc;
|
|
if (BlobsStart == NULL)
|
|
BlobsStart = CodeStart;
|
|
cpc = ocpc;
|
|
CodeStart = OCodeStart;
|
|
if (level == 0)
|
|
emit((onhead ? get_longint_op : put_longint_op), l1, argno);
|
|
else
|
|
emit((onhead ? (argno == (Int)arity ? unify_last_longint_op
|
|
: unify_longint_op) :
|
|
write_longint_op), l1, Zero);
|
|
}
|
|
/* That's it folks! */
|
|
return;
|
|
}
|
|
if (level == 0)
|
|
emit((onhead ? get_num_op : put_num_op), (CELL) t, argno);
|
|
else
|
|
emit((onhead ? (argno == (Int)arity ? unify_last_num_op
|
|
: unify_num_op) :
|
|
write_num_op), (CELL) t, Zero);
|
|
}
|
|
else if (IsPairTerm(t)) {
|
|
if (optimizer_on && (!onhead || argno != 1 || level > 1) && level < 6) {
|
|
t = optimize_ce(t, arity);
|
|
if (IsVarTerm(t)) {
|
|
c_var(t, argno, arity);
|
|
return;
|
|
}
|
|
}
|
|
if (level == 0)
|
|
emit((onhead ? get_list_op : put_list_op), Zero, argno);
|
|
else if (argno == (Int)arity)
|
|
emit((onhead ? unify_last_list_op : write_last_list_op), Zero, Zero);
|
|
else
|
|
emit((onhead ? unify_list_op : write_list_op), Zero, Zero);
|
|
++level;
|
|
c_arg(1, HeadOfTerm(t), 2);
|
|
c_arg(2, TailOfTerm(t), 2);
|
|
--level;
|
|
if (argno != (Int)arity)
|
|
pop_code();
|
|
} else if (IsRefTerm(t)) {
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (!(CurrentPred->PredFlags & (DynamicPredFlag|LogUpdatePredFlag))) {
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
FAIL("can not compile data base reference",TYPE_ERROR_CALLABLE,t);
|
|
return;
|
|
} else {
|
|
emit((onhead ? get_atom_op : put_atom_op), (CELL) t, argno);
|
|
}
|
|
} else {
|
|
|
|
#ifdef SFUNC
|
|
if (SFTerm(t)) {
|
|
compile_sf_term(t, argno);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (optimizer_on && (!onhead || argno != 1 || level > 1)) {
|
|
t = optimize_ce(t, arity);
|
|
if (IsVarTerm(t)) {
|
|
c_var(t, argno, arity);
|
|
return;
|
|
|
|
}
|
|
}
|
|
if (level == 0)
|
|
emit((onhead ? get_struct_op : put_struct_op),
|
|
(CELL) FunctorOfTerm(t), argno);
|
|
else if (argno == (Int)arity)
|
|
emit((onhead ? unify_last_struct_op : write_last_struct_op),
|
|
(CELL) FunctorOfTerm(t), Zero);
|
|
else
|
|
emit((onhead ? unify_struct_op : write_struct_op),
|
|
(CELL) FunctorOfTerm(t), Zero);
|
|
++level;
|
|
c_args(t);
|
|
--level;
|
|
if (argno != (Int)arity)
|
|
pop_code();
|
|
}
|
|
}
|
|
|
|
static void
|
|
c_eq(Term t1, Term t2)
|
|
{
|
|
Term t;
|
|
|
|
--tmpreg;
|
|
if (IsVarTerm(t2))
|
|
t = t2, t2 = t1, t1 = t;
|
|
if (IsVarTerm(t1)) {
|
|
if (IsVarTerm(t2)) { /* both are variables */
|
|
if (IsNewVar(t2))
|
|
t = t2, t2 = t1, t1 = t;
|
|
c_var(t2, tmpreg, 2);
|
|
onhead = 1;
|
|
c_var(t1, tmpreg, 2);
|
|
onhead = 0;
|
|
}
|
|
else if (IsNewVar(t1)) {
|
|
c_arg(tmpreg, t2, 0);
|
|
onhead = 1;
|
|
c_var(t1, tmpreg, 2);
|
|
onhead = 0;
|
|
}
|
|
else { /* t2 is non var */
|
|
c_var(t1, tmpreg, 2);
|
|
onhead = 1;
|
|
c_arg(tmpreg, t2, 0);
|
|
onhead = 0;
|
|
}
|
|
}
|
|
else {
|
|
c_arg(tmpreg, t1, 0);
|
|
onhead = 1;
|
|
c_arg(tmpreg, t2, 0);
|
|
onhead = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
c_test(Int Op, Term t1) {
|
|
Term t = Deref(t1);
|
|
|
|
if (!IsVarTerm(t)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_VARIABLE;
|
|
Error_Term = t;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "when compiling %s/1", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 1);
|
|
}
|
|
if (IsNewVar(t)) {
|
|
/* in this case, var trivially succeeds and the others trivially fail */
|
|
if (Op != _var)
|
|
emit(fail_op, Zero, Zero);
|
|
} else {
|
|
c_var(t,f_flag,(unsigned int)Op);
|
|
}
|
|
}
|
|
|
|
/* Arithmetic builtins will be compiled in the form:
|
|
|
|
fetch_args_vv Xi,Xj
|
|
put_val Xi,Ri
|
|
put_val Xj,Rj
|
|
put_var Xk,Ak
|
|
bip_body Op,Xk
|
|
|
|
The put_var should always be disposable, and the put_vals can be disposed of if R is an X.
|
|
This, in the best case, Ri and Rj are WAM temp registers and this will reduce to:
|
|
|
|
bip Op,Ak,Ri,Rj
|
|
|
|
meaning a single WAM op will call the clause.
|
|
|
|
|
|
If one of the arguments is a constant, the result will be:
|
|
|
|
fetch_args_vc Xi,C
|
|
put_val Xi,Ri
|
|
put_var Xk,Ak
|
|
bip_body Op,Xk
|
|
|
|
and this should reduce to :
|
|
|
|
bip_cons Op,Xk,Ri,C
|
|
|
|
*/
|
|
static void
|
|
c_bifun(Int Op, Term t1, Term t2, Term t3, int mod)
|
|
{
|
|
/* compile Z = X Op Y arithmetic function */
|
|
/* first we fetch the arguments */
|
|
if (IsVarTerm(t1)) {
|
|
if (IsNewVar(t1)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = INSTANTIATION_ERROR;
|
|
Error_Term = t1;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "when compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 1);
|
|
} else if (IsVarTerm(t2)) {
|
|
if (IsNewVar(t2)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = INSTANTIATION_ERROR;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "when compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 1);
|
|
} else {
|
|
/* first temp */
|
|
Int v1 = --tmpreg;
|
|
/* second temp */
|
|
Int v2 = --tmpreg;
|
|
emit(fetch_args_vv_op, Zero, Zero);
|
|
/* these should be the arguments */
|
|
c_var(t1, v1, 0);
|
|
c_var(t2, v2, 0);
|
|
/* now we know where the arguments are */
|
|
}
|
|
} else {
|
|
if (Op == _arg) {
|
|
Term tn = MkVarTerm();
|
|
Int v1 = --tmpreg;
|
|
Int v2 = --tmpreg;
|
|
c_arg(t2, v2, 0);
|
|
emit(fetch_args_vv_op, Zero, Zero);
|
|
/* these should be the arguments */
|
|
c_var(t1, v1, 0);
|
|
c_var(tn, v2, 0);
|
|
/* it has to be either an integer or a floating point */
|
|
} else if (IsIntTerm(t2)) {
|
|
/* first temp */
|
|
Int v1 = --tmpreg;
|
|
emit(fetch_args_vc_op, (CELL)IntOfTerm(t2), Zero);
|
|
/* these should be the arguments */
|
|
c_var(t1, v1, 0);
|
|
/* now we know where the arguments are */
|
|
} else if (IsLongIntTerm(t2)) {
|
|
/* first temp */
|
|
Int v1 = --tmpreg;
|
|
emit(fetch_args_vc_op, (CELL)LongIntOfTerm(t2), Zero);
|
|
/* these should be the arguments */
|
|
c_var(t1, v1, 0);
|
|
/* now we know where the arguments are */
|
|
} else {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_NUMBER;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2 with output bound", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
}
|
|
} else { /* t1 is bound */
|
|
/* it has to be either an integer or a floating point */
|
|
if (IsVarTerm(t2)) {
|
|
if (IsNewVar(t2)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = INSTANTIATION_ERROR;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling functor/3");
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
} else {
|
|
if (Op == _functor) {
|
|
/* both arguments are bound, we must perform unification */
|
|
Int i2;
|
|
|
|
if (!IsIntegerTerm(t2)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_INTEGER;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling functor/3");
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
i2 = IntegerOfTerm(t2);
|
|
if (i2 < 0) {
|
|
char s[32];
|
|
|
|
Error_TYPE = DOMAIN_ERROR_NOT_LESS_THAN_ZERO;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling functor/3");
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
if (IsNumTerm(t1)) {
|
|
/* we will always fail */
|
|
if (i2)
|
|
c_goal(MkAtomTerm(AtomFalse), mod);
|
|
