This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CLPBN/clpbn/examples/School
2008-10-31 15:11:27 +00:00
..
evidence_128.yap fix overflow 2007-10-28 11:23:41 +00:00
parlearn.yap make or-parallelism compile again 2008-03-25 16:45:53 +00:00
README CLP(BN) examples 2006-01-17 16:35:51 +00:00
sample32.yap make or-parallelism compile again 2008-03-25 16:45:53 +00:00
schema.yap CLP(BN) examples 2006-01-17 16:35:51 +00:00
school_32.yap CLP(BN) examples 2006-01-17 16:35:51 +00:00
school_64.yap CLP(BN) examples 2006-01-17 16:35:51 +00:00
school_128.yap CLP(BN) examples 2006-01-17 16:35:51 +00:00
tables.yap more CLP(BN) fixes, add softening option when computing MLE estimators. 2008-10-31 15:11:27 +00:00

This is a version of the school database, based on the PRM School example.

There are four main files:

school_128.yap: a school with 128 professors, 256 courses and 4096 students.
school_64.yap: medium size school
school_32.yap: small school

schema.yap: the schema
tables: CPTs





professor_ability(p0,X).

professor_popularity(p0,X).

professor_ability(p0,X), professor_popularity(p0,h).

professor_ability(p0,h), professor_popularity(p0,X).

registration_grade(r0,X).

registration_grade(r0,X), registration_course(r0,C), course_difficulty(C,h).

registration_grade(r0,X), registration_course(r0,C), course_difficulty(C,h), registration_student(r0,S), student_intelligence(S,h).

registration_grade(r0,X), registration_course(r0,C), course_difficulty(C,l), registration_student(r0,S), student_intelligence(S,h).

registration_satisfaction(r0,X).

registration_satisfaction(r0,X), registration_student(r0,S), student_intelligence(S,h).

registration_satisfaction(r0,X), registration_grade(r0,a).

registration_satisfaction(r0,X), registration_grade(r0,d).

registration_satisfaction(r0,h), registration_grade(r0,X).

course_rating(c0,X).

course_rating(c0,h), course_difficulty(c0,X).

course_difficulty(c0,X).

student_ranking(s0,X).

student_ranking(s0,X), student_intelligence(s0,h).