1985 lines
57 KiB
Prolog
1985 lines
57 KiB
Prolog
/*************************************************************************
|
|
* *
|
|
* YAP Prolog *
|
|
* *
|
|
* Yap Prolog was developed at NCCUP - Universidade do Porto *
|
|
* *
|
|
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
|
|
* *
|
|
**************************************************************************
|
|
* *
|
|
* File: modules.pl *
|
|
* Last rev: *
|
|
* mods: *
|
|
* comments: module support *
|
|
* *
|
|
*************************************************************************/
|
|
|
|
/**
|
|
|
|
\defgroup YAPModules The YAP Module system
|
|
|
|
@ingroup YAPLoading
|
|
|
|
The YAP module system is based on the Quintus/SISCtus module
|
|
system. In this design, modules are named collections of predicates,
|
|
and all predicates belong to a single module. Predicates are only
|
|
visible within a module, or _private_ to that module, but the module
|
|
will most often will also define a list of predicates that are
|
|
_exported_, that is, visible to other modules.
|
|
|
|
The main predicates in the module system are:
|
|
|
|
* module/2 associates a source file to a module. It has two arguments: the name of the new module, and a list of predicates exported by the module.
|
|
|
|
* use_module/1 and use_module/2 can be used to load a module. They take as first argument the source file for the module. Whereas use_module/1 loads all exported predicates, use_module/2 only takes the ones given by the second argument.
|
|
|
|
YAP pre-defines a number of modules. Most system predicates belong to
|
|
the module `prolog`. Predicates from the module `prolog` are
|
|
automatically visible to every module. The `system` module was
|
|
introduced for SWI-Prolog compatibility, and in YAP mostly acts as an
|
|
alias to `prolog`.
|
|
|
|
YAP is always associated to a module, the current <em>source
|
|
module</em> or <em>type-in module</em>. By default, all predicates
|
|
read-in and all calls to a goal will be made to predicates visible to
|
|
the current source module, Initially, the source module for YAP is the
|
|
module `user`. Thus Prolog programs that do not define modules will
|
|
operate within the `user` module. In this case, all predicates will be
|
|
visible to all source files.
|
|
|
|
YAP also includes a number of libraries and packages, most of them
|
|
defining their own modules. Note that there is no system mechanism to
|
|
avoid clashes between module names, so it is up to the programmer to
|
|
carefully choose the names for her own program modules.
|
|
|
|
The main mechanism to change the current type-in module is by using
|
|
the module/2 declaration.This declaration sets the source module when
|
|
it starts consulting a file, and resets it at the end. One can set
|
|
the type-in module permanently by using the built-in `module/1`.
|
|
|
|
\subsection Explicit Naming
|
|
|
|
The module system allows one to _explicitly_ specify the source mode for
|
|
a clause by prefixing a clause with its module, say:
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
user:(a :- b).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
it is also possible to type
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
|
|
user:a :- user:b.
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
both formulations describe the same clause, independently of the
|
|
current type-in module.
|
|
|
|
In fact, it is sufficient to specify the source mode for the clause's
|
|
head:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
user:a :- b.
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
if the current type-in module is `m`, the clause could also be written as:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
user:a :- m:b.
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The compiler rewrites the source clauses to ensure that explicit calls
|
|
are respected, and that implicit calls are made to the current source
|
|
module.
|
|
|
|
A goal should refer to a predicate visible within the current type-in
|
|
module. Thus, if a goal appears in a text file with a module
|
|
declaration, the goal refers to that module's context (but see the
|
|
initialization/1 directive for more details).
|
|
|
|
Again, one can override this rule by prefixing a goal with a module to
|
|
be consulted. The following query:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
?- nasa:launch(apollo,13).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
invokes the goal `launch(apollo,13)` as if the current source
|
|
module was `nasa`.
|
|
|
|
YAP and other Prolog systems allow the module prefix to see all
|
|
predicates visible in the module, including predicates private to the
|
|
module. This rule allows maximum flexibility, but it also breaks
|
|
encapsulation and should be used with care. The ciao language proposes
|
|
a different approach to this problem, see \cite .
|
|
|
|
Modules are not always associated with a source-file. They
|
|
may range over several files, by using the
|
|
`include`directive. Moreover, they may not be associated to any source
|
|
file. As an example,
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
?- assert( nasa:launch(apollo,13) ).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
will create a module `nasa`, if does not already exist. In fact it is
|
|
sufficient to call a predicate from a module to implicitly create the
|
|
module. Hence after this call:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
?- nasa:launch(apollo,13).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
there will be a `nasa`module in the system, even if nasa:launch/2 is
|
|
not at all defined.
|
|
|
|
\{
|
|
|
|
**/
|
|
:- system_module( '$_modules', [abolish_module/1,
|
|
add_import_module/3,
|
|
current_module/1,
|
|
current_module/2,
|
|
delete_import_module/2,
|
|
expand_goal/2,
|
|
export/1,
|
|
export_list/2,
|
|
export_resource/1,
|
|
import_module/2,
|
|
ls_imports/0,
|
|
module/1,
|
|
module_property/2,
|
|
set_base_module/1,
|
|
source_module/1,
|
|
use_module/1,
|
|
use_module/2,
|
|
use_module/3], ['$add_to_imports'/3,
|
|
'$clean_cuts'/2,
|
|
'$convert_for_export'/7,
|
|
'$do_import'/3,
|
|
'$extend_exports'/3,
|
|
'$get_undefined_pred'/4,
|
|
'$imported_pred'/4,
|
|
'$meta_expansion'/6,
|
|
'$meta_predicate'/2,
|
|
'$meta_predicate'/4,
|
|
'$module'/3,
|
|
'$module'/4,
|
|
'$module_expansion'/5,
|
|
'$module_transparent'/2,
|
|
'$module_transparent'/4]).
|
|
|
|
:- use_system_module( '$_arith', ['$c_built_in'/3]).
|
|
|
|
:- use_system_module( '$_consult', ['$lf_opt'/3,
|
|
'$load_files'/3]).
|
|
|
|
:- use_system_module( '$_debug', ['$skipeol'/1]).
|
|
|
|
:- use_system_module( '$_errors', ['$do_error'/2]).
|
|
|
|
:- use_system_module( '$_eval', ['$full_clause_optimisation'/4]).
|
|
|
|
:- '$purge_clauses'(module(_,_), prolog).
|
|
:- '$purge_clauses'('$module'(_,_), prolog).
|
|
:- '$purge_clauses'(use_module(_), prolog).
|
|
:- '$purge_clauses'(use_module(_,_), prolog).
|
|
%
|
|
% start using default definition of module.
|
|
%
|
|
|
|
/**
|
|
\pred use_module( +Files ) is directive
|
|
loads a module file
|
|
|
|
This predicate loads the file specified by _Files_, importing all
|
|
their public predicates into the current type-in module. It is
|
|
implemented as if by:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
use_module(F) :-
|
|
load_files(F, [if(not_loaded),must_be_module(true)]).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Notice that _Files_ may be a single file, or a list with a number
|
|
files. The _Files_ are loaded in YAP only once, even if they have been
|
|
updated meanwhile. YAP should also verify whether the files actually
|
|
define modules. Please consult load_files/3 for other options when
|
|
loading a file.
|
|
|
|
Predicate name clashes between two different modules may arise, either
|
|
when trying to import predicates that are also defined in the current
|
|
type-in module, or by trying to import the same predicate from two
|
|
different modules.
|
|
|
|
In the first case, the local predicate is considered to have priority
|
|
and use_module/1 simply gives a warning. As an example, if the file
|
|
`a.pl` contains:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
:- module( a, [a/1] ).
|
|
|
|
:- use_module(b).
|
|
|
|
a(1).
|
|
a(X) :- b(X).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
and the file `b.pl` contains:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
:- module( b, [a/1,b/1] ).
|
|
|
|
a(2).
|
|
|
|
b(1).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
YAP will execute as follows:
|
|
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
?- [a].
|
|
% consulting .../a.pl...
|
|
% consulting .../b.pl...
|
|
% consulted .../b.pl in module b, 0 msec 0 bytes
|
|
% consulted .../a.pl in module a, 1 msec 0 bytes
|
|
true.
|
|
?- a(X).
|
|
X = 1 ? ;
|
|
X = 1.
