288 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  ---------------------------------------------------------------------------
 | |
|  Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 | |
| 
 | |
|  LICENSE TERMS
 | |
| 
 | |
|  The free distribution and use of this software in both source and binary
 | |
|  form is allowed (with or without changes) provided that:
 | |
| 
 | |
|    1. distributions of this source code include the above copyright
 | |
|       notice, this list of conditions and the following disclaimer;
 | |
| 
 | |
|    2. distributions in binary form include the above copyright
 | |
|       notice, this list of conditions and the following disclaimer
 | |
|       in the documentation and/or other associated materials;
 | |
| 
 | |
|    3. the copyright holder's name is not used to endorse products
 | |
|       built using this software without specific written permission.
 | |
| 
 | |
|  ALTERNATIVELY, provided that this notice is retained in full, this product
 | |
|  may be distributed under the terms of the GNU General Public License (GPL),
 | |
|  in which case the provisions of the GPL apply INSTEAD OF those given above.
 | |
| 
 | |
|  DISCLAIMER
 | |
| 
 | |
|  This software is provided 'as is' with no explicit or implied warranties
 | |
|  in respect of its properties, including, but not limited to, correctness
 | |
|  and/or fitness for purpose.
 | |
|  ---------------------------------------------------------------------------
 | |
|  Issue Date: 01/08/2005
 | |
| 
 | |
|  This is a bit oriented version of SHA1 that operates on arrays of bytes
 | |
|  stored in memory.
 | |
| */
 | |
| 
 | |
| #include <string.h>     /* for memcpy() etc.        */
 | |
| 
 | |
| #include "sha1.h"
 | |
| #include "brg_endian.h"
 | |
| 
 | |
| #if defined(__cplusplus)
 | |
| extern "C"
 | |
| {
 | |
| #endif
 | |
| 
 | |
| #if defined( _MSC_VER ) && ( _MSC_VER > 800 )
 | |
| #pragma intrinsic(memcpy)
 | |
| #endif
 | |
| 
 | |
| #if 0 && defined(_MSC_VER)
 | |
| #define rotl32  _lrotl
 | |
| #define rotr32  _lrotr
 | |
| #else
 | |
| #define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
 | |
| #define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
 | |
| #endif
 | |
| 
 | |
| #if !defined(bswap_32)
 | |
| #define bswap_32(x) (rotr32((x), 24) & 0x00ff00ff | rotr32((x), 8) & 0xff00ff00)
 | |
| #endif
 | |
| 
 | |
| #if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
 | |
| #define SWAP_BYTES
 | |
| #else
 | |
| #undef  SWAP_BYTES
 | |
| #endif
 | |
| 
 | |
| #if defined(SWAP_BYTES)
 | |
| #define bsw_32(p,n) \
 | |
|     { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
 | |
| #else
 | |
| #define bsw_32(p,n)
 | |
| #endif
 | |
| 
 | |
| #define SHA1_MASK   (SHA1_BLOCK_SIZE - 1)
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| #define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
 | |
| #define parity(x,y,z)   ((x) ^ (y) ^ (z))
 | |
| #define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 | |
| 
 | |
| #else   /* Discovered by Rich Schroeppel and Colin Plumb   */
 | |
| 
 | |
| #define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
 | |
| #define parity(x,y,z)   ((x) ^ (y) ^ (z))
 | |
| #define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Compile 64 bytes of hash data into SHA1 context. Note    */
 | |
| /* that this routine assumes that the byte order in the     */
 | |
| /* ctx->wbuf[] at this point is in such an order that low   */
 | |
| /* address bytes in the ORIGINAL byte stream in this buffer */
 | |
| /* will go to the high end of 32-bit words on BOTH big and  */
 | |
| /* little endian systems                                    */
 | |
| 
 | |
| #ifdef ARRAY
 | |