} else if (!IsAtomTerm(t1)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_ATOM;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling functor/3");
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
if (i2 == 0)
|
|
c_eq(t1, t3);
|
|
else {
|
|
CELL *hi = H;
|
|
Int i;
|
|
|
|
if (t1 == TermDot && i2 == 2) {
|
|
if (H+2 >= (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
RESET_VARIABLE(H);
|
|
RESET_VARIABLE(H+1);
|
|
H += 2;
|
|
c_eq(AbsPair(H-2),t3);
|
|
} else {
|
|
*H++ = (CELL)MkFunctor(AtomOfTerm(t1),i2);
|
|
for (i=0; i < i2; i++) {
|
|
if (H >= (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
RESET_VARIABLE(H);
|
|
H++;
|
|
}
|
|
c_eq(AbsAppl(hi),t3);
|
|
}
|
|
}
|
|
} else if (Op == _arg) {
|
|
Int i1;
|
|
if (IsIntegerTerm(t1))
|
|
i1 = IntegerOfTerm(t1);
|
|
else {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_INTEGER;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
if (IsAtomicTerm(t2) ||
|
|
(IsApplTerm(t2) && IsExtensionFunctor(FunctorOfTerm(t2)))) {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_COMPOUND;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
} else if (IsApplTerm(t2)) {
|
|
Functor f = FunctorOfTerm(t2);
|
|
if (i1 < 1 || i1 > ArityOfFunctor(f)) {
|
|
c_goal(MkAtomTerm(AtomFalse), mod);
|
|
} else {
|
|
c_eq(ArgOfTerm(i1, t2), t3);
|
|
}
|
|
return;
|
|
} else if (IsPairTerm(t2)) {
|
|
switch (i1) {
|
|
case 1:
|
|
c_eq(HeadOfTerm(t2), t3);
|
|
return;
|
|
case 2:
|
|
c_eq(TailOfTerm(t2), t3);
|
|
return;
|
|
default:
|
|
c_goal(MkAtomTerm(AtomFalse), mod);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_INTEGER;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
}
|
|
if (Op == _functor) {
|
|
if (!IsAtomicTerm(t1)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_ATOM;
|
|
Error_Term = t1;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
} else {
|
|
if (!IsVarTerm(t2)) {
|
|
Int arity;
|
|
|
|
/* We actually have the term ready, so let's just do the unification now */
|
|
if (!IsIntegerTerm(t2)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_INTEGER;
|
|
Error_Term = t2;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
arity = IntOfTerm(t2);
|
|
if (arity < 0) {
|
|
/* fail straight away */
|
|
emit(fail_op, Zero, Zero);
|
|
}
|
|
if (arity) {
|
|
Term tnew;
|
|
if (!IsAtomTerm(t1)) {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_ATOM;
|
|
Error_Term = t1;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
if (H+1+arity >= (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
tnew = AbsAppl(H);
|
|
*H++ = (CELL)MkFunctor(AtomOfTerm(t1),arity);
|
|
while (arity--) {
|
|
RESET_VARIABLE(H);
|
|
H++;
|
|
}
|
|
c_eq(tnew, t3);
|
|
} else {
|
|
/* just unify the two arguments */
|
|
c_eq(t1,t3);
|
|
}
|
|
return;
|
|
} else {
|
|
/* first temp */
|
|
Int v1 = --tmpreg;
|
|
emit(fetch_args_cv_op, t1, Zero);
|
|
/* these should be the arguments */
|
|
c_var(t2, v1, 0);
|
|
/* now we know where the arguments are */
|
|
}
|
|
}
|
|
} else if (IsIntTerm(t1)) {
|
|
/* first temp */
|
|
Int v1 = --tmpreg;
|
|
emit(fetch_args_cv_op, (CELL)IntOfTerm(t1), Zero);
|
|
/* these should be the arguments */
|
|
c_var(t2, v1, 0);
|
|
/* now we know where the arguments are */
|
|
} else if (IsLongIntTerm(t1)) {
|
|
/* first temp */
|
|
Int v1 = --tmpreg;
|
|
emit(fetch_args_cv_op, (CELL)LongIntOfTerm(t1), Zero);
|
|
/* these should be the arguments */
|
|
c_var(t2, v1, 0);
|
|
/* now we know where the arguments are */
|
|
} else {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_VARIABLE;
|
|
Error_Term = t1;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2 with output bound", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
}
|
|
/* then we compile the opcode/result */
|
|
if (!IsVarTerm(t3)) {
|
|
if (Op == _arg) {
|
|
Term tmpvar = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
c_var(tmpvar,f_flag,(unsigned int)Op);
|
|
c_eq(tmpvar,t3);
|
|
} else {
|
|
char s[32];
|
|
|
|
Error_TYPE = TYPE_ERROR_VARIABLE;
|
|
Error_Term = t3;
|
|
ErrorMessage = ErrorSay;
|
|
bip_name(Op, s);
|
|
sprintf(ErrorMessage, "compiling %s/2 with input unbound", s);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
} else if (IsNewVar(t3) && cur_branch == 0 /* otherwise you may have trouble with z(X) :- ( Z is X*2 ; write(Z)) */) {
|
|
c_var(t3,f_flag,(unsigned int)Op);
|
|
if (Op == _functor) {
|
|
emit(empty_call_op, Zero, Zero);
|
|
emit(restore_tmps_and_skip_op, Zero, Zero);
|
|
}
|
|
} else {
|
|
/* generate code for a temp and then unify temp with previous variable */
|
|
Term tmpvar = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
c_var(tmpvar,f_flag,(unsigned int)Op);
|
|
/* I have to dit here, before I do the unification */
|
|
if (Op == _functor) {
|
|
emit(empty_call_op, Zero, Zero);
|
|
emit(restore_tmps_and_skip_op, Zero, Zero);
|
|
}
|
|
c_eq(tmpvar,t3);
|
|
}
|
|
}
|
|
|
|
static void
|
|
c_functor(Term Goal, int mod)
|
|
{
|
|
Term t1 = ArgOfTerm(1, Goal);
|
|
Term t2 = ArgOfTerm(2, Goal);
|
|
Term t3 = ArgOfTerm(3, Goal);
|
|
if (IsVarTerm(t1) && IsNewVar(t1)) {
|
|
c_bifun(_functor, t2, t3, t1, mod);
|
|
} else if (IsNonVarTerm(t1)) {
|
|
/* just split the structure */
|
|
if (IsAtomicTerm(t1)) {
|
|
c_eq(t1,t2);
|
|
c_eq(t3,MkIntTerm(0));
|
|
} else if (IsApplTerm(t1)) {
|
|
Functor f = FunctorOfTerm(t1);
|
|
c_eq(t2,MkAtomTerm(NameOfFunctor(f)));
|
|
c_eq(t3,MkIntegerTerm(ArityOfFunctor(f)));
|
|
} else /* list */ {
|
|
c_eq(t2,TermDot);
|
|
c_eq(t3,MkIntTerm(2));
|
|
}
|
|
} else if (IsVarTerm(t2) && IsNewVar(t2) &&
|
|
IsVarTerm(t3) && IsNewVar(t3)) {
|
|
Int v1 = --tmpreg;
|
|
emit(fetch_args_vc_op, Zero, Zero);
|
|
c_var(t1, v1, 0);
|
|
c_var(t2,f_flag,(unsigned int)_functor);
|
|
c_var(t3,f_flag,(unsigned int)_functor);
|
|
} else {
|
|
Functor f = FunctorOfTerm(Goal);
|
|
Prop p0 = PredPropByFunc(f, mod);
|
|
if (profiling)
|
|
emit(enter_profiling_op, (CELL)RepPredProp(p0), Zero);
|
|
c_args(Goal);
|
|
emit(safe_call_op, (CELL)p0 , Zero);
|
|
emit(empty_call_op, Zero, Zero);
|
|
emit(restore_tmps_and_skip_op, Zero, Zero);
|
|
}
|
|
}
|
|
|
|
static int
|
|
IsTrueGoal(Term t) {
|
|
if (IsVarTerm(t)) return(FALSE);
|
|
if (IsApplTerm(t)) {
|
|
Functor f = FunctorOfTerm(t);
|
|
if (f == FunctorModule) {
|
|
return(IsTrueGoal(ArgOfTerm(2,t)));
|
|
}
|
|
if (f == FunctorComma || f == FunctorOr || f == FunctorArrow) {
|
|
return(IsTrueGoal(ArgOfTerm(1,t)) && IsTrueGoal(ArgOfTerm(2,t)));
|
|
}
|
|
return(FALSE);
|
|
}
|
|
return(t == MkAtomTerm(AtomTrue));
|
|
}
|
|
|
|
static void
|
|
c_goal(Term Goal, int mod)
|
|
{
|
|
Functor f;
|
|
PredEntry *p;
|
|
Prop p0;
|
|
|
|
if (IsVarTerm(Goal)) {
|
|
Goal = MkApplTerm(FunctorCall, 1, &Goal);
|
|
}
|
|
if (IsNumTerm(Goal)) {
|
|
FAIL("goal can not be a number", TYPE_ERROR_CALLABLE, Goal);
|
|
}
|
|
else if (IsRefTerm(Goal)) {
|
|
Error_TYPE = TYPE_ERROR_DBREF;
|
|
Error_Term = Goal;
|
|
FAIL("goal argument in static procedure can not be a data base reference", TYPE_ERROR_CALLABLE, Goal);
|
|
} else if (IsPairTerm(Goal)) {
|
|
Goal = MkApplTerm(FunctorCall, 1, &Goal);
|
|
} else if (IsApplTerm(Goal) && FunctorOfTerm(Goal) == FunctorModule) {
|
|
Term M = ArgOfTerm(1, Goal);
|
|
|
|
if (IsVarTerm(M) || !IsAtomTerm(M)) {
|
|
Error_TYPE = TYPE_ERROR_ATOM;
|
|
Error_Term = M;
|
|