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The example shows that the query `a(X)`has a single answer, the one
|
|
defined in `a.pl`. Calls to `a(X)`succeed in the top-level, because
|
|
the module `a` was loaded into `user`. On the other hand, `b(X)`is not
|
|
exported by `a.pl`, and is not available to calls, although it can be
|
|
accessed as a predicate in the module 'a' by using the `:` operator.
|
|
|
|
Next, consider the three files `c.pl`, `d1.pl`, and `d2.pl`:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
% c.pl
|
|
:- module( c, [a/1] ).
|
|
|
|
:- use_module([d1, d2]).
|
|
|
|
a(X) :-
|
|
b(X).
|
|
a(X) :-
|
|
c(X).
|
|
a(X) :-
|
|
d(X).
|
|
|
|
% d1.pl
|
|
:- module( d1, [b/1,c/1] ).
|
|
|
|
b(2).
|
|
c(3).
|
|
|
|
|
|
% d2.pl
|
|
:- module( d2, [b/1,d/1] ).
|
|
|
|
b(1).
|
|
d(4).
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The result is as follows:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
./yap -l c
|
|
YAP 6.3.4 (x86_64-darwin13.3.0): Tue Jul 15 10:42:11 CDT 2014
|
|
|
|
ERROR!!
|
|
at line 3 in o/d2.pl,
|
|
PERMISSION ERROR- loading .../c.pl: modules d1 and d2 both define b/1
|
|
?- a(X).
|
|
X = 2 ? ;
|
|
ERROR!!
|
|
EXISTENCE ERROR- procedure c/1 is undefined, called from context prolog:$user_call/2
|
|
Goal was c:c(_131290)
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The state of the module system after this error is undefined.
|
|
|
|
|
|
**/
|
|
|
|
use_module(F) :- '$load_files'(F,
|
|
[if(not_loaded),must_be_module(true)], use_module(F)).
|
|
|
|
|
|
|
|
/**
|
|
\pred use_module(+Files, +Imports)
|
|
loads a module file but only imports the named predicates
|
|
|
|
|
|
This predicate loads the file specified by _Files_, importing their
|
|
public predicates specified by _Imports_ into the current type-in
|
|
module. It is implemented as if by:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
use_module(Files, Imports) :-
|
|
load_files(Files, [if(not_loaded),must_be_module(true),imports(Imports)]).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The _Imports_ argument may be use to specify which predicates one
|
|
wants to load. It can also be used to give the predicates a different name. As an example,
|
|
the graphs library is implemented on top of the red-black trees library, and some predicates are just aliases:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pl
|
|
:- use_module(library(rbtrees), [
|
|
rb_min/3 as min_assoc,
|
|
rb_max/3 as max_assoc,
|
|
|
|
...]).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Unfortunately it is still not possible to change argument order.
|
|
|
|
**/
|
|
use_module(F,Is) :-
|
|
'$load_files'(F, [if(not_loaded),must_be_module(true),imports(Is)], use_module(F,Is)).
|
|
|
|
/**
|
|
\pred module(+M) is det
|
|
set the type-in module
|
|
|
|
|
|
Defines _M_ to be the current working or type-in module. All files
|
|
which are not bound to a module are assumed to belong to the working
|
|
module (also referred to as type-in module). To compile a non-module
|
|
file into a module which is not the working one, prefix the file name
|
|
with the module name, in the form ` _Module_: _File_`, when
|
|
loading the file.
|
|
|
|
**/
|
|
module(N) :-
|
|
var(N),
|
|
'$do_error'(instantiation_error,module(N)).
|
|
module(N) :-
|
|
atom(N), !,
|
|
% set it as current module.
|
|
'$current_module'(_,N).
|
|
module(N) :-
|
|
'$do_error'(type_error(atom,N),module(N)).
|
|
|
|
/**
|
|
\pred module(+ Module:atom, +ExportList:list) is directive
|
|
define a new module
|
|
|
|
This directive defines the file where it appears as a _module file_;
|
|
it must be the first declaration in the file. _Module_ must be an
|
|
atom specifying the module name; _ExportList_ must be a list
|
|
containing the module's public predicates specification, in the form
|
|
`[predicate_name/arity,...]`. The _ExportList_ can include
|
|
operator declarations for operators that are exported by the module.
|
|
|
|
The public predicates of a module file can be made accessible to other
|
|
files through loading the source file, using the directives
|
|
use_module/1 or use_module/2,
|
|
ensure_loaded/1 and the predicates
|
|
consult/1 or reconsult/1. The
|
|
non-public predicates of a module file are not supposed to be visible
|
|
to other modules; they can, however, be accessed by prefixing the module
|
|
name with the `:/2` operator.
|
|
|
|
**/
|
|
'$module_dec'(N, Ps) :-
|
|
source_location(F, _),
|
|
'$add_module_on_file'(N, F, Ps),
|
|
'$current_module'(_,N).
|
|
|
|
'$module'(_,N,P) :-
|
|
'$module_dec'(N,P).
|
|
|
|
/**
|
|
\pred module(+ M:atom,+ L:list ) is directive
|
|
the current file defines module _M_ with exports _L_. The list may include
|
|
|
|
+ predicatae indicators
|
|
|
|
+ operator definitions that look like calls to op/3.
|
|
|
|
The list _L_ may include predicates imported from other modules. If
|
|
you want to fully reexport a module, or a sub-set, also consider reexport/1.
|
|
|
|
Similar to module/2, this directive defines the file where it
|
|
appears in as a module file; it must be the first declaration in the file.
|
|
_M_ must be an atom specifying the module name; _L_ must be a
|
|
list containing the module's public predicates specification, in the
|
|
form `[predicate_name/arity,...]`.
|
|
|
|
The last argument _Options_ must be a list of options, which can be:
|
|
+ <b>filename</b>
|
|
the filename for a module to import into the current module.
|
|
|
|
+ <b>library( +File )</b>
|
|
a library file to import into the current module.
|
|
|
|
+ <b>hide( +Opt)</b>
|
|
if _Opt_ is `false`, keep source code for current module, if `true`, disable.
|
|
|
|
+ <b>export(+PredicateIndicator )</b>
|
|
Add predicates to the public list of the context module. This implies
|
|
the predicate will be imported into another module if this module
|
|
is imported with use_module/1 and use_module/2.
|
|
|
|
+ <b>export_list(? _Mod_,? _ListOfPredicateIndicator_)</b>
|
|
The list _ListOfPredicateIndicator_ contains all predicates
|
|
exported by module _Mod_
|
|
|
|
Note that predicates are normally exported using the directive
|
|
`module/2`. The `export/1` argumwnt is meant to allow export from
|
|
dynamically created modules. The directive argument may also be a list
|
|
of predicates.
|
|
|
|
**/
|
|
'$module'(O,N,P,Opts) :- !,
|
|
'$module'(O,N,P),
|
|
'$process_module_decls_options'(Opts,module(Opts,N,P)).
|
|
|
|
|
|
'$process_module_decls_options'(Var,Mod) :-
|
|
var(Var), !,
|
|
'$do_error'(instantiation_error,Mod).
|
|
'$process_module_decls_options'([],_) :- !.
|
|
'$process_module_decls_options'([H|L],M) :- !,
|
|
'$process_module_decls_option'(H,M),
|
|
'$process_module_decls_options'(L,M).
|
|
'$process_module_decls_options'(T,M) :-
|
|
'$do_error'(type_error(list,T),M).
|
|
|
|
'$process_module_decls_option'(Var,M) :-
|
|
var(Var),
|
|
'$do_error'(instantiation_error,M).
|
|
'$process_module_decls_option'(At,M) :-
|
|
atom(At), !,
|
|
use_module(M:At).
|
|
'$process_module_decls_option'(library(L),M) :- !,
|
|
use_module(M:library(L)).
|
|
'$process_module_decls_option'(hidden(Bool),M) :- !,
|
|
'$process_hidden_module'(Bool, M).
|
|
'$process_module_decls_option'(Opt,M) :-
|
|
'$do_error'(domain_error(module_decl_options,Opt),M).
|
|
|
|
'$process_hidden_module'(TNew,M) :-
|
|
'$convert_true_off_mod3'(TNew, New, M),
|
|
source_mode(Old, New),
|
|
'$prepare_restore_hidden'(Old,New).
|
|
|
|
'$convert_true_off_mod3'(true, off, _) :- !.
|
|
'$convert_true_off_mod3'(false, on, _) :- !.
|
|
'$convert_true_off_mod3'(X, _, M) :-
|
|
'$do_error'(domain_error(module_decl_options,hidden(X)),M).
|
|
|
|
'$prepare_restore_hidden'(Old,Old) :- !.