| #define q(n)    v[n]
 | |
| #else
 | |
| #define q(n)    v##n
 | |
| #endif
 | |
| 
 | |
| #define one_cycle(a,b,c,d,e,f,k,h)                      \
 | |
|     q(e) += rotr32(q(a),27) + f(q(b),q(c),q(d)) + k + h;\
 | |
|     q(b)  = rotr32(q(b), 2)
 | |
| 
 | |
| #define five_cycle(f,k,i)               \
 | |
|     one_cycle(0,1,2,3,4, f,k,hf(i  ));  \
 | |
|     one_cycle(4,0,1,2,3, f,k,hf(i+1));  \
 | |
|     one_cycle(3,4,0,1,2, f,k,hf(i+2));  \
 | |
|     one_cycle(2,3,4,0,1, f,k,hf(i+3));  \
 | |
|     one_cycle(1,2,3,4,0, f,k,hf(i+4))
 | |
| 
 | |
| VOID_RETURN sha1_compile(sha1_ctx ctx[1])
 | |
| {   uint_32t    *w = ctx->wbuf;
 | |
| 
 | |
| #ifdef ARRAY
 | |
|     uint_32t    v[5];
 | |
|     memcpy(v, ctx->hash, 5 * sizeof(uint_32t));
 | |
| #else
 | |
|     uint_32t    v0, v1, v2, v3, v4;
 | |
|     v0 = ctx->hash[0]; v1 = ctx->hash[1];
 | |
|     v2 = ctx->hash[2]; v3 = ctx->hash[3];
 | |
|     v4 = ctx->hash[4];
 | |
| #endif
 | |
| 
 | |
| #define hf(i)   w[i]
 | |
| 
 | |
|     five_cycle(ch, 0x5a827999,  0);
 | |
|     five_cycle(ch, 0x5a827999,  5);
 | |
|     five_cycle(ch, 0x5a827999, 10);
 | |
|     one_cycle(0,1,2,3,4, ch, 0x5a827999, hf(15));   \
 | |
| 
 | |
| #undef  hf
 | |
| #define hf(i) \
 | |
|     (w[(i) & 15] = rotl32(w[((i) + 13) & 15] ^ w[((i) + 8) & 15]    \
 | |
|                         ^ w[((i) +  2) & 15] ^ w[(i) & 15], 1))
 | |
| 
 | |
|     one_cycle(4,0,1,2,3, ch, 0x5a827999, hf(16));
 | |
|     one_cycle(3,4,0,1,2, ch, 0x5a827999, hf(17));
 | |
|     one_cycle(2,3,4,0,1, ch, 0x5a827999, hf(18));
 | |
|     one_cycle(1,2,3,4,0, ch, 0x5a827999, hf(19));
 | |
| 
 | |
|     five_cycle(parity, 0x6ed9eba1,  20);
 | |
|     five_cycle(parity, 0x6ed9eba1,  25);
 | |
|     five_cycle(parity, 0x6ed9eba1,  30);
 | |
|     five_cycle(parity, 0x6ed9eba1,  35);
 | |
| 
 | |
|     five_cycle(maj, 0x8f1bbcdc,  40);
 | |
|     five_cycle(maj, 0x8f1bbcdc,  45);
 | |
|     five_cycle(maj, 0x8f1bbcdc,  50);
 | |
|     five_cycle(maj, 0x8f1bbcdc,  55);
 | |
| 
 | |
|     five_cycle(parity, 0xca62c1d6,  60);
 | |
|     five_cycle(parity, 0xca62c1d6,  65);
 | |
|     five_cycle(parity, 0xca62c1d6,  70);
 | |
|     five_cycle(parity, 0xca62c1d6,  75);
 | |
| 
 | |
| #ifdef ARRAY
 | |
|     ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
 | |
|     ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
 | |
|     ctx->hash[4] += v[4];
 | |
| #else
 | |
|     ctx->hash[0] += v0; ctx->hash[1] += v1;
 | |
|     ctx->hash[2] += v2; ctx->hash[3] += v3;
 | |
|     ctx->hash[4] += v4;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VOID_RETURN sha1_begin(sha1_ctx ctx[1])
 | |
| {
 | |
|     ctx->count[0] = ctx->count[1] = 0;
 | |
|     ctx->hash[0] = 0x67452301;
 | |
|     ctx->hash[1] = 0xefcdab89;
 | |
|     ctx->hash[2] = 0x98badcfe;
 | |
|     ctx->hash[3] = 0x10325476;
 | |
|     ctx->hash[4] = 0xc3d2e1f0;
 | |
| }
 | |
| 
 | |
| /* SHA1 hash data in an array of bytes into hash buffer and */
 | |
| /* call the hash_compile function as required.              */
 | |
| 
 | |
| VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
 | |
| {   uint_32t pos = (uint_32t)((ctx->count[0] >> 3) & SHA1_MASK),
 | |
|             ofs = (ctx->count[0] & 7);
 | |
|     const unsigned char *sp = data;
 | |
|     unsigned char *w = (unsigned char*)ctx->wbuf;
 | |
| 
 | |
|     if((ctx->count[0] += len) < len)
 | |
|         ++(ctx->count[1]);
 | |
| 
 | |
|     if(ofs)                 /* if not on a byte boundary    */
 | |
|     {
 | |
|         if(ofs + len < 8)   /* if no added bytes are needed */
 | |
|         {
 | |
|             w[pos] |= (*sp >> ofs);
 | |
|         }
 | |
|         else                /* otherwise and add bytes      */
 | |