ErrorMessage = "in module name";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 1);
|
|
}
|
|
Goal = ArgOfTerm(2, Goal);
|
|
mod = LookupModule(M);
|
|
}
|
|
if (IsVarTerm(Goal)) {
|
|
Goal = MkApplTerm(FunctorCall, 1, &Goal);
|
|
}
|
|
if (IsAtomTerm(Goal)) {
|
|
Atom atom = AtomOfTerm(Goal);
|
|
|
|
if (atom == AtomFail || atom == AtomFalse) {
|
|
emit(fail_op, Zero, Zero);
|
|
return;
|
|
}
|
|
else if (atom == AtomTrue || atom == AtomOtherwise) {
|
|
if (onlast) {
|
|
emit(deallocate_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
}
|
|
return;
|
|
}
|
|
else if (atom == AtomCut) {
|
|
|
|
if (profiling)
|
|
emit(enter_profiling_op, (CELL)RepPredProp(PredPropByAtom(AtomCut,0)), Zero);
|
|
if (onlast) {
|
|
/* never a problem here with a -> b, !, c ; d */
|
|
emit(deallocate_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred)) {
|
|
emit(cut_op, Zero, Zero);
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
} else
|
|
#endif /* TABLING */
|
|
{
|
|
emit(cutexit_op, Zero, Zero);
|
|
}
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
}
|
|
else {
|
|
emit(cut_op, Zero, Zero);
|
|
/* needs to adjust previous commits */
|
|
adjust_current_commits();
|
|
}
|
|
return;
|
|
}
|
|
#ifndef YAPOR
|
|
else if (atom == AtomRepeat) {
|
|
CELL l1 = ++labelno;
|
|
CELL l2 = ++labelno;
|
|
|
|
if (profiling)
|
|
emit(enter_profiling_op, (CELL)RepPredProp(PredPropByAtom(AtomRepeat,0)), Zero);
|
|
or_found = 1;
|
|
push_branch(onbranch, TermNil);
|
|
cur_branch++;
|
|
onbranch = cur_branch;
|
|
if (onlast)
|
|
emit(deallocate_op, Zero, Zero);
|
|
emit_3ops(push_or_op, l1, Zero, Zero);
|
|
emit_3ops(either_op, l1, Zero, Zero);
|
|
emit(restore_tmps_op, Zero, Zero);
|
|
emit(jump_op, l2, Zero);
|
|
emit(label_op, l1, Zero);
|
|
emit(pushpop_or_op, Zero, Zero);
|
|
emit_3ops(orelse_op, l1, Zero, Zero);
|
|
emit(label_op, l2, Zero);
|
|
if (onlast) {
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
} else
|
|
++goalno;
|
|
onbranch = pop_branch();
|
|
emit(pop_or_op, Zero, Zero);
|
|
/* --onbranch; */
|
|
return;
|
|
}
|
|
#endif /* YAPOR */
|
|
p = RepPredProp(p0 = PredPropByAtom(atom, mod));
|
|
/* if we are profiling, make sure we register we entered this predicate */
|
|
if (profiling)
|
|
emit(enter_profiling_op, (CELL)p, Zero);
|
|
}
|
|
else {
|
|
f = FunctorOfTerm(Goal);
|
|
p = RepPredProp(p0 = PredPropByFunc(f, mod));
|
|
if (f == FunctorOr) {
|
|
CELL l = ++labelno;
|
|
CELL m = ++labelno;
|
|
Term arg;
|
|
int save = onlast;
|
|
int savegoalno = goalno;
|
|
int frst = TRUE;
|
|
int comitflag = 0;
|
|
int looking_at_comit = FALSE;
|
|
int optimizing_comit = FALSE;
|
|
Term comitvar = 0;
|
|
PInstr *FirstP = cpc, *savecpc, *savencpc;
|
|
|
|
push_branch(onbranch, TermNil);
|
|
++cur_branch;
|
|
onbranch = cur_branch;
|
|
or_found = 1;
|
|
do {
|
|
arg = ArgOfTerm(1, Goal);
|
|
looking_at_comit = IsApplTerm(arg) &&
|
|
FunctorOfTerm(arg) == FunctorArrow;
|
|
if (frst) {
|
|
if (optimizing_comit) {
|
|
emit(label_op, l, Zero);
|
|
l = ++labelno;
|
|
}
|
|
emit_3ops(push_or_op, l, Zero, Zero);
|
|
if (looking_at_comit &&
|
|
is_a_test_pred(ArgOfTerm(1, arg), mod)) {
|
|
/*
|
|
* let them think they are still the
|
|
* first
|
|
*/
|
|
emit(comit_opt_op, l, Zero);
|
|
optimizing_comit = TRUE;
|
|
}
|
|
else {
|
|
optimizing_comit = FALSE;
|
|
emit_3ops(either_op, l, Zero, Zero);
|
|
emit(restore_tmps_op, Zero, Zero);
|
|
frst = FALSE;
|
|
}
|
|
}
|
|
else {
|
|
optimizing_comit = FALSE;
|
|
emit(label_op, l, Zero);
|
|
emit(pushpop_or_op, Zero, Zero);
|
|
emit_3ops(orelse_op, l = ++labelno, Zero, Zero);
|
|
}
|
|
/*
|
|
* if(IsApplTerm(arg) &&
|
|
* FunctorOfTerm(arg)==FunctorArrow) {
|
|
*/
|
|
if (looking_at_comit) {
|
|
if (!optimizing_comit && !comitflag) {
|
|
/* This instruction is placed before
|
|
* the disjunction. This means that
|
|
* the program counter must point
|
|
* correctly, and also that the age
|
|
* of variable is older than the
|
|
* current branch.
|
|
*/
|
|
int my_goalno = goalno;
|
|
|
|
goalno = savegoalno;
|
|
comitflag = labelno;
|
|
comitvar = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
savecpc = cpc;
|
|
savencpc = FirstP->nextInst;
|
|
cpc = FirstP;
|
|
onbranch = pop_branch();
|
|
c_var(comitvar, save_b_flag, 1);
|
|
push_branch(onbranch, comitvar);
|
|
onbranch = cur_branch;
|
|
cpc->nextInst = savencpc;
|
|
cpc = savecpc;
|
|
goalno = my_goalno;
|
|
}
|
|
save = onlast;
|
|
onlast = FALSE;
|
|
c_goal(ArgOfTerm(1, arg), mod);
|
|
if (!optimizing_comit) {
|
|
c_var((Term) comitvar, comit_b_flag,
|
|
1);
|
|
}
|
|
onlast = save;
|
|
c_goal(ArgOfTerm(2, arg), mod);
|
|
}
|
|
else
|
|
c_goal(ArgOfTerm(1, Goal), mod);
|
|
if (!onlast) {
|
|
emit(jump_op, m, Zero);
|
|
}
|
|
goalno = savegoalno + 1;
|
|
Goal = ArgOfTerm(2, Goal);
|
|
++cur_branch;
|
|
onbranch = cur_branch;
|
|
} while (IsNonVarTerm(Goal) && IsApplTerm(Goal)
|
|
&& FunctorOfTerm(Goal) == FunctorOr);
|
|
emit(pushpop_or_op, Zero, Zero);
|
|
emit(label_op, l, Zero);
|
|
if (!optimizing_comit)
|
|
emit(orlast_op, Zero, Zero);
|
|
else {
|
|
optimizing_comit = FALSE; /* not really necessary */
|
|
}
|
|
c_goal(Goal, mod);
|
|
/* --onbranch; */
|
|
onbranch = pop_branch();
|
|
if (!onlast) {
|
|
emit(label_op, m, Zero);
|
|
if ((onlast = save))
|
|
c_goal(MkAtomTerm(AtomTrue), mod);
|
|
}
|
|
emit(pop_or_op, Zero, Zero);
|
|
return;
|
|
}
|
|
else if (f == FunctorComma) {
|
|
int save = onlast;
|
|
int t2 = ArgOfTerm(2, Goal);
|
|
|
|
onlast = FALSE;
|
|
c_goal(ArgOfTerm(1, Goal), mod);
|
|
onlast = save;
|
|
c_goal(t2, mod);
|
|
return;
|
|
}
|
|
else if (f == FunctorNot || f == FunctorAltNot) {
|
|
CELL label = (labelno += 2);
|
|
CELL end_label = (labelno += 2);
|
|
int save = onlast;
|
|
Term comitvar;
|
|
|
|
comitvar = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
push_branch(onbranch, comitvar);
|
|
++cur_branch;
|
|
onbranch = cur_branch;
|
|
or_found = 1;
|
|
onlast = FALSE;
|
|
c_var(comitvar, save_b_flag, 1);
|
|
emit_3ops(push_or_op, label, Zero, Zero);
|
|
emit_3ops(either_op, label, Zero, Zero);
|
|
emit(restore_tmps_op, Zero, Zero);
|
|
c_goal(ArgOfTerm(1, Goal), mod);
|
|
c_var(comitvar, comit_b_flag, 1);
|
|
onlast = save;
|
|
emit(fail_op, end_label, Zero);
|
|
emit(pushpop_or_op, Zero, Zero);
|
|
emit(label_op, label, Zero);
|
|
emit(orlast_op, Zero, Zero);
|
|
emit(label_op, end_label, Zero);
|
|
onlast = save;
|
|
/* --onbranch; */
|
|
onbranch = pop_branch();
|
|
c_goal(MkAtomTerm(AtomTrue), mod);
|
|
++goalno;
|
|
emit(pop_or_op, Zero, Zero);
|
|
return;
|
|
}
|
|
else if (f == FunctorArrow) {
|
|
Term comitvar;
|
|
int save = onlast;
|
|
|
|
comitvar = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
onlast = FALSE;
|
|
c_var(comitvar, save_b_flag, 1);
|
|
c_goal(ArgOfTerm(1, Goal), mod);
|
|
c_var(comitvar, comit_b_flag, 1);
|
|
onlast = save;
|
|
c_goal(ArgOfTerm(2, Goal), mod);
|
|
return;
|
|
} else if (f == FunctorEq) {
|
|
if (profiling)
|
|
emit(enter_profiling_op, (CELL)p, Zero);
|
|
c_eq(ArgOfTerm(1, Goal), ArgOfTerm(2, Goal));
|
|
if (onlast) {
|
|
emit(deallocate_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
}
|
|
return;
|
|
} else if (p->PredFlags & BasicPredFlag) {
|
|
int op = p->PredFlags & 0x7f;
|
|
if (profiling)
|
|