|
|
'$prepare_restore_hidden'(Old,New) :-
|
|
recorda('$system_initialisation', source_mode(New,Old), _).
|
|
|
|
'$add_module_on_file'(DonorMod, DonorF, Exports) :-
|
|
recorded('$module','$module'(DonorF, DonorMod, _, _),R),
|
|
% the module has been found, are we reconsulting?
|
|
(
|
|
DonorF \= OtherF
|
|
->
|
|
'$do_error'(permission_error(module,redefined,DonorMod, OtherFile, DonorF),module(Mod,Exports))
|
|
;
|
|
recorded('$module','$module'(DonorF,DonorM, _, _), R),
|
|
erase( R ),
|
|
fail
|
|
).
|
|
'$add_module_on_file'(DonorM, DonorF, Exports) :-
|
|
'$current_module'( HostM ),
|
|
( recorded('$module','$module'( HostF, HostM, _, _),_) -> true ; HostF = user_input ),
|
|
% first build the initial export tablee
|
|
'$convert_for_export'(all, Exports, DonorM, HostM, TranslationTab, AllExports0, load_files),
|
|
sort( AllExports0, AllExports ),
|
|
( source_location(_, Line) -> true ; Line = 0 ),
|
|
'$add_to_imports'(TranslationTab, DonorM, DonorM), % insert ops, at least for now
|
|
% last, export everything to the host: if the loading crashed you didn't actually do
|
|
% no evil.
|
|
recorda('$module','$module'(DonorF,DonorM,AllExports, Line),_).
|
|
|
|
'$extend_exports'(HostF, Exports, DonorF ) :-
|
|
( recorded('$module','$module'( DonorF, DonorM, _, DonorExports),_) -> true ; DonorF = user_input ),
|
|
( recorded('$module','$module'( HostF, HostM, _, _),_) -> true ; HostF = user_input ),
|
|
recorded('$module','$module'(HostF,HostM,AllExports, _Line), R), erase(R),
|
|
'$convert_for_export'(Exports, DonorExports, DonorM, HostM, TranslationTab, AllReExports, reexport(DonorF, Exports)),
|
|
lists:append( AllReExports, AllExports, Everything0 ),
|
|
sort( Everything0, Everything ),
|
|
( source_location(_, Line) -> true ; Line = 0 ),
|
|
recorda('$module','$module'(HostF,HostM,Everything, Line),_).
|
|
|
|
'$module_produced by'(M, M0, N, K) :-
|
|
recorded('$import','$import'(M,M0,_,_,N,K),_), !.
|
|
'$module_produced by'(M, M0, N, K) :-
|
|
recorded('$import','$import'(MI,M0,G1,_,N,K),_),
|
|
functor(G1, N1, K1),
|
|
'$module_produced by'(M,MI,N1,K1).
|
|
|
|
|
|
/** \pred current_module( ? Mod:atom) is nondet
|
|
: _Mod_ is any user-visible module.
|
|
|
|
*/
|
|
/** @pred current_module( _M_)
|
|
|
|
|
|
Succeeds if _M_ are defined modules. A module is defined as soon as some
|
|
predicate defined in the module is loaded, as soon as a goal in the
|
|
module is called, or as soon as it becomes the current type-in module.
|
|
|
|
|
|
*/
|
|
current_module(Mod) :-
|
|
'$all_current_modules'(Mod),
|
|
\+ '$system_module'(Mod).
|
|
|
|
/** \pred current_module( ? Mod:atom, ? File : file ) is nondet
|
|
: _Mod_ is any user-visible module and _File_ its source file, or `user` if none exists.
|
|
|
|
*/
|
|
/** @pred current_module( _M_, _F_)
|
|
|
|
Succeeds if _M_ are current modules associated to the file _F_.
|
|
|
|
|
|
|
|
|
|
*/
|
|
current_module(Mod,TFN) :-
|
|
'$all_current_modules'(Mod),
|
|
( recorded('$module','$module'(TFN,Mod,_Publics, _),_) -> true ; TFN = user ).
|
|
|
|
/** \pred source_module( - Mod:atom ) is nondet
|
|
: _Mod_ is the current read-in or source module.
|
|
|
|
*/
|
|
source_module(Mod) :-
|
|
'$current_module'(Mod).
|
|
|
|
|
|
% expand module names in a clause
|
|
% A1: Input Clause
|
|
% A2: Output Class to Compiler (lives in module HM)
|
|
% A3: Output Class to clause/2 and listing (lives in module HM)
|
|
%
|
|
% modules:
|
|
% A4: module for body of clause (this is the one used in looking up predicates)
|
|
% A5: context module (this is the current context
|
|
% A6: head module (this is the one used in compiling and accessing).
|
|
%
|
|
%
|
|
'$module_expansion'(H,H,H,_M,_HM) :- var(H), !.
|
|
'$module_expansion'((H:-B),(H:-B1),(H:-BOO),M,HM) :- !,
|
|
'$is_mt'(M, H, B, IB, MM),
|
|
'$module_u_vars'(H,UVars,M), % collect head variables in
|
|
% expanded positions
|
|
'$module_expansion'(IB,B1,BO,M,MM,HM,UVars),
|
|
('$full_clause_optimisation'(H, M, BO, BOO) ->
|
|
true
|
|
;
|
|
BO = BOO
|
|
).
|
|
% do not expand bodyless clauses.
|
|
'$module_expansion'(H,H,H,_,_).
|
|
|
|
|
|
'$trace_module'(X) :-
|
|
telling(F),
|
|
tell('P0:debug'),
|
|
write(X),nl,
|
|
tell(F), fail.
|
|
'$trace_module'(_).
|
|
|
|
'$trace_module'(X,Y) :- X==Y, !.
|
|
'$trace_module'(X,Y) :-
|
|
telling(F),
|
|
tell('~/.dbg.modules'),
|
|
write('***************'), nl,
|
|
portray_clause(X),
|
|
portray_clause(Y),
|
|
tell(F),fail.
|
|
'$trace_module'(_,_).
|
|
|
|
|
|
% expand module names in a body
|
|
% args are:
|
|
% goals to expand
|
|
% code to pass to listing
|
|
% code to pass to compiler
|
|
% current module for looking up preds M
|
|
% source module SM
|
|
% head module HM
|
|
%
|
|
% to understand the differences, you can consider:
|
|
%
|
|
% a:(d:b(X) :- g:c(X), d(X), user:hello(X)).
|
|
%
|
|
% when we process meta-predicate c, HM=d, DM=a, BM=a, M=g and we should get:
|
|
%
|
|
% d:b(X) :- g:c(g:X), a:d(X), user:hello(X).
|
|
%
|
|
% on the other hand,
|
|
%
|
|
% a:(d:b(X) :- c(X), d(X), d:e(X)).
|
|
%
|
|
% will give
|
|
%
|
|
% d:b(X) :- a:c(a:X), a:d(X), e(X).
|
|
%
|
|
%
|
|
% head variables.
|
|
% goals or arguments/sub-arguments?
|
|
% I cannot use call here because of format/3
|
|
% modules:
|
|
% A4: module for body of clause (this is the one used in looking up predicates)
|
|
% A5: context module (this is the current context
|
|
% A6: head module (this is the one used in compiling and accessing).
|
|
%
|
|
%
|
|
'$module_expansion'(V,NG,NG,_,SM,_,HVars) :-
|
|
var(V), !,
|
|
( '$not_in_vars'(V,HVars)
|
|
->
|
|
NG = call(SM:V)
|
|
;
|
|
NG = call(V)
|
|
).
|
|
'$module_expansion'((A,B),(A1,B1),(AO,BO),M,SM,HM,HVars) :- !,
|
|
'$module_expansion'(A,A1,AO,M,SM,HM,HVars),
|
|
'$module_expansion'(B,B1,BO,M,SM,HM,HVars).
|
|
'$module_expansion'((A;B),(A1;B1),(AO;BO),M,SM,HM,HVars) :- var(A), !,
|
|
'$module_expansion'(A,A1,AO,M,SM,HM,HVars),
|
|
'$module_expansion'(B,B1,BO,M,SM,HM,HVars).
|
|
'$module_expansion'((A*->B;C),(A1*->B1;C1),(yap_hacks:current_choicepoint(DCP),AO,yap_hacks:cut_at(DCP),BO; CO),M,SM,HM,HVars) :- !,
|
|
'$module_expansion'(A,A1,AOO,M,SM,HM,HVars),
|
|
'$clean_cuts'(AOO, AO),
|
|
'$module_expansion'(B,B1,BO,M,SM,HM,HVars),
|
|
'$module_expansion'(C,C1,CO,M,SM,HM,HVars).