|         {   unsigned char part = w[pos];
 | |
| 
 | |
|             while((int)(ofs + (len -= 8)) >= 0)
 | |
|             {
 | |
|                 w[pos++] = part | (*sp >> ofs);
 | |
|                 part = *sp++ << (8 - ofs);
 | |
|                 if(pos == SHA1_BLOCK_SIZE)
 | |
|                 {
 | |
|                     bsw_32(w, SHA1_BLOCK_SIZE >> 2);
 | |
|                     sha1_compile(ctx); pos = 0;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             w[pos] = part;
 | |
|         }
 | |
|     }
 | |
|     else    /* data is byte aligned */
 | |
|     {   uint_32t space = SHA1_BLOCK_SIZE - pos;
 | |
| 
 | |
|         while((int)(len - 8 * space) >= 0)
 | |
|         {
 | |
|             len -= 8 * space;
 | |
|             memcpy(w + pos, sp, space);
 | |
|             sp += space;
 | |
|             space = SHA1_BLOCK_SIZE;
 | |
|             bsw_32(w, SHA1_BLOCK_SIZE >> 2);
 | |
|             sha1_compile(ctx); pos = 0;
 | |
|         }
 | |
|         memcpy(w + pos, sp, (len + 7) >> 3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* SHA1 final padding and digest calculation  */
 | |
| 
 | |
| VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
 | |
| {   uint_32t    i = (uint_32t)((ctx->count[0] >> 3) & SHA1_MASK), m1;
 | |
| 
 | |
|     /* put bytes in the buffer in an order in which references to   */
 | |
|     /* 32-bit words will put bytes with lower addresses into the    */
 | |
|     /* top of 32 bit words on BOTH big and little endian machines   */
 | |
|     bsw_32(ctx->wbuf, (i + 4) >> 2);
 | |
| 
 | |
|     /* we now need to mask valid bytes and add the padding which is */
 | |
|     /* a single 1 bit and as many zero bits as necessary. Note that */
 | |
|     /* we can always add the first padding byte here because the    */
 | |
|     /* buffer always has at least one empty slot                    */
 | |
|     m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
 | |
|     ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3));
 | |
|     ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3));
 | |
| 
 | |
|     /* we need 9 or more empty positions, one for the padding byte  */
 | |
|     /* (above) and eight for the length count. If there is not      */
 | |
|     /* enough space, pad and empty the buffer                       */
 | |
|     if(i > SHA1_BLOCK_SIZE - 9)
 | |
|     {
 | |
|         if(i < 60) ctx->wbuf[15] = 0;
 | |
|         sha1_compile(ctx);
 | |
|         i = 0;
 | |
|     }
 | |
|     else    /* compute a word index for the empty buffer positions  */
 | |
|         i = (i >> 2) + 1;
 | |
| 
 | |
|     while(i < 14) /* and zero pad all but last two positions        */
 | |
|         ctx->wbuf[i++] = 0;
 | |
| 
 | |
|     /* the following 32-bit length fields are assembled in the      */
 | |
|     /* wrong byte order on little endian machines but this is       */
 | |
|     /* corrected later since they are only ever used as 32-bit      */
 | |
|     /* word values.                                                 */
 | |
|     ctx->wbuf[14] = ctx->count[1];
 | |
|     ctx->wbuf[15] = ctx->count[0];
 | |
|     sha1_compile(ctx);
 | |
| 
 | |
|     /* extract the hash value as bytes in case the hash buffer is   */
 | |
|     /* misaligned for 32-bit words                                  */
 | |
|     for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
 | |
|         hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
 | |
| }
 | |
| 
 | |
| VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
 | |
| {   sha1_ctx    cx[1];
 | |
| 
 | |
|     sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
 | |
| }
 | |
| 
 | |
| #if defined(__cplusplus)
 | |
| }
 | |
| #endif
 |