emit(enter_profiling_op, (CELL)p, Zero);
|
|
if (op >= _atom && op <= _primitive) {
|
|
c_test(op, ArgOfTerm(1, Goal));
|
|
if (onlast) {
|
|
emit(deallocate_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
}
|
|
return;
|
|
} else if (op >= _plus && op <= _functor) {
|
|
if (op == _functor) {
|
|
c_functor(Goal, mod);
|
|
} else {
|
|
c_bifun(op,
|
|
ArgOfTerm(1, Goal),
|
|
ArgOfTerm(2, Goal),
|
|
ArgOfTerm(3, Goal),
|
|
mod);
|
|
}
|
|
if (onlast) {
|
|
emit(deallocate_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
}
|
|
return;
|
|
} else {
|
|
c_args(Goal);
|
|
}
|
|
} else if (p->PredFlags & BinaryTestPredFlag) {
|
|
Term a1 = ArgOfTerm(1,Goal);
|
|
if (IsVarTerm(a1) && !IsNewVar(a1)) {
|
|
Term a2 = ArgOfTerm(2,Goal);
|
|
if (IsVarTerm(a2) && !IsNewVar(a2)) {
|
|
if (IsNewVar(a2)) {
|
|
Error_TYPE = INSTANTIATION_ERROR;
|
|
Error_Term = a2;
|
|
ErrorMessage = ErrorSay;
|
|
sprintf(ErrorMessage, "compiling %s/2 with second arg unbound", RepAtom(NameOfFunctor(p->FunctorOfPred))->StrOfAE);
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,1);
|
|
}
|
|
c_var(a1, bt1_flag, 2);
|
|
current_p0 = p0;
|
|
c_var(a2, bt2_flag, 2);
|
|
} else {
|
|
Term t2 = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
|
|
c_eq(t2, a2);
|
|
c_var(a1, bt1_flag, 2);
|
|
current_p0 = p0;
|
|
c_var(t2, bt2_flag, 2);
|
|
}
|
|
} else {
|
|
Term a2 = ArgOfTerm(2,Goal);
|
|
Term t1 = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
|
|
c_eq(t1, a1);
|
|
if (IsVarTerm(a2) && !IsNewVar(a2)) {
|
|
c_var(t1, bt1_flag, 2);
|
|
current_p0 = p0;
|
|
c_var(a2, bt2_flag, 2);
|
|
} else {
|
|
Term t2 = MkVarTerm();
|
|
if (H == (CELL *)freep0) {
|
|
/* oops, too many new variables */
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,4);
|
|
}
|
|
|
|
c_eq(t2, a2);
|
|
c_var(t1, bt1_flag, 2);
|
|
current_p0 = p0;
|
|
c_var(t2, bt2_flag, 2);
|
|
}
|
|
}
|
|
if (onlast) {
|
|
emit(deallocate_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
}
|
|
return;
|
|
} else {
|
|
if (profiling)
|
|
emit(enter_profiling_op, (CELL)p, Zero);
|
|
c_args(Goal);
|
|
}
|
|
}
|
|
#ifdef YAPOR
|
|
/* synchronisation means saving the state, so it is never safe in YAPOR */
|
|
if (p->PredFlags & SafePredFlag && !(p->PredFlags & SyncPredFlag)) {
|
|
#else
|
|
if (p->PredFlags & SafePredFlag) {
|
|
#endif /* YAPOR */
|
|
if (onlast)
|
|
emit(deallocate_op, Zero, Zero);
|
|
emit(safe_call_op, (CELL) p0, Zero);
|
|
if (onlast) {
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
}
|
|
}
|
|
else {
|
|
if (p->PredFlags & (CPredFlag | BasicPredFlag)) {
|
|
#ifdef YAPOR
|
|
if (p->PredFlags & SyncPredFlag)
|
|
emit(sync_op, (CELL)p, (CELL)(p->ArityOfPE));
|
|
#endif /* YAPOR */
|
|
emit_3ops(call_op, (CELL) p0, Zero, Zero);
|
|
/* functor is allowed to call the garbage collector */
|
|
if (onlast) {
|
|
emit(deallocate_op, Zero, Zero);
|
|
or_found = 1;
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
else
|
|
#endif /* TABLING */
|
|
emit(procceed_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
}
|
|
}
|
|
else {
|
|
if (onlast) {
|
|
emit(deallocate_op, Zero, Zero);
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred)) {
|
|
emit_3ops(call_op, (CELL) p0, Zero, Zero);
|
|
emit(table_new_answer_op, Zero, CurrentPred->ArityOfPE);
|
|
} else
|
|
#endif /* TABLING */
|
|
emit(execute_op, (CELL) p0, Zero);
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
} else {
|
|
emit_3ops(call_op, (CELL) p0, Zero, Zero);
|
|
}
|
|
}
|
|
if (!onlast)
|
|
++goalno;
|
|
}
|
|
}
|
|
|
|
static void
|
|
get_type_info(Term Goal)
|
|
{
|
|
if (IsNonVarTerm(Goal) && IsApplTerm(Goal)) {
|
|
if (c_mask == VarCl &&
|
|
ArgOfTerm(1, Goal) == (Term) c_store) {
|
|
if (FunctorOfTerm(Goal) == FunctorGVar)
|
|
c_mask |= FIsVar;
|
|
else if (FunctorOfTerm(Goal) == FunctorGAtom)
|
|
c_mask |= AtCl | FIsAtom;
|
|
else if (FunctorOfTerm(Goal) == FunctorGInteger)
|
|
c_mask |= AtCl | FIsNum;
|
|
/*
|
|
* vsc: with the new scheme floats are structs, so
|
|
* the simple index switch cannot differentiate them
|
|
* from structs:
|
|
* else if (FunctorOfTerm(Goal) == FunctorGAtomic ||
|
|
* FunctorOfTerm(Goal) == FunctorGPrimitive)
|
|
* c_mask |= AtCl|FIsNum;
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
c_body(Term Body, int mod)
|
|
{
|
|
onhead = FALSE;
|
|
BodyStart = cpc;
|
|
goalno = 1;
|
|
if (IsNonVarTerm(Body) && IsApplTerm(Body)) {
|
|
if (FunctorOfTerm(Body) == FunctorComma)
|
|
get_type_info(ArgOfTerm(1, Body));
|
|
else
|
|
get_type_info(Body);
|
|
}
|
|
while (IsNonVarTerm(Body) && IsApplTerm(Body)
|
|
&& FunctorOfTerm(Body) == FunctorComma) {
|
|
Term t2 = ArgOfTerm(2, Body);
|
|
if (IsTrueGoal(t2)) {
|
|
/* optimise the case where some idiot left trues at the end
|
|
of the clause.
|
|
*/
|
|
Body = ArgOfTerm(1, Body);
|
|
break;
|
|
}
|
|
c_goal(ArgOfTerm(1, Body), mod);
|
|
Body = t2;
|
|
}
|
|
onlast = TRUE;
|
|
c_goal(Body, mod);
|
|
}
|
|
|
|
static void
|
|
get_cl_info(register Term t)
|
|
{
|
|
if (IsVarTerm(t)) {
|
|
c_mask = VarCl;
|
|
c_store = (CELL) t;
|
|
}
|
|
else if (IsPairTerm(t)) {
|
|
c_mask = ListCl;
|
|
t = HeadOfTerm(t);
|
|
if (IsVarTerm(t))
|
|
c_mask |= FHeadVar;
|
|
else if (IsPairTerm(t))
|
|
c_mask |= FHeadList;
|
|
else if (IsApplTerm(t)) {
|
|
c_store = (CELL) FunctorOfTerm(t);
|
|
c_mask |= FHeadAppl;
|
|
}
|
|
else {
|
|
c_store = (CELL) t;
|
|
c_mask |= FHeadCons;
|
|
}
|
|
}
|
|
else if (IsApplTerm(t)) {
|
|
Functor fun = FunctorOfTerm(t);
|
|
if (!IsExtensionFunctor(fun)) {
|
|
c_mask = (CELL)ApplCl;
|
|
c_store = (CELL)fun;
|
|
}
|
|
}
|
|
else {
|
|
c_store = (CELL) t;
|
|
c_mask = AtCl;
|
|
}
|
|
}
|
|
|
|
static void
|
|
c_head(Term t)
|
|
{
|
|
Functor f;
|
|
|
|
goalno = 0;
|
|
level = 0;
|
|
onhead = TRUE;
|
|
onlast = FALSE;
|
|
cur_branch = onbranch = 0;
|
|
branch_pointer = parent_branches;
|
|
if (IsAtomTerm(t)) {
|
|
emit(name_op, (CELL) AtomOfTerm(t), Zero);
|
|
return;
|
|
}
|
|
f = FunctorOfTerm(t);
|
|
emit(name_op, (CELL) NameOfFunctor(f), ArityOfFunctor(f));
|
|
c_args(t);
|
|
get_cl_info(ArgOfTerm(1, t));
|
|
}
|
|
|
|
/* number of permanent variables in the clause */
|
|
static int nperm;
|
|
|
|
inline static int
|
|
usesvar(int ic)
|
|
{
|
|
if (ic >= get_var_op && ic <= put_val_op)
|
|
return (TRUE);
|
|
switch (ic) {
|
|
case save_b_op:
|
|
case comit_b_op:
|
|
case patch_b_op:
|
|
case save_appl_op:
|
|
case save_pair_op:
|
|
case f_val_op:
|
|
case f_var_op:
|
|
case fetch_args_for_bccall:
|
|
case bccall_op:
|
|
return (TRUE);
|
|
}
|
|
#ifdef SFUNC
|
|
if (ic >= unify_s_var_op && ic <= write_s_val_op)
|
|
return (TRUE);
|
|
#endif
|
|
return ((ic >= unify_var_op && ic <= write_val_op)
|
|
||
|
|
(ic >= unify_last_var_op && ic <= unify_last_val_op));
|
|
}
|
|
|
|
/*
|
|
* Do as in the traditional WAM and make sure voids are in
|
|
* environments
|
|
*/
|
|
#define LOCALISE_VOIDS 1
|
|
|
|
#ifdef LOCALISE_VOIDS
|
|
typedef struct env_tmp {
|
|
Ventry * Var;
|
|
struct env_tmp *Next;
|
|
} EnvTmp;
|
|
#endif
|
|
|
|
static void
|
|
AssignPerm(PInstr *pc)
|
|
{
|
|
int uses_var;
|
|
PInstr *opc = NULL;
|
|
#ifdef LOCALISE_VOIDS
|
|
EnvTmp *EnvTmps = NULL;
|
|
#endif
|
|
|
|
/* The WAM tries to keep voids on the
|
|
* environment. Traditionally, YAP liberally globalises
|
|
* voids.