|
|
'$module_expansion'((A;B),(A1;B1),(AO;BO),M,SM,HM,HVars) :- !,
|
|
'$module_expansion'(A,A1,AO,M,SM,HM,HVars),
|
|
'$module_expansion'(B,B1,BO,M,SM,HM,HVars).
|
|
'$module_expansion'((A|B),(A1|B1),(AO|BO),M,SM,HM,HVars) :- !,
|
|
'$module_expansion'(A,A1,AO,M,SM,HM,HVars),
|
|
'$module_expansion'(B,B1,BO,M,SM,HM,HVars).
|
|
'$module_expansion'((A->B),(A1->B1),(AO->BO),M,SM,HM,HVars) :- !,
|
|
'$module_expansion'(A,A1,AOO,M,SM,HM,HVars),
|
|
'$clean_cuts'(AOO, AO),
|
|
'$module_expansion'(B,B1,BO,M,SM,HM,HVars).
|
|
'$module_expansion'(\+A,\+A1,\+AO,M,SM,HM,HVars) :- !,
|
|
'$module_expansion'(A,A1,AO,M,SM,HM,HVars).
|
|
'$module_expansion'(not(A),not(A1),not(AO),M,SM,HM,HVars) :- !,
|
|
'$module_expansion'(A,A1,AO,M,SM,HM,HVars).
|
|
'$module_expansion'(true,true,true,_,_,_,_) :- !.
|
|
'$module_expansion'(fail,fail,fail,_,_,_,_) :- !.
|
|
'$module_expansion'(false,false,false,_,_,_,_) :- !.
|
|
% if I don't know what the module is, I cannot do anything to the goal,
|
|
% so I just put a call for later on.
|
|
'$module_expansion'(M:G,call(M:G),'$execute_wo_mod'(G,M),_,_,_,_) :- var(M), !.
|
|
'$module_expansion'(M:G,G1,GO,_,_CM,HM,HVars) :- !,
|
|
'$module_expansion'(G,G1,GO,M,M,HM,HVars).
|
|
'$module_expansion'(G, G1, GO, CurMod, SM, HM,HVars) :-
|
|
% is this imported from some other module M1?
|
|
'$imported_pred'(G, CurMod, GG, M1),
|
|
!,
|
|
'$module_expansion'(GG, G1, GO, M1, SM, HM,HVars).
|
|
'$module_expansion'(G, G1, GO, CurMod, SM, HM,HVars) :-
|
|
'$meta_expansion'(G, CurMod, SM, HM, GI, HVars), !,
|
|
'$complete_goal_expansion'(GI, CurMod, SM, HM, G1, GO, HVars).
|
|
'$module_expansion'(G, G1, GO, CurMod, SM, HM, HVars) :-
|
|
'$complete_goal_expansion'(G, CurMod, SM, HM, G1, GO, HVars).
|
|
|
|
expand_goal(G, G) :-
|
|
var(G), !.
|
|
expand_goal(M:G, M:NG) :-
|
|
'$do_expand'(G, M, prolog, [], NG), !.
|
|
expand_goal(G, NG) :-
|
|
'$current_module'(Mod),
|
|
'$do_expand'(G, Mod, prolog, [], NG), !.
|
|
expand_goal(G, G).
|
|
|
|
'$do_expand'(G, _, _, _, G) :- var(G), !.
|
|
'$do_expand'(M:G, _CurMod, SM, HVars, M:GI) :- !,
|
|
'$do_expand'(G, M, SM, HVars, GI).
|
|
'$do_expand'(G, CurMod, _SM, _HVars, GI) :-
|
|
(
|
|
'$pred_exists'(goal_expansion(G,GI), CurMod),
|
|
call(CurMod:goal_expansion(G, GI))
|
|
->
|
|
true
|
|
;
|
|
'$pred_exists'(goal_expansion(G,GI), system),
|
|
system:goal_expansion(G, GI)
|
|
->
|
|
true
|
|
;
|
|
user:goal_expansion(G, CurMod, GI)
|
|
->
|
|
true
|
|
;
|
|
user:goal_expansion(G, GI)
|
|
), !.
|
|
'$do_expand'(G, CurMod, SM, HVars, NG) :-
|
|
'$is_metapredicate'(G,CurMod), !,
|
|
functor(G, Name, Arity),
|
|
prolog:'$meta_predicate'(Name,CurMod,Arity,PredDef),
|
|
G =.. [Name|GArgs],
|
|
PredDef =.. [Name|GDefs],
|
|
'$expand_args'(GArgs, CurMod, SM, GDefs, HVars, NGArgs),
|
|
NG =.. [Name|NGArgs].
|
|
|
|
'$expand_args'([], _, _, [], _, []).
|
|
'$expand_args'([A|GArgs], CurMod, SM, [0|GDefs], HVars, [NA|NGArgs]) :-
|
|
'$do_expand'(A, CurMod, SM, HVars, NA), !,
|
|
'$expand_args'(GArgs, CurMod, SM, GDefs, HVars, NGArgs).
|
|
'$expand_args'([A|GArgs], CurMod, SM, [_|GDefs], HVars, [A|NGArgs]) :-
|
|
'$expand_args'(GArgs, CurMod, SM, GDefs, HVars, NGArgs).
|
|
|
|
% args are:
|
|
% goal to expand
|
|
% current module for looking up pred
|
|
% context module
|
|
% current module from head of clause
|
|
% :- module(m, []). o:p :- n:(g, l).
|
|
%
|
|
% goal to pass to listing
|
|
% goal to pass to compiler
|
|
% head variables.
|
|
'$complete_goal_expansion'(G, CurMod, SM, HM, G1, GO, HVars) :-
|
|
% '$pred_goal_expansion_on',
|
|
'$do_expand'(G, CurMod, SM, HVars, GI),
|
|
GI \== G, !,
|
|
'$module_expansion'(GI, G1, GO, CurMod, SM, HM, HVars).
|
|
'$complete_goal_expansion'(G, M, _SM, HM, G1, G2, _HVars) :-
|
|
'$all_system_predicate'(G,M,ORIG), !,
|
|
% make built-in processing transparent.
|
|
'$match_mod'(G, M, ORIG, HM, G1),
|
|
'$c_built_in'(G1, M, Gi),
|
|
Gi = G2.
|
|
'$complete_goal_expansion'(G, GMod, _, HM, NG, NG, _) :-
|
|
'$match_mod'(G, GMod, GMod, HM, NG).
|
|
|
|
%'$match_mod'(G, GMod, GMod, NG) :- !,
|
|
% NG = G.
|
|
'$match_mod'(G, _, M, _, G) :-
|
|
nonvar(G),
|
|
'$system_predicate'(G,prolog),
|
|
% \+ '$is_metapredicate'(G, prolog),
|
|
\+ '$is_multifile'(G,H),
|
|
!. % prolog: needs no module info.
|
|
% same module as head, and body goal (I cannot get rid of qualifier before
|
|
% meta-call.
|
|
'$match_mod'(G, HMod, _, HM, G) :- HMod == HM, !.
|
|
'$match_mod'(G, GMod, _, _, GMod:G).
|
|
|
|
|
|
% be careful here not to generate an undefined exception.
|
|
'$imported_pred'(G, ImportingMod, G0, ExportingMod) :-
|
|
'$enter_undefp',
|
|
'$undefined'(G, ImportingMod),
|
|
'$get_undefined_pred'(G, ImportingMod, G0, ExportingMod),
|
|
ExportingMod \= ImportingMod, !,
|
|
'$exit_undefp'.
|
|
'$imported_pred'(_G, _ImportingMod, _, _) :-
|
|
'$exit_undefp',
|
|
fail.
|
|
|
|
'$get_undefined_pred'(G, ImportingMod, G0, ExportingMod) :-
|
|
recorded('$import','$import'(ExportingModI,ImportingMod,G0I,G,_,_),_),
|
|
'$continue_imported'(ExportingMod, ExportingModI, G0, G0I), !.
|
|
% SWI builtin
|
|
'$get_undefined_pred'(G, _ImportingMod, G0, ExportingMod) :-
|
|
recorded('$dialect',Dialect,_),
|
|
Dialect \= yap,
|
|
functor(G, Name, Arity),
|
|
call(Dialect:index(Name,Arity,ExportingModI,_)), !,
|
|
'$continue_imported'(ExportingMod, ExportingModI, G0, G), !.