|
|
*
|
|
* The new version goes to some length to keep void variables
|
|
* in environments, but it is dubious that improves
|
|
* performance, and may actually slow down the system
|
|
*/
|
|
while (pc != NULL) {
|
|
PInstr *tpc = pc->nextInst;
|
|
#ifdef LOCALISE_VOIDS
|
|
if (pc->op == put_var_op) {
|
|
Ventry *v = (Ventry *) (pc->rnd1);
|
|
if (v->AgeOfVE == v->FirstOfVE
|
|
&& !(v->FlagsOfVE & (GlobalVal|OnHeadFlag|OnLastGoal|NonVoid)) ) {
|
|
EnvTmp *x = (EnvTmp *)AllocCMem(sizeof(*x));
|
|
x->Next = EnvTmps;
|
|
x->Var = v;
|
|
EnvTmps = x;
|
|
}
|
|
}
|
|
#endif
|
|
if (pc->op == call_op || pc->op == either_op || pc->op == orelse_op || pc->op == push_or_op) {
|
|
#ifdef LOCALISE_VOIDS
|
|
pc->ops.opseqt[1] = (CELL)EnvTmps;
|
|
if (EnvTmps)
|
|
EnvTmps = NULL;
|
|
#endif
|
|
}
|
|
pc->nextInst = opc;
|
|
opc = pc;
|
|
pc = tpc;
|
|
}
|
|
pc = opc;
|
|
opc = NULL;
|
|
do {
|
|
PInstr *npc = pc->nextInst;
|
|
|
|
pc->nextInst = opc;
|
|
uses_var = usesvar(pc->op);
|
|
if (uses_var) {
|
|
Ventry *v = (Ventry *) (pc->rnd1);
|
|
|
|
if (v->NoOfVE == Unassigned) {
|
|
if ((v->AgeOfVE > 1 && (v->AgeOfVE > v->FirstOfVE))
|
|
|| v->KindOfVE == PermVar /*
|
|
* * || (v->FlagsOfVE & NonVoid && !(v->FlagsOfVE &
|
|
* * OnHeadFlag))
|
|
*/ ) {
|
|
v->NoOfVE = PermVar | (nperm++);
|
|
v->KindOfVE = PermVar;
|
|
v->FlagsOfVE |= PermFlag;
|
|
}
|
|
else
|
|
v->NoOfVE = v->KindOfVE = TempVar;
|
|
}
|
|
} else if (pc->op == empty_call_op) {
|
|
pc->rnd2 = nperm;
|
|
} else if (pc->op == call_op || pc->op == either_op || pc->op == orelse_op || pc->op == push_or_op) {
|
|
#ifdef LOCALISE_VOIDS
|
|
EnvTmps = (EnvTmp *)(pc->ops.opseqt[1]);
|
|
while (EnvTmps) {
|
|
Ventry *v = EnvTmps->Var;
|
|
v->NoOfVE = PermVar | (nperm++);
|
|
v->KindOfVE = PermVar;
|
|
v->FlagsOfVE |= (PermFlag|SafeVar);
|
|
EnvTmps = EnvTmps->Next;
|
|
}
|
|
#endif
|
|
pc->rnd2 = nperm;
|
|
}
|
|
opc = pc;
|
|
pc = npc;
|
|
} while (pc != NULL);
|
|
}
|
|
|
|
static CELL *
|
|
init_bvarray(int nperm)
|
|
{
|
|
CELL *vinfo = NULL;
|
|
unsigned int i;
|
|
CELL *vptr;
|
|
|
|
vptr = vinfo = (CELL *)AllocCMem(sizeof(CELL)*(1+nperm/(8*sizeof(CELL))));
|
|
for (i = 0; i <= nperm/(8*sizeof(CELL)); i++) {
|
|
*vptr++ = (CELL)(0L);
|
|
}
|
|
return(vinfo);
|
|
}
|
|
|
|
static void
|
|
clear_bvarray(int var, CELL *bvarray)
|
|
{
|
|
int max = 8*sizeof(CELL);
|
|
CELL nbit;
|
|
|
|
/* get to the array position */
|
|
while (var >= max) {
|
|
bvarray++;
|
|
var -= max;
|
|
}
|
|
/* now put a 0 on it, from now on the variable is initialised */
|
|
nbit = (1 << var);
|
|
#ifdef DEBUG
|
|
if (*bvarray & nbit) {
|
|
/* someone had already marked this variable: complain */
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "repeated bit for variable";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 2);
|
|
}
|
|
pbvars++;
|
|
#endif
|
|
*bvarray |= nbit;
|
|
}
|
|
|
|
/* copy the current state of the perm variable state array to code space */
|
|
static void
|
|
add_bvarray_op(PInstr *cp, CELL *bvarray, int env_size)
|
|
{
|
|
int i, size = env_size/(8*sizeof(CELL));
|
|
CELL *dest;
|
|
|
|
dest =
|
|
emit_extra_size(mark_initialised_pvars_op, (CELL)env_size, (size+1)*sizeof(CELL));
|
|
/* copy the cells to dest */
|
|
for (i = 0; i <= size; i++)
|
|
*dest++ = *bvarray++;
|
|
}
|
|
|
|
/* vsc: this code is not working, as it is too complex */
|
|
|
|
typedef struct {
|
|
int lab;
|
|
int last;
|
|
PInstr *pc;
|
|
} bventry;
|
|
|
|
#define MAX_DISJUNCTIONS 32
|
|
static bventry *bvstack;
|
|
static int bvindex = 0;
|
|
|
|
static void
|
|
push_bvmap(int label, PInstr *cpc)
|
|
{
|
|
if (bvindex == MAX_DISJUNCTIONS) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "Too many embedded disjunctions";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 2);
|
|
}
|
|
/* the label instruction */
|
|
bvstack[bvindex].lab = label;
|
|
bvstack[bvindex].last = -1;
|
|
/* where we have the code */
|
|
bvstack[bvindex].pc = cpc;
|
|
bvindex++;
|
|
}
|
|
|
|
static void
|
|
reset_bvmap(CELL *bvarray, int nperm)
|
|
{
|
|
int size, size1, env_size, i;
|
|
CELL *source;
|
|
if (bvindex == 0) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "No embedding in disjunctions";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 2);
|
|
}
|
|
env_size = (bvstack[bvindex-1].pc)->rnd1;
|
|
size = env_size/(8*sizeof(CELL));
|
|
size1 = nperm/(8*sizeof(CELL));
|
|
source = (bvstack[bvindex-1].pc)->arnds;
|
|
for (i = 0; i <= size; i++)
|
|
*bvarray++ = *source++;
|
|
for (i = size+1; i<= size1; i++)
|
|
*bvarray++ = (CELL)(0);
|
|
}
|
|
|
|
static void
|
|
pop_bvmap(CELL *bvarray, int nperm)
|
|
{
|
|
if (bvindex == 0) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "Too few embedded disjunctions";
|
|
/* save_machine_regs();
|
|
longjmp(CompilerBotch, 2); */
|
|
}
|
|
reset_bvmap(bvarray, nperm);
|
|
bvindex--;
|
|
}
|
|
|
|
typedef struct {
|
|
PInstr *p;
|
|
Ventry *v;
|
|
} UnsafeEntry;
|
|
|
|
/* extend to also support variable usage bitmaps for garbage collection */
|
|
static void
|
|
CheckUnsafe(PInstr *pc)
|
|
{
|
|
int pending = 0;
|
|
|
|
/* say that all variables are yet to initialise */
|
|
CELL *vstat = init_bvarray(nperm);
|
|
UnsafeEntry *UnsafeStack =
|
|
(UnsafeEntry *) AllocCMem(nperm * sizeof(UnsafeEntry));
|
|
/* keep a copy of previous cpc and CodeStart */
|
|
PInstr *opc = cpc;
|
|
PInstr *OldCodeStart = CodeStart;
|
|
|
|
CodeStart = BlobsStart;
|
|
cpc = icpc;
|
|
bvindex = 0;
|
|
bvstack = (bventry *)AllocCMem(MAX_DISJUNCTIONS * sizeof(bventry));
|
|
while (pc != NIL) {
|
|
switch(pc->op) {
|
|
case put_val_op:
|
|
{
|
|
Ventry *v = (Ventry *) (pc->rnd1);
|
|
|
|
if ((v->FlagsOfVE & PermFlag) && !(v->FlagsOfVE & SafeVar)) {
|
|
UnsafeStack[pending].p = pc;
|
|
UnsafeStack[pending++].v = v;
|
|
v->FlagsOfVE |= SafeVar;
|
|
}
|
|
break;
|
|
}
|
|
case put_var_op:
|
|
case get_var_op:
|
|
case save_b_op:
|
|
case unify_var_op:
|
|
case unify_last_var_op:
|
|
case write_var_op:
|
|
case save_appl_op:
|
|
case save_pair_op:
|
|
case f_var_op:
|
|
{
|
|
Ventry *v = (Ventry *) (pc->rnd1);
|
|
|
|
if (v->FlagsOfVE & PermFlag && pc == v->FirstOpForV) {
|
|
/* the second condition covers cases such as save_b_op
|
|
in a disjunction */
|
|
clear_bvarray((v->NoOfVE & MaskVarAdrs), vstat);
|
|
}
|
|
}
|
|
break;
|
|
case push_or_op:
|
|
emit(label_op, ++labelno, Zero);
|
|
pc->ops.opseqt[1] = (CELL)labelno;
|
|
add_bvarray_op(pc, vstat, pc->rnd2);
|
|
push_bvmap((CELL)labelno, cpc);
|
|
break;
|
|
case either_op:
|
|
/* add a first entry to the array */
|
|
emit(label_op, ++labelno, Zero);
|
|
pc->ops.opseqt[1] = (CELL)labelno;
|
|
add_bvarray_op(pc, vstat, pc->rnd2);
|
|
break;
|
|
case pushpop_or_op:
|
|
reset_bvmap(vstat, nperm);
|
|
break;
|
|
case orelse_op:
|
|
emit(label_op, ++labelno, Zero);
|
|
pc->ops.opseqt[1] = (CELL)labelno;
|
|
add_bvarray_op(pc, vstat, pc->rnd2);
|
|
break;
|
|
case pop_or_op:
|
|
pop_bvmap(vstat, nperm);
|
|
break;
|
|
case empty_call_op:
|
|
/* just get ourselves a label describing how
|
|
many permanent variables are alive */
|
|
emit(label_op, ++labelno, Zero);
|
|
pc->rnd1 = (CELL)labelno;
|
|
add_bvarray_op(pc, vstat, pc->rnd2);
|
|
break;
|
|
case call_op:
|
|
emit(label_op, ++labelno, Zero);
|
|
pc->ops.opseqt[1] = (CELL)labelno;
|
|
add_bvarray_op(pc, vstat, pc->rnd2);
|
|
case deallocate_op:
|
|
{
|
|
int n = pc->op == call_op ? pc->rnd2 : 0;
|
|
int no;
|
|
|
|
while (pending) {
|
|
Ventry *v = UnsafeStack[--pending].v;
|
|
|
|
v->FlagsOfVE &= ~SafeVar;
|
|
no = (v->NoOfVE) & MaskVarAdrs;
|
|
if (no >= n)
|
|
UnsafeStack[pending].p->op = put_unsafe_op;
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
pc = pc->nextInst;
|
|
}
|
|
icpc = cpc;
|
|
cpc = opc;
|
|
BlobsStart = CodeStart;
|
|
CodeStart = OldCodeStart;
|
|
}
|
|
|
|
static void
|
|
CheckVoids(void)
|
|
{ /* establish voids in the head and initial
|
|
* uses */
|
|
Ventry *ve;
|
|
|
|
cpc = CodeStart;
|
|
while ((ic = cpc->op) != allocate_op) {
|
|
ic = cpc->op;
|
|
#ifdef M_WILLIAMS
|
|
switch ((int) ic) {
|
|
#else
|
|
switch (ic) {
|
|
#endif
|
|
case get_var_op:
|
|
case unify_var_op:
|
|
case unify_last_var_op:
|
|
#ifdef SFUNC
|
|
case unify_s_var_op:
|
|
#endif
|
|
case save_pair_op:
|
|
case save_appl_op:
|
|
ve = ((Ventry *) cpc->rnd1);
|
|
if ((ve->FlagsOfVE & PermFlag) == 0 && ve->RCountOfVE <= 1) {
|
|
ve->NoOfVE = ve->KindOfVE = VoidVar;
|
|
if (ic == get_var_op || ic ==
|
|
save_pair_op || ic == save_appl_op
|
|
#ifdef SFUNC
|
|
|| ic == unify_s_var_op
|
|
#endif
|
|
) {
|
|
cpc->op = nop_op;
|
|
break;
|
|
}
|
|
}
|
|
if (ic != get_var_op)
|
|
break;
|
|
case get_val_op:
|
|
case get_atom_op:
|
|
case get_num_op:
|
|
case get_float_op:
|
|
case get_longint_op:
|
|
case get_bigint_op:
|
|
case get_list_op:
|
|
case get_struct_op:
|
|
Uses[cpc->rnd2] = 1;
|
|
}
|
|
cpc = cpc->nextInst;
|
|
}
|
|
}
|
|
|
|
static int
|
|
checktemp(void)
|
|
{
|
|
Ventry *v = (Ventry *) arg;
|
|
PInstr *q;
|
|
Int Needed[MaxTemps];
|
|
Int r, target1, target2;
|
|
Int n, *np, *rp;
|
|
CELL *cp;
|
|
|
|
vadr = (v->NoOfVE);
|
|
vreg = vadr & MaskVarAdrs;
|
|
if (v->KindOfVE == PermVar || v->KindOfVE == VoidVar)
|
|
return (0);
|
|
if (v->RCountOfVE == 1)
|
|
return(0);
|
|
if (vreg) {
|
|
--Uses[vreg];
|
|
return (1);
|
|
}
|
|
/* follow the life of the variable */
|
|
q = cpc;
|
|
/*
|
|
* for(r=0; r<MaxCTemps; ++r) Needed[r] = Uses[r]; might be written
|
|
* as:
|
|
*/
|
|
np = Needed;
|
|
rp = Uses;
|
|
for (r = 0; r < MaxCTemps; ++r)
|
|
*np++ = *rp++;
|
|
if (rn > 0 && (ic == get_var_op || ic == put_var_op)) {
|
|
if (ic == put_var_op)
|
|
Needed[rn] = 1;
|
|
target1 = rn; /* try to leave it where it is */
|
|
}
|
|
else
|
|
target1 = MaxCTemps;
|
|
target2 = MaxCTemps;
|
|
n = v->RCountOfVE - 1;
|
|
while ((q = q->nextInst) != NIL) {
|
|
if (q->rnd2 < 0);
|
|
else if (usesvar(ic = q->op) && arg == q->rnd1) {
|
|
--n;
|
|
if (ic == put_val_op) {
|
|
if (target1 == MaxCTemps && Needed[q->rnd2] == 0)
|
|
target1 = q->rnd2;
|
|
else if (target1 != (r = q->rnd2)) {
|
|
if (target2 == MaxCTemps && Needed[r] == 0)
|
|
target2 = r;
|
|
else if (target2 > r && Uses[r] == 0 && Needed[r] == 0)
|
|
target2 = r;
|
|
}
|
|
}
|
|
}
|
|
#ifdef SFUNC
|
|
else if ((ic >= get_var_op && ic <= put_unsafe_op)
|
|
|| ic == get_s_f_op || ic == put_s_f_op)
|
|
Needed[q->rnd2] = 1;
|
|
#else
|
|
else if (ic >= get_var_op && ic <= put_unsafe_op)
|
|
Needed[q->rnd2] = 1;
|
|
#endif
|
|
if ((ic == call_op || ic == safe_call_op) && n == 0)
|
|
break;
|
|
}
|
|
if (target2 < target1) {
|
|
r = target2;
|
|
target2 = target1;
|
|
target1 = r;
|
|
}
|
|
if (target1 == MaxCTemps || Uses[target1] || Needed[target1])
|
|
if ((target1 = target2) == MaxCTemps || Uses[target1] || Needed[target1]) {
|
|
target1 = MaxCTemps;
|
|
do
|
|
--target1;
|
|
while (target1 && Uses[target1] == 0 && Needed[target1] == 0);
|
|
++target1;
|
|
}
|
|
if (target1 == MaxCTemps) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "too many temporaries";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 1);
|
|
}
|
|
v->NoOfVE = vadr = TempVar | target1;
|
|
v->KindOfVE = TempVar;
|
|
Uses[vreg = target1] = v->RCountOfVE - 1;
|
|
/*
|
|
* for(r=0; r<MaxCTemps; ++r) if(Contents[r]==vadr) Contents[r] =
|
|
* NIL;
|
|
*/
|
|
cp = Contents;
|
|
for (r = 0; r < MaxCTemps; ++r)
|
|
if (*cp++ == (Term)vadr)
|
|
cp[-1] = NIL;
|
|
Contents[vreg] = vadr;
|
|
ic = cpc->op;
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
checkreg(int var_arg)
|
|
{
|
|
PInstr *p = cpc;
|
|
|
|
if (rn >= 0)
|
|
return;