|
|
'$get_undefined_pred'(G, _ImportingMod, G0, ExportingMod) :-
|
|
yap_flag(autoload, V),
|
|
V = true,
|
|
'$autoloader_find_predicate'(G,ExportingModI), !,
|
|
'$continue_imported'(ExportingMod, ExportingModI, G0, G).
|
|
'$get_undefined_pred'(G, ImportingMod, G0, ExportingMod) :-
|
|
prolog:'$parent_module'(ImportingMod,ExportingModI),
|
|
'$continue_imported'(ExportingMod, ExportingModI, G0, G).
|
|
|
|
|
|
'$autoloader_find_predicate'(G,ExportingModI) :-
|
|
'$nb_getval'('$autoloader_set', true, fail), !,
|
|
autoloader:find_predicate(G,ExportingModI).
|
|
'$autoloader_find_predicate'(G,ExportingModI) :-
|
|
'$exit_undefp',
|
|
yap_flag(autoload, false),
|
|
load_files([library(autoloader),
|
|
autoloader:library('INDEX'),
|
|
swi:library('dialect/swi/INDEX')],
|
|
[autoload(true),if(not_loaded)]),
|
|
nb_setval('$autoloader_set', true),
|
|
yap_flag(autoload, true),
|
|
'$enter_undefp',
|
|
autoloader:find_predicate(G,ExportingModI).
|
|
|
|
|
|
'$continue_imported'(Mod,Mod,Pred,Pred) :-
|
|
\+ '$undefined'(Pred, Mod), !.
|
|
'$continue_imported'(FM,Mod,FPred,Pred) :-
|
|
recorded('$import','$import'(IM,Mod,IPred,Pred,_,_),_), !,
|
|
'$continue_imported'(FM, IM, FPred, IPred).
|
|
'$continue_imported'(FM,Mod,FPred,Pred) :-
|
|
prolog:'$parent_module'(Mod,IM),
|
|
'$continue_imported'(FM, IM, FPred, Pred).
|
|
|
|
|
|
/**
|
|
|
|
\defgroup YAPMetaPredicates Using Meta-Calls with Modules
|
|
\ingroup YAPModules
|
|
|
|
@{
|
|
|
|
\pred meta_predicate(_G1_,...., _Gn) is directive
|
|
|
|
Declares that this predicate manipulates references to predicates.
|
|
Each _Gi_ is a mode specification.
|
|
|
|
If the argument is `:`, it does not refer directly to a predicate
|
|
but must be module expanded. If the argument is an integer, the argument
|
|
is a goal or a closure and must be expanded. Otherwise, the argument is
|
|
not expanded. Note that the system already includes declarations for all
|
|
built-ins.
|
|
|
|
For example, the declaration for call/1 and setof/3 are:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
:- meta_predicate call(0), setof(?,0,?).
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
meta_predicate declaration
|
|
implemented by asserting $meta_predicate(SourceModule,Functor,Arity,Declaration)
|
|
|
|
*/
|
|
|
|
|
|
% directive now meta_predicate Ps :- $meta_predicate(Ps).
|
|
|
|
:- dynamic('$meta_predicate'/4).
|
|
|
|
:- multifile '$meta_predicate'/4.
|
|
|
|
'$meta_predicate'(P, M) :-
|
|
var(P),
|
|
'$do_error'(instantiation_error,module(M)).
|
|
'$meta_predicate'((P,Ps), M) :- !,
|
|
'$meta_predicate'(P, M),
|
|
'$meta_predicate'(Ps, M).
|
|
'$meta_predicate'(M:D, _) :- !,
|
|
'$meta_predicate'(D, M).
|
|
'$meta_predicate'(P, M1) :-
|
|
'$install_meta_predicate'(P, M1).
|
|
|
|
|
|
'$install_meta_predicate'(P, M1) :-
|
|
functor(P,F,N),
|
|
( M1 = prolog -> M = _ ; M1 = M),
|
|
( retractall(prolog:'$meta_predicate'(F,M,N,_)), fail ; true),
|
|
asserta(prolog:'$meta_predicate'(F,M,N,P)),
|
|
'$flags'(P, M1, Fl, Fl),
|
|
NFlags is Fl \/ 0x200000,
|
|
'$flags'(P, M1, Fl, NFlags).
|
|
|
|
% return list of vars in expanded positions on the head of a clause.
|
|
%
|
|
% these variables should not be expanded by meta-calls in the body of the goal.
|
|
%
|
|
'$module_u_vars'(H,UVars,M) :-
|
|
functor(H,F,N),
|
|
'$meta_predicate'(F,M,N,D), !,
|
|
'$module_u_vars'(N,D,H,UVars).
|
|
'$module_u_vars'(_,[],_).
|
|
|
|
'$module_u_vars'(0,_,_,[]) :- !.
|
|
'$module_u_vars'(I,D,H,LF) :-
|
|
arg(I,D,X), ( X=':' ; integer(X)),
|
|
arg(I,H,A), '$uvar'(A, LF, L), !,
|
|
I1 is I-1,
|
|
'$module_u_vars'(I1,D,H,L).
|
|
'$module_u_vars'(I,D,H,L) :-
|
|
I1 is I-1,
|
|
'$module_u_vars'(I1,D,H,L).
|
|
|
|
'$uvar'(Y, [Y|L], L) :- var(Y), !.
|
|
% support all/3
|
|
'$uvar'(same( G, _), LF, L) :-
|
|
'$uvar'(G, LF, L).
|
|
'$uvar'('^'( _, G), LF, L) :-
|
|
'$uvar'(G, LF, L).
|
|
|
|
% expand arguments of a meta-predicate
|
|
% $meta_expansion(ModuleWhereDefined,CurrentModule,Goal,ExpandedGoal,MetaVariables)
|
|
|
|
|
|
'$meta_expansion'(G,Mod,MP,HM,G1,HVars) :-
|
|
functor(G,F,N),
|
|
'$meta_predicate'(F,Mod,N,D), !, % we're in an argument
|
|
% format(user_error,'[ ~w ',[G]),
|
|
functor(G1,F,N),
|
|
'$meta_expansion_loop'(N, D, G, G1, HVars, Mod, MP, HM).
|
|
% format(user_error,' gives ~w]`n',[G1]).
|
|
|
|
|
|
% expand argument
|
|
'$meta_expansion_loop'(0,_,_,_,_,_,_,_) :- !.
|
|
'$meta_expansion_loop'(I,D,G,NG,HVars,CurMod,M,HM) :-
|
|
arg(I,D,X), (X==':' -> true ; integer(X)),
|
|
arg(I,G,A),
|
|
'$should_expand'(A,HVars),
|
|
!,
|
|
( X ==0 ->
|
|
'$values'('$c_arith',Old, false),
|
|
'$meta_expansion0'(A,CurMod,M,HM,NA,HVars),
|
|
'$values'('$c_arith', _False, Old)
|
|
;
|
|
NA = M:A
|
|
),
|
|
arg(I,NG,NA),
|
|
I1 is I-1,
|
|
'$meta_expansion_loop'(I1, D, G, NG, HVars, CurMod, M, HM).
|
|
'$meta_expansion_loop'(I, D, G, NG, HVars, CurMod, M, HM) :-
|
|
arg(I,G,A),
|
|
arg(I,NG,A),
|
|
I1 is I-1,
|
|
'$meta_expansion_loop'(I1, D, G, NG, HVars, CurMod, M, HM).
|
|
|
|
'$meta_expansion0'(G,_Mod,MP,_HM, G1,_HVars) :-
|
|
var(G), !,
|
|
G1 = MP:G.
|
|
'$meta_expansion0'(M:G,_Mod,_MP,_HM,G1,_HVars) :-
|
|
var(M), !,
|
|
G1 = '$execute_wo_mod'(G,M).
|
|
% support for all/3
|
|
'$meta_expansion0'(same(G, P),Mod,MP,HM, same(G1, P),HVars) :- !,
|
|
'$meta_expansion0'(G,Mod,MP,HM,G1,HVars).
|
|
'$meta_expansion0'(G,Mod,MP,HM,M1:G1,HVars) :-
|
|
strip_module(Mod:G,M1,G1).
|
|
|
|
|
|
% check if an argument should be expanded
|
|
'$should_expand'(V,HVars) :- var(V), !, '$not_in_vars'(V,HVars).
|
|
'$should_expand'(_:_,_) :- !, fail.
|
|
'$should_expand'(_,_).
|
|
|
|
'$not_in_vars'(_,[]).