|
|
vreg = 0;
|
|
if (var_arg) {
|
|
Ventry *v = (Ventry *) arg;
|
|
|
|
vreg = (v->NoOfVE) & MaskVarAdrs;
|
|
if (v->KindOfVE == PermVar)
|
|
vreg = 0;
|
|
else if (vreg == 0) {
|
|
checktemp();
|
|
++Uses[vreg];
|
|
}
|
|
}
|
|
if (vreg == 0) {
|
|
vreg = MaxCTemps;
|
|
do
|
|
--vreg;
|
|
while (vreg && Uses[vreg] == 0);
|
|
++vreg;
|
|
++Uses[vreg];
|
|
}
|
|
while (p) {
|
|
if (p->op >= get_var_op && p->op <= put_unsafe_op && p->rnd2 == rn)
|
|
p->rnd2 = vreg;
|
|
/* only copy variables until you reach a call */
|
|
if (p->op == procceed_op || p->op == call_op || p->op == push_or_op || p->op == pushpop_or_op)
|
|
break;
|
|
p = p->nextInst;
|
|
}
|
|
rn = vreg;
|
|
}
|
|
|
|
/* Create a bitmap with all live variables */
|
|
static CELL
|
|
copy_live_temps_bmap(int max)
|
|
{
|
|
unsigned int size = (max|7)/8+1;
|
|
int i;
|
|
CELL *dest = emit_extra_size(mark_live_regs_op, max, size);
|
|
CELL *ptr=dest;
|
|
*ptr = 0L;
|
|
for (i=1; i <= max; i++) {
|
|
/* move to next cell */
|
|
if (i%(8*CellSize) == 0) {
|
|
ptr++;
|
|
*ptr = 0L;
|
|
}
|
|
/* set the register live bit */
|
|
if (Contents[i]) {
|
|
int j = i%(8*CellSize);
|
|
*ptr |= (1<<j);
|
|
}
|
|
}
|
|
return((CELL)dest);
|
|
}
|
|
|
|
static void
|
|
c_layout(void)
|
|
{
|
|
PInstr *savepc = BodyStart->nextInst;
|
|
register Ventry *v = vtable;
|
|
Int *up = Uses, Arity;
|
|
CELL *cop = Contents;
|
|
|
|
cpc = BodyStart;
|
|
while (v != NIL) {
|
|
if (v->FlagsOfVE & BranchVar) {
|
|
v->AgeOfVE = v->FirstOfVE + 1; /* force permanent */
|
|
++(v->RCountOfVE);
|
|
emit(put_var_op, (CELL) v, Zero);
|
|
v->FlagsOfVE &= ~GlobalVal;
|
|
v->FirstOpForV = cpc;
|
|
}
|
|
v = v->NextOfVE;
|
|
}
|
|
cpc->nextInst = savepc;
|
|
|
|
nperm = 0;
|
|
AssignPerm(CodeStart);
|
|
/* vsc: need to do it from the beginning to find which perm vars are active */
|
|
/* CheckUnsafe(BodyStart); */
|
|
#ifdef DEBUG
|
|
pbvars = 0;
|
|
#endif
|
|
CheckUnsafe(CodeStart);
|
|
#ifdef DEBUG
|
|
if (pbvars != nperm) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "wrong number of variables found in bitmap";
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch, 2);
|
|
}
|
|
#endif
|
|
MaxCTemps = nvars + max_args - tmpreg + n_common_exps + 2;
|
|
if (MaxCTemps >= MaxTemps)
|
|
MaxCTemps = MaxTemps;
|
|
for (rn = 0; rn < MaxCTemps; ++rn) {
|
|
/* Uses[rn] = 0; Contents[rn] = NIL; */
|
|
*up++ = 0;
|
|
*cop++ = NIL;
|
|
}
|
|
CheckVoids();
|
|
/* second scan: allocate registers */
|
|
cpc = CodeStart;
|
|
while (cpc) {
|
|
ic = cpc->op;
|
|
arg = cpc->rnd1;
|
|
rn = cpc->rnd2;
|
|
#ifdef M_WILLIAMS
|
|
switch ((int) ic) {
|
|
#else
|
|
switch (ic) {
|
|
#endif
|
|
case allocate_op:
|
|
case deallocate_op:
|
|
#ifdef TABLING
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if (is_tabled(CurrentPred))
|
|
cpc->op = nop_op;
|
|
else
|
|
#endif /* TABLING */
|
|
if (goalno == 1 && or_found == 0 && nperm == 0)
|
|
cpc->op = nop_op;
|
|
#ifdef TABLING
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
#endif
|
|
break;
|
|
case pop_op:
|
|
ic = (cpc->nextInst)->op;
|
|
if (ic >= get_var_op && ic <= put_unsafe_op)
|
|
cpc->op = nop_op;
|
|
break;
|
|
case get_var_op:
|
|
--Uses[rn];
|
|
if (checktemp()) {
|
|
if (vreg == rn)
|
|
cpc->op = nop_op;
|
|
}
|
|
Contents[rn] = vadr;
|
|
break;
|
|
case get_val_op:
|
|
--Uses[rn];
|
|
checktemp();
|
|
Contents[rn] = vadr;
|
|
break;
|
|
case f_var_op:
|
|
case unify_var_op:
|
|
case unify_val_op:
|
|
case unify_last_var_op:
|
|
case unify_last_val_op:
|
|
#ifdef SFUNC
|
|
case unify_s_var_op:
|
|
case unify_s_val_op:
|
|
#endif
|
|
case fetch_args_for_bccall:
|
|
case bccall_op:
|
|
checktemp();
|
|
break;
|
|
case get_atom_op:
|
|
case get_num_op:
|
|
case get_float_op:
|
|
case get_longint_op:
|
|
case get_bigint_op:
|
|
--Uses[rn];
|
|
Contents[rn] = arg;
|
|
break;
|
|
case get_list_op:
|
|
case get_struct_op:
|
|
Contents[rn] = NIL;
|
|
--Uses[rn];
|
|
break;
|
|
case put_var_op:
|
|
case put_unsafe_op:
|
|
checkreg(TRUE);
|
|
checktemp();
|
|
Contents[rn] = vadr;
|
|
++Uses[rn];
|
|
break;
|
|
case put_val_op:
|
|
checkreg(TRUE);
|
|
checktemp();
|
|
if (Contents[rn] == (Term)vadr)
|
|
cpc->op = nop_op;
|
|
Contents[rn] = vadr;
|
|
++Uses[rn];
|
|
break;
|
|
#ifdef SFUNC
|
|
case write_s_var_op:
|
|
{
|
|
Ventry *ve = (Ventry *) arg;
|
|
|
|
if ((ve->FlagsOfVE & PermFlag) == 0 && ve->RCountOfVE <= 1)
|
|
cpc->op = nop_op;
|
|
}
|
|
break;
|
|
case write_s_val_op:
|
|
#endif
|
|
case write_var_op:
|
|
case write_val_op:
|
|
case f_val_op:
|
|
checktemp();
|
|
break;
|
|
#ifdef SFUNC
|
|
case put_s_f_op:
|
|
Contents[rn] = arg;
|
|
++Uses[rn];
|
|
break;
|
|
#endif
|
|
case put_atom_op:
|
|
case put_num_op:
|
|
case put_float_op:
|
|
case put_longint_op:
|
|
case put_bigint_op:
|
|
checkreg(FALSE);
|
|
if (Contents[rn] == arg)
|
|
cpc->op = nop_op;
|
|
Contents[rn] = arg;
|
|
++Uses[rn];
|
|
break;
|
|
case put_list_op:
|
|
case put_struct_op:
|
|
checkreg(FALSE);
|
|
Contents[rn] = NIL;
|
|
++Uses[rn];
|
|
break;
|
|
case save_b_op:
|
|
case comit_b_op:
|
|
case patch_b_op:
|
|
case save_appl_op:
|
|
case save_pair_op:
|
|
checktemp();
|
|
break;
|
|
case safe_call_op:
|
|
Arity = RepPredProp((Prop) arg)->ArityOfPE;
|
|
for (rn = 1; rn <= Arity; ++rn)
|
|
--Uses[rn];
|
|
break;
|
|
case call_op:
|
|
case label_op:
|
|
/*
|
|
* for(rn=1; rn<MaxCTemps; ++rn) Uses[rn] =
|
|
* Contents[rn] = NIL;
|
|
*/
|
|
up = Uses;
|
|
cop = Contents;
|
|
for (rn = 1; rn < MaxCTemps; ++rn)
|
|
*up++ = *cop++ = NIL;
|
|
break;
|
|
case restore_tmps_and_skip_op:
|
|
case restore_tmps_op:
|
|
/*
|
|
This instruction is required by the garbage collector to find out
|
|
how many temporaries are live right now. It is also useful when
|
|
waking up goals before an either or ! instruction.