|
|
'$not_in_vars'(V,[X|L]) :- X\==V, '$not_in_vars'(V,L).
|
|
|
|
/*
|
|
\pred module_transparent( + _Preds_ ) is directive
|
|
_Preds_ is a list of predicates that can access the calling context.
|
|
|
|
_Preds_ is a comma separated sequence of name/arity predicate
|
|
indicators (like in dynamic/1). Each goal associated with a
|
|
transparent declared predicate will inherit the context module from
|
|
its parent goal.
|
|
|
|
*/
|
|
:- dynamic('$module_transparent'/4).
|
|
|
|
'$module_transparent'((P,Ps), M) :- !,
|
|
'$module_transparent'(P, M),
|
|
'$module_transparent'(Ps, M).
|
|
'$module_transparent'(M:D, _) :- !,
|
|
'$module_transparent'(D, M).
|
|
'$module_transparent'(F/N, M) :-
|
|
'$module_transparent'(F,M,N,_), !.
|
|
'$module_transparent'(F/N, M) :-
|
|
functor(P,F,N),
|
|
asserta(prolog:'$module_transparent'(F,M,N,P)),
|
|
'$flags'(P, M, Fl, Fl),
|
|
NFlags is Fl \/ 0x200004,
|
|
'$flags'(P, M, Fl, NFlags).
|
|
|
|
'$is_mt'(M, H, B, (context_module(CM),B), CM) :-
|
|
'$module_transparent'(_, M, _, H), !.
|
|
'$is_mt'(M, _, B, B, M).
|
|
|
|
% comma has its own problems.
|
|
:- '$install_meta_predicate'(','(0,0), prolog).
|
|
|
|
/** @pred all( _T_,+ _G_,- _L_)
|
|
|
|
|
|
Similar to `findall( _T_, _G_, _L_)` but eliminate
|
|
repeated elements. Thus, assuming the same clauses as in the above
|
|
example, the reply to the query
|
|
|
|
~~~~~
|
|
all(X,a(X,Y),L).
|
|
~~~~~
|
|
would be:
|
|
|
|
~~~~~
|
|
X = _32
|
|
Y = _33
|
|
L = [2,1];
|
|
no
|
|
~~~~~
|
|
|
|
Note that all/3 will fail if no answers are found.
|
|
|
|
|
|
*/
|
|
/** @pred bagof( _T_,+ _G_,- _L_) is iso
|
|
|
|
|
|
For each set of possible instances of the free variables occurring in
|
|
_G_ but not in _T_, generates the list _L_ of the instances of
|
|
_T_ satisfying _G_. Again, assuming the same clauses as in the
|
|
examples above, the reply to the query
|
|
|
|
~~~~~
|
|
bagof(X,a(X,Y),L).
|
|
|
|
would be:
|
|
X = _32
|
|
Y = 1
|
|
L = [2,1];
|
|
X = _32
|
|
Y = 2
|
|
L = [2];
|
|
no
|
|
~~~~~
|
|
|
|
|
|
*/
|
|
/** @pred bb_delete(+ _Key_,? _Term_)
|
|
|
|
|
|
Delete any term stored in the blackboard under key _Key_ and unify
|
|
it with _Term_. Fail silently if no such term exists.
|
|
|
|
|
|
*/
|
|
/** @pred bb_get(+ _Key_,? _Term_)
|
|
|
|
|
|
Unify _Term_ with a term stored in the blackboard under key
|
|
_Key_, or fail silently if no such term exists.
|
|
|
|
|
|
*/
|
|
/** @pred bb_put(+ _Key_,? _Term_)
|
|
|
|
|
|
Store term table _Term_ in the blackboard under key _Key_. If a
|
|
previous term was stored under key _Key_ it is simply forgotten.
|
|
|
|
|
|
*/
|
|
/** @pred bb_update(+ _Key_,? _Term_,? _New_)
|
|
|
|
|
|
Atomically unify a term stored in the blackboard under key _Key_
|
|
with _Term_, and if the unification succeeds replace it by
|
|
_New_. Fail silently if no such term exists or if unification fails.
|
|
|
|
|
|
|
|
|
|
*/
|
|
/** @pred call_with_args(+ _Name_,...,? _Ai_,...)
|
|
|
|
|
|
Meta-call where _Name_ is the name of the procedure to be called and
|
|
the _Ai_ are the arguments. The number of arguments varies between 0
|
|
and 10. New code should use `call/N` for better portability.
|
|
|
|
If _Name_ is a complex term, then call_with_args/n behaves as
|
|
call/n:
|
|
|
|
~~~~~{.prolog}
|
|
call(p(X1,...,Xm), Y1,...,Yn) :- p(X1,...,Xm,Y1,...,Yn).
|
|
~~~~~
|
|
|
|
|
|
*/
|
|
/** @pred findall( _T_,+ _G_,+ _L_,- _L0_)
|
|
|
|
Similar to findall/3, but appends all answers to list _L0_.
|
|
|
|
|
|
*/
|
|
/** @pred findall( _T_,+ _G_,- _L_) is iso
|
|
|
|
|
|
Unifies _L_ with a list that contains all the instantiations of the
|
|
term _T_ satisfying the goal _G_.
|
|
|
|
With the following program:
|
|
|
|
~~~~~
|
|
a(2,1).
|
|
a(1,1).
|
|
a(2,2).
|
|
~~~~~
|
|
the answer to the query
|
|
|
|
~~~~~
|
|
findall(X,a(X,Y),L).
|
|
~~~~~
|
|
would be:
|
|
|
|
~~~~~
|
|
X = _32
|
|
Y = _33
|
|
L = [2,1,2];
|
|
no
|
|
~~~~~
|
|
|
|
|
|
*/
|
|
/** @pred format(+ _S_,+ _T_,+ _L_)
|
|
|
|
Print formatted output to stream _S_.
|
|
|
|
|
|
*/
|
|
/** @pred format(+ _T_,+ _L_)
|
|
|
|
|
|
Print formatted output to the current output stream. The arguments in
|
|
list _L_ are output according to the string or atom _T_.
|
|
|
|
A control sequence is introduced by a `w`. The following control
|
|
sequences are available in YAP:
|
|
|
|
|
|
|
|
+ `~~`
|
|
Print a single tilde.
|
|
|
|
+ `~a`
|
|
The next argument must be an atom, that will be printed as if by `write`.
|
|
|
|
+ `~Nc`
|
|
The next argument must be an integer, that will be printed as a
|
|
character code. The number _N_ is the number of times to print the
|
|
character (default 1).
|
|
|
|
+ `~Ne`
|
|
+ `~NE`
|
|
+ `~Nf`
|
|
+ `~Ng`
|
|
+ `~NG`
|
|
The next argument must be a floating point number. The float _F_, the number
|
|
_N_ and the control code `c` will be passed to `printf` as:
|
|
|
|
~~~~~{.prolog}
|
|
printf("%s.Nc", F)
|
|
~~~~~
|
|
|
|
As an example:
|
|
|
|
~~~~~{.prolog}
|
|
?- format("~8e, ~8E, ~8f, ~8g, ~8G~w",
|
|
[3.14,3.14,3.14,3.14,3.14,3.14]).
|
|
3.140000e+00, 3.140000E+00, 3.140000, 3.14, 3.143.14
|
|
~~~~~
|
|
|
|
+ `~Nd`
|
|
The next argument must be an integer, and _N_ is the number of digits
|
|
after the decimal point. If _N_ is `0` no decimal points will be
|
|
printed. The default is _N = 0_.
|
|
|
|
~~~~~{.prolog}
|
|
?- format("~2d, ~d",[15000, 15000]).
|
|
150.00, 15000
|
|
~~~~~
|
|
|
|
+ `~ND`
|
|
Identical to `~Nd`, except that commas are used to separate groups
|
|
of three digits.
|
|
|
|
~~~~~{.prolog}
|
|
?- format("~2D, ~D",[150000, 150000]).
|
|
1,500.00, 150,000
|
|
~~~~~
|
|
|
|
+ `~i`
|
|
Ignore the next argument in the list of arguments:
|
|
|
|
~~~~~{.prolog}
|
|
?- format('The ~i met the boregrove',[mimsy]).
|
|
The met the boregrove
|
|
~~~~~
|
|
|
|
+ `~k`
|
|
Print the next argument with `write_canonical`:
|
|
|
|
~~~~~{.prolog}
|
|
?- format("Good night ~k",a+[1,2]).
|
|
Good night +(a,[1,2])
|
|
~~~~~
|
|
|
|
+ `~Nn`
|
|
Print _N_ newlines (where _N_ defaults to 1).
|
|
|
|
+ `~NN`
|
|
Print _N_ newlines if at the beginning of the line (where _N_
|
|
defaults to 1).
|
|
|
|
+ `~Nr`
|
|
The next argument must be an integer, and _N_ is interpreted as a
|
|
radix, such that `2 <= N <= 36` (the default is 8).
|
|
|
|
~~~~~{.prolog}
|
|
?- format("~2r, 0x~16r, ~r",
|
|
[150000, 150000, 150000]).
|
|
100100100111110000, 0x249f0, 444760
|
|
~~~~~
|
|
|
|
Note that the letters `a-z` denote digits larger than 9.
|
|
|
|
+ `~NR`
|
|
Similar to `~NR`. The next argument must be an integer, and _N_ is
|
|
interpreted as a radix, such that `2 <= N <= 36` (the default is 8).
|
|
|
|
~~~~~{.prolog}
|
|
?- format("~2r, 0x~16r, ~r",
|
|
[150000, 150000, 150000]).
|
|
100100100111110000, 0x249F0, 444760
|
|
~~~~~
|
|
|
|
The only difference is that letters `A-Z` denote digits larger than 9.
|
|
|
|
+ `~p`
|
|
Print the next argument with print/1:
|
|
|
|
~~~~~{.prolog}
|
|
?- format("Good night ~p",a+[1,2]).
|
|
Good night a+[1,2]
|
|
~~~~~
|
|
|
|
+ `~q`
|
|
Print the next argument with writeq/1:
|
|
|
|
~~~~~{.prolog}
|
|
?- format("Good night ~q",'Hello'+[1,2]).
|
|
Good night 'Hello'+[1,2]
|
|
~~~~~
|
|
|
|
+ `~Ns`
|
|
The next argument must be a list of character codes. The system then
|
|
outputs their representation as a string, where _N_ is the maximum
|
|
number of characters for the string ( _N_ defaults to the length of the
|
|
string).
|
|
|
|
~~~~~{.prolog}
|
|
?- format("The ~s are ~4s",["woods","lovely"]).
|
|
The woods are love
|
|
~~~~~
|
|
|
|
+ `~w`
|
|
Print the next argument with write/1:
|
|
|
|
~~~~~
|
|
?- format("Good night ~w",'Hello'+[1,2]).
|
|
Good night Hello+[1,2]
|
|
~~~~~
|
|
|
|
|
|
The number of arguments, `N`, may be given as an integer, or it
|
|
may be given as an extra argument. The next example shows a small
|
|
procedure to write a variable number of `a` characters:
|
|
|
|
~~~~~
|
|
write_many_as(N) :-
|
|
format("~*c",[N,0'a]).
|
|
~~~~~
|
|
|
|
The format/2 built-in also allows for formatted output. One can
|
|
specify column boundaries and fill the intermediate space by a padding
|
|
character:
|
|
|
|
+ `~N|`
|
|
Set a column boundary at position _N_, where _N_ defaults to the
|
|
current position.
|
|
|
|
+ `~N+`
|
|
Set a column boundary at _N_ characters past the current position, where
|
|
_N_ defaults to `8`.
|
|
|
|
+ `~Nt`
|
|
Set padding for a column, where _N_ is the fill code (default is
|
|
`SPC`).
|
|
|
|
|
|
|
|
The next example shows how to align columns and padding. We first show
|
|
left-alignment:
|
|
|
|
~~~~~
|
|
?- format("~n*Hello~16+*~n",[]).
|
|
*Hello *
|
|
~~~~~
|
|
|
|
Note that we reserve 16 characters for the column.
|
|
|
|
The following example shows how to do right-alignment:
|
|
|
|
~~~~~
|
|
?- format("*~tHello~16+*~n",[]).
|
|
* Hello*
|
|
|
|
~~~~~
|
|
|
|
The `~t` escape sequence forces filling before `Hello`.
|
|
|
|
We next show how to do centering:
|
|
|
|
~~~~~
|
|
?- format("*~tHello~t~16+*~n",[]).
|
|
* Hello *
|
|
~~~~~
|
|
|
|
The two `~t` escape sequence force filling both before and after
|
|
`Hello`. Space is then evenly divided between the right and the
|
|
left sides.
|
|
|
|
|
|
*/
|
|
/** @pred setof( _X_,+ _P_,- _B_) is iso
|
|
|
|
|
|
Similar to `bagof( _T_, _G_, _L_)` but sorts list
|
|
_L_ and keeping only one copy of each element. Again, assuming the
|
|
same clauses as in the examples above, the reply to the query
|
|
|
|
~~~~~
|
|
setof(X,a(X,Y),L).
|
|
~~~~~
|
|
would be:
|
|
|
|
~~~~~
|
|
X = _32
|
|
Y = 1
|
|
L = [1,2];
|
|
X = _32
|
|
Y = 2
|
|
L = [2];
|
|
no
|
|
~~~~~
|
|
|
|
|
|
|
|
|
|
*/
|
|
/** @pred with_output_to(+ _Ouput_,: _Goal_)
|
|
|
|
|
|
Run _Goal_ as once/1, while characters written to the current
|
|
output are sent to _Output_. The predicate is SWI-Prolog
|
|
specific.
|
|
|
|
Applications should generally avoid creating atoms by breaking and
|
|
concatenating other atoms as the creation of large numbers of
|
|
intermediate atoms generally leads to poor performance, even more so in
|
|
multi-threaded applications. This predicate supports creating
|
|
difference-lists from character data efficiently. The example below
|
|
defines the DCG rule `term/3` to insert a term in the output:
|
|
|
|
~~~~~
|
|
term(Term, In, Tail) :-
|
|
with_output_to(codes(In, Tail), write(Term)).
|
|
|
|
?- phrase(term(hello), X).
|
|
|
|
X = [104, 101, 108, 108, 111]
|
|
~~~~~
|
|
|
|
+ A Stream handle or alias
|
|
Temporary switch current output to the given stream. Redirection using with_output_to/2 guarantees the original output is restored, also if Goal fails or raises an exception. See also call_cleanup/2.
|
|
+ atom(- _Atom_)
|
|
Create an atom from the emitted characters. Please note the remark above.
|
|
+ string(- _String_)
|
|
Create a string-object (not supported in YAP).
|
|
+ codes(- _Codes_)
|
|
Create a list of character codes from the emitted characters, similar to atom_codes/2.
|
|
+ codes(- _Codes_, - _Tail_)
|
|
Create a list of character codes as a difference-list.
|
|
+ chars(- _Chars_)
|
|
Create a list of one-character-atoms codes from the emitted characters, similar to atom_chars/2.
|
|
+ chars(- _Chars_, - _Tail_)
|
|
Create a list of one-character-atoms as a difference-list.
|
|
|
|
|
|
|
|
|
|
|
|
*/
|
|
/** @pred call_shared_object_function(+ _Handle_, + _Function_)
|
|
|
|
|
|
Call the named function in the loaded shared library. The function
|
|
is called without arguments and the return-value is
|
|
ignored. In SWI-Prolog, normally this function installs foreign
|
|
language predicates using calls to `PL_register_foreign()`.
|
|
|
|
|
|
|
|
*/
|
|
/** @pred with_mutex(+ _MutexId_, : _Goal_)
|
|
|
|
|
|
Execute _Goal_ while holding _MutexId_. If _Goal_ leaves
|
|
choicepoints, these are destroyed (as in once/1). The mutex is unlocked
|
|
regardless of whether _Goal_ succeeds, fails or raises an exception.
|
|
An exception thrown by _Goal_ is re-thrown after the mutex has been
|
|
successfully unlocked. See also `mutex_create/2`.
|
|
|
|
Although described in the thread-section, this predicate is also
|
|
available in the single-threaded version, where it behaves simply as
|
|
once/1.