|
|
*/
|
|
{
|
|
PInstr *mycpc = cpc, *oldCodeStart = CodeStart;
|
|
int i, max;
|
|
|
|
/* instructions must be placed at BlobsStart */
|
|
CodeStart = BlobsStart;
|
|
cpc = icpc;
|
|
max = 0;
|
|
for (i = 1; i < MaxCTemps; ++i) {
|
|
if (Contents[i]) max = i;
|
|
}
|
|
emit(label_op, ++labelno, Zero);
|
|
mycpc->rnd1 = labelno;
|
|
rn = copy_live_temps_bmap(max);
|
|
icpc = cpc;
|
|
BlobsStart = CodeStart;
|
|
cpc = mycpc;
|
|
CodeStart = oldCodeStart;
|
|
}
|
|
break;
|
|
}
|
|
if (cpc->nextInst)
|
|
cpc = cpc->nextInst;
|
|
else return;
|
|
}
|
|
}
|
|
|
|
static void
|
|
c_optimize(PInstr *pc)
|
|
{
|
|
char onTail;
|
|
Ventry *v;
|
|
PInstr *opc = NULL;
|
|
|
|
/* first reverse the pointers */
|
|
while (pc != NULL) {
|
|
PInstr *tpc = pc->nextInst;
|
|
pc->nextInst = opc;
|
|
opc = pc;
|
|
pc = tpc;
|
|
}
|
|
pc = opc;
|
|
opc = NULL;
|
|
onTail = 1;
|
|
do {
|
|
PInstr *npc = pc->nextInst;
|
|
pc->nextInst = opc;
|
|
switch (pc->op) {
|
|
case save_pair_op:
|
|
{
|
|
Term ve = (Term) pc->rnd1;
|
|
PInstr *npc = pc->nextInst;
|
|
|
|
if (((Ventry *) ve)->RCountOfVE <= 1)
|
|
pc->op = nop_op;
|
|
else {
|
|
*pc = *npc;
|
|
pc->nextInst = npc;
|
|
npc->op = save_pair_op;
|
|
npc->rnd1 = (CELL) ve;
|
|
}
|
|
}
|
|
break;
|
|
case save_appl_op:
|
|
{
|
|
Term ve = (Term) pc->rnd1;
|
|
PInstr *npc = pc->nextInst;
|
|
|
|
if (((Ventry *) ve)->RCountOfVE <= 1)
|
|
pc->op = nop_op;
|
|
else {
|
|
*pc = *npc;
|
|
pc->nextInst = npc;
|
|
npc->op = save_appl_op;
|
|
npc->rnd1 = (CELL) ve;
|
|
}
|
|
break;
|
|
}
|
|
case nop_op:
|
|
break;
|
|
case unify_var_op:
|
|
case unify_last_var_op:
|
|
#ifdef OLD_SYSTEM
|
|
/* In the good old days Yap would remove lots of small void
|
|
* instructions for a structure. This is not such a
|
|
* good idea nowadays, as we need to know where we
|
|
* finish the structure for the last instructions to
|
|
* work correctly. Instead, we will use unify_void
|
|
* with very little overhead */
|
|
v = (Ventry *) (pc->rnd1);
|
|
if (v->KindOfVE == VoidVar && onTail) {
|
|
pc->op = nop_op;
|
|
}
|
|
else
|
|
#endif /* OLD_SYSTEM */
|
|
onTail = 0;
|
|
break;
|
|
case unify_val_op:
|
|
v = (Ventry *) (pc->rnd1);
|
|
if (!(v->FlagsOfVE & GlobalVal))
|
|
pc->op = unify_local_op;
|
|
onTail = 0;
|
|
break;
|
|
case unify_last_val_op:
|
|
v = (Ventry *) (pc->rnd1);
|
|
if (!(v->FlagsOfVE & GlobalVal))
|
|
pc->op = unify_last_local_op;
|
|
onTail = 0;
|
|
break;
|
|
case write_val_op:
|
|
v = (Ventry *) (pc->rnd1);
|
|
if (!(v->FlagsOfVE & GlobalVal))
|
|
pc->op = write_local_op;
|
|
onTail = 0;
|
|
break;
|
|
case pop_op:
|
|
if (FALSE && onTail == 1) {
|
|
pc->op = nop_op;
|
|
onTail = 1;
|
|
break;
|
|
}
|
|
else {
|
|
PInstr *p = pc->nextInst;
|
|
|
|
while (p != NIL && p->op == nop_op)
|
|
p = p->nextInst;
|
|
if (p != NIL && p->op == pop_op) {
|
|
pc->rnd1 += p->rnd1;
|
|
pc->nextInst = p->nextInst;
|
|
}
|
|
onTail = 2;
|
|
break;
|
|
}
|
|
case write_var_op:
|
|
case unify_atom_op:
|
|
case unify_last_atom_op:
|
|
case write_atom_op:
|
|
case unify_num_op:
|
|
case unify_last_num_op:
|
|
case write_num_op:
|
|
case unify_float_op:
|
|
case unify_last_float_op:
|
|
case write_float_op:
|
|
case unify_longint_op:
|
|
case unify_bigint_op:
|
|
case unify_last_longint_op:
|
|
case unify_last_bigint_op:
|
|
case write_longint_op:
|
|
case write_bigint_op:
|
|
case unify_list_op:
|
|
case write_list_op:
|
|
case unify_struct_op:
|
|
case write_struct_op:
|
|
case write_unsafe_op:
|
|
case unify_last_list_op:
|
|
case write_last_list_op:
|
|
case unify_last_struct_op:
|
|
case write_last_struct_op:
|
|
#ifdef SFUNC
|
|
case unify_s_f_op:
|
|
case write_s_f_op:
|
|
#endif
|
|
onTail = 0;
|
|
break;
|
|
default:
|
|
onTail = 1;
|
|
break;
|
|
}
|
|
opc = pc;
|
|
pc = npc;
|
|
} while (pc != NULL);
|
|
}
|
|
|
|
CODEADDR
|
|
cclause(Term inp_clause, int NOfArgs, int mod)
|
|
{ /* compile a prolog clause, copy of clause myst be in ARG1 */
|
|
/* returns address of code for clause */
|
|
Term head, body;
|
|
CELL *SaveH;
|
|
CODEADDR acode;
|
|
|
|
volatile int maxvnum = 512;
|
|
int botch_why;
|
|
volatile Term my_clause = inp_clause;
|
|
/* may botch while doing a different module */
|
|
|
|
/* first, initialise CompilerBotch to handle all cases of interruptions */
|
|
ErrorMessage = NIL;
|
|
if ((botch_why = setjmp(CompilerBotch)) == 3) {
|
|
/* out of local stack, just duplicate the stack */
|
|
restore_machine_regs();
|
|
reset_vars();
|
|
{
|
|
Int osize = 2*sizeof(CELL)*(ASP-H);
|
|
ARG1 = my_clause;
|
|
if (!gc(2, ENV, P)) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = my_clause;
|
|
ErrorMessage = "not enough stack";
|
|
}
|
|
if (osize > ASP-H) {
|
|
if (!growstack(2*sizeof(CELL)*(ASP-H))) {
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = my_clause;
|
|
ErrorMessage = "not enough stack";
|
|
}
|
|
}
|
|
my_clause = ARG1;
|
|
}
|
|
} else if (botch_why == 4) {
|
|
/* out of temporary cells */
|
|
restore_machine_regs();
|
|
reset_vars();
|
|
if (maxvnum < 16*1024) {
|
|
maxvnum *= 2;
|
|
} else {
|
|
maxvnum += 4096;
|
|
}
|
|
} else if (botch_why == 2) {
|
|
/* not enough heap */
|
|
restore_machine_regs();
|
|
reset_vars();
|
|
Error_TYPE = SYSTEM_ERROR;
|
|
Error_Term = TermNil;
|
|
ErrorMessage = "not enough heap space to compile clause";
|
|
return(0);
|
|
}
|
|
restart_compilation:
|
|
if (ErrorMessage != NIL) {
|
|
reset_vars();
|
|
return (0);
|
|
}
|
|
SaveH = H;
|
|
c_mask = 0;
|
|
or_found = 0;
|
|
ErrorMessage = NULL;
|
|
/* initialize variables for code generation */
|
|
CodeStart = cpc = NULL;
|
|
BlobsStart = icpc = NULL;
|
|
freep = freep0 = (char *) (H + maxvnum);
|
|
if (ASP <= CellPtr (freep) + 256) {
|
|
vtable = NIL;
|
|
save_machine_regs();
|
|
longjmp(CompilerBotch,3);
|
|
}
|
|
common_exps = NULL;
|
|
n_common_exps = 0;
|
|
cur_branch = onbranch = 0;
|
|
branch_pointer = parent_branches;
|
|
tmpreg = 0;
|
|
nvars = 0;
|
|
max_args = 0;
|
|
/*
|
|
* 2000 added to H in case we need to construct call(G) when G is a
|
|
* variable used as a goal
|
|
*/
|
|
vtable = NIL;
|
|
labelno = 0L;
|
|
|
|
if (IsVarTerm(my_clause)) {
|
|
Error_TYPE = INSTANTIATION_ERROR;
|
|
Error_Term = my_clause;
|
|
ErrorMessage = "in compiling clause";
|
|
return (0);
|
|
}
|
|
if (IsApplTerm(my_clause) && FunctorOfTerm(my_clause) == FunctorAssert) {
|
|
head = ArgOfTerm(1, my_clause);
|
|
body = ArgOfTerm(2, my_clause);
|
|
}
|
|
else {
|
|
head = my_clause, body = MkAtomTerm(AtomTrue);
|
|
}
|
|
if (IsVarTerm(head) || IsPairTerm(head) || IsIntTerm(head) || IsFloatTerm(head) || IsRefTerm(head)) {
|
|
Error_TYPE = TYPE_ERROR_CALLABLE;
|
|
Error_Term = my_clause;
|
|
ErrorMessage = "clause should be atom or term";
|
|
return (0);
|
|
} else {
|
|
|
|
/* find out which predicate we are compiling for */
|
|
if (IsAtomTerm(head)) {
|
|
Atom ap = AtomOfTerm(head);
|
|
CurrentPred = RepPredProp(PredPropByAtom(ap, mod));
|
|
} else {
|
|
CurrentPred = RepPredProp(PredPropByFunc(FunctorOfTerm(head),mod));
|
|
}
|
|
/* insert extra instructions to count calls */
|
|
READ_LOCK(CurrentPred->PRWLock);
|
|
if ((CurrentPred->PredFlags & ProfiledPredFlag) ||
|
|
(PROFILING && (CurrentPred->FirstClause == NIL)))
|
|
profiling = TRUE;
|
|
else
|
|
profiling = FALSE;
|
|
READ_UNLOCK(CurrentPred->PRWLock);
|
|
}
|
|
/* phase 1 : produce skeleton code and variable information */
|
|
c_head(head);
|
|
emit(allocate_op, Zero, Zero);
|
|
c_body(body, mod);
|
|
/* Insert blobs at the very end */
|
|
if (BlobsStart != NULL) {
|
|
cpc->nextInst = BlobsStart;
|
|
BlobsStart = NULL;
|
|
}
|
|
reset_vars();
|
|
H = SaveH;
|
|
if (ErrorMessage)
|
|
return (0);
|
|
#ifdef DEBUG
|
|
if (Option['g' - 96])
|
|
ShowCode();
|
|
#endif
|
|
/* phase 2: classify variables and optimize temporaries */
|
|
c_layout();
|
|
/* Insert blobs at the very end */
|
|
if (BlobsStart != NULL) {
|
|
cpc->nextInst = BlobsStart;
|
|
BlobsStart = NULL;
|
|
while (cpc->nextInst != NULL)
|
|
cpc = cpc->nextInst;
|
|
}
|
|
/* eliminate superfluous pop's and unify_var's */
|
|
c_optimize(CodeStart);
|
|
#ifdef DEBUG
|
|
if (Option['f' - 96])
|
|
ShowCode();
|
|
#endif
|
|
/* phase 3: assemble code */
|
|
acode = assemble(ASSEMBLING_CLAUSE);
|
|
/* check first if there was space for us */
|
|
if (acode == NIL) {
|
|
/* make sure we have enough space */
|
|
reset_vars();
|
|
if (!growheap(FALSE)) {
|
|
save_machine_regs();
|
|
my_clause = Deref(ARG1);
|
|
longjmp(CompilerBotch, 2);
|
|
return(NULL);
|
|
} else {
|
|
my_clause = Deref(ARG1);
|
|
goto restart_compilation;
|
|
}
|
|
} else
|
|
return(acode);
|
|
}
|
|
|