|
|
|
|
|
|
*/
|
|
:- meta_predicate
|
|
abolish(:),
|
|
abolish(:,+),
|
|
all(?,0,-),
|
|
assert(:),
|
|
assert(:,+),
|
|
assert_static(:),
|
|
asserta(:),
|
|
asserta(:,+),
|
|
asserta_static(:),
|
|
assertz(:),
|
|
assertz(:,+),
|
|
assertz_static(:),
|
|
at_halt(0),
|
|
bagof(?,0,-),
|
|
bb_get(:,-),
|
|
bb_put(:,+),
|
|
bb_delete(:,?),
|
|
bb_update(:,?,?),
|
|
call(0),
|
|
call(1,?),
|
|
call(2,?,?),
|
|
call(3,?,?,?),
|
|
call_with_args(0),
|
|
call_with_args(1,?),
|
|
call_with_args(2,?,?),
|
|
call_with_args(3,?,?,?),
|
|
call_with_args(4,?,?,?,?),
|
|
call_with_args(5,?,?,?,?,?),
|
|
call_with_args(6,?,?,?,?,?,?),
|
|
call_with_args(7,?,?,?,?,?,?,?),
|
|
call_with_args(8,?,?,?,?,?,?,?,?),
|
|
call_with_args(9,?,?,?,?,?,?,?,?,?),
|
|
call_cleanup(0,0),
|
|
call_cleanup(0,?,0),
|
|
call_residue(0,?),
|
|
call_residue_vars(0,?),
|
|
call_shared_object_function(:,+),
|
|
catch(0,?,0),
|
|
clause(:,?),
|
|
clause(:,?,?),
|
|
compile(:),
|
|
consult(:),
|
|
current_predicate(:),
|
|
current_predicate(?,:),
|
|
db_files(:),
|
|
depth_bound_call(0,+),
|
|
discontiguous(:),
|
|
ensure_loaded(:),
|
|
exo_files(:),
|
|
findall(?,0,-),
|
|
findall(?,0,-,?),
|
|
forall(0,0),
|
|
format(+,:),
|
|
format(+,+,:),
|
|
freeze(?,0),
|
|
hide_predicate(:),
|
|
if(0,0,0),
|
|
ignore(0),
|
|
incore(0),
|
|
multifile(:),
|
|
nospy(:),
|
|
not(0),
|
|
notrace(0),
|
|
once(0),
|
|
phrase(2,?),
|
|
phrase(2,?,+),
|
|
predicate_property(:,?),
|
|
predicate_statistics(:,-,-,-),
|
|
on_exception(+,0,0),
|
|
qsave_program(+,:),
|
|
reconsult(:),
|
|
retract(:),
|
|
retract(:,?),
|
|
retractall(:),
|
|
reconsult(:),
|
|
setof(?,0,-),
|
|
setup_call_cleanup(0,0,0),
|
|
setup_call_catcher_cleanup(0,0,?,0),
|
|
spy(:),
|
|
stash_predicate(:),
|
|
unknown(+,:),
|
|
use_module(:),
|
|
use_module(:,?),
|
|
use_module(?,:,?),
|
|
when(+,0),
|
|
with_mutex(+,0),
|
|
with_output_to(?,0),
|
|
'->'(0 , 0),
|
|
'*->'(0 , 0),
|
|
';'(0 , 0),
|
|
','(0 , 0),
|
|
^(+,0),
|
|
{}(0,?,?),
|
|
','(2,2,?,?),
|
|
;(2,2,?,?),
|
|
'|'(2,2,?,?),
|
|
->(2,2,?,?),
|
|
\+(2,?,?),
|
|
\+( 0 ).
|
|
|
|
/**
|
|
|
|
@}
|
|
|
|
@{
|
|
\defgroup YAPDynamicYAPModules Dynamic Modules
|
|
\ingroup YAPModules
|
|
|
|
YAP (in the footsteps of SWI-Prolog) allows to create modules that
|
|
are not bound to files. One application is in Inductive Logic Programming,
|
|
where dynamic modules can be used to represent training examples. YAP now include
|
|
built-ins to create a module. manipulate its interface, and eventually abolish the
|
|
module, releasing all the data therein.
|
|
|
|
*/
|
|
|
|
/**
|
|
|
|
\pred declare_module(+Module, +Super, +File, +Line, +Redefine) is det
|
|
declare explicitely a module
|
|
|
|
Start a new (source-)module _Module_ that inherits all exports from
|
|
_Super_. The module is as if defined in file _File_ and _Line_ and if _Redefine_
|
|
holds true may
|
|
be associated to a new file.
|
|
|
|
\param[in] _Module_ is the name of the module to declare
|
|
\param[in] _MSuper_ is the name of the context module. Use `prolog`or `system`
|
|
if you do not need a context.
|
|
\param[in] _File_ is the canonical name of the file from which the module is loaded
|
|
\param[in] Line is the line-number of the :- module/2 directive.
|
|
\param[in] If _Redefine_ `true`, allow associating the module to a new file
|
|
*/
|
|
|
|
'$declare_module'(Name, _Super, Context, _File, _Line) :-
|
|
add_import_module(Name, Context, start).
|
|
|
|
|
|
/**
|
|
\pred abolish_module( + Mod) is det
|
|
get rid of a module and of all predicates included in the module.
|
|
*/
|
|
abolish_module(Mod) :-
|
|
recorded('$module','$module'(_,Mod,_,_),R), erase(R),
|
|
fail.
|
|
abolish_module(Mod) :-
|
|
recorded('$import','$import'(Mod,_,_,_,_,_),R), erase(R),
|
|
fail.
|
|
abolish_module(Mod) :-
|
|
'$current_predicate'(Mod,Na,Ar),
|
|
abolish(Mod:Na/Ar),
|
|
fail.
|
|
abolish_module(_).
|
|
|
|
export(Resource) :-
|
|
var(Resource),
|
|
'$do_error'(instantiation_error,export(Resource)).
|
|
export([]) :- !.
|
|
export([Resource| Resources]) :- !,
|
|
export_resource(Resource),
|
|
export(Resources).
|
|
export(Resource) :-
|
|
export_resource(Resource).
|
|
|
|
export_resource(Resource) :-
|
|
var(Resource), !,
|
|
'$do_error'(instantiation_error,export(Resource)).
|
|
export_resource(P) :-
|
|
P = F/N, atom(F), number(N), N >= 0, !,
|
|
'$current_module'(Mod),
|
|
( recorded('$module','$module'(File,Mod,ExportedPreds,Line),R) ->
|
|
erase(R),
|
|
recorda('$module','$module'(File,Mod,[P|ExportedPreds],Line),_)
|
|
; prolog_load_context(file, File) ->
|
|
recorda('$module','$module'(File,Mod,[P],Line),_)
|
|
; recorda('$module','$module'(user_input,Mod,[P],1),_)
|
|
).
|
|
export_resource(P0) :-
|
|
P0 = F//N, atom(F), number(N), N >= 0, !,
|
|
N1 is N+2, P = F/N1,
|
|
'$current_module'(Mod),
|
|
( recorded('$module','$module'(File,Mod,ExportedPreds,Line),R) ->
|
|
erase(R),
|
|
recorda('$module','$module'(File,Mod,[P|ExportedPreds],Line ),_)
|
|
; prolog_load_context(file, File) ->
|
|
recorda('$module','$module'(File,Mod,[P],Line),_)
|
|
; recorda('$module','$module'(user_input,Mod,[P],1),_)
|
|
).
|
|
export_resource(op(Prio,Assoc,Name)) :- !,
|
|
op(Prio,Assoc,prolog:Name).
|
|
export_resource(Resource) :-
|
|
'$do_error'(type_error(predicate_indicator,Resource),export(Resource)).
|
|
|
|
export_list(Module, List) :-
|
|
recorded('$module','$module'(_,Module,List,_),_).
|
|
|
|
'$convert_for_export'(all, Exports, _Module, _ContextModule, Tab, MyExports, _) :-
|
|
'$simple_conversion'(Exports, Tab, MyExports).
|
|
'$convert_for_export'([], Exports, Module, ContextModule, Tab, MyExports, Goal) :-
|
|
'$clean_conversion'([], Exports, Module, ContextModule, Tab, MyExports, Goal).
|
|
'$convert_for_export'([P1|Ps], Exports, Module, ContextModule, Tab, MyExports, Goal) :-
|
|
'$clean_conversion'([P1|Ps], Exports, Module, ContextModule, Tab, MyExports, Goal).
|
|
'$convert_for_export'(except(Excepts), Exports, Module, ContextModule, Tab, MyExports, Goal) :-
|
|
'$neg_conversion'(Excepts, Exports, Module, ContextModule, MyExports, Goal),
|
|
'$simple_conversion'(MyExports, Tab, _).
|
|
|
|
'$simple_conversion'([], [], []).
|
|
'$simple_conversion'([F/N|Exports], [F/N-F/N|Tab], [F/N|E]) :-
|
|
'$simple_conversion'(Exports, Tab, E).
|
|
'$simple_conversion'([F//N|Exports], [F/N2-F/N2|Tab], [F/N2|E]) :-
|
|
N2 is N+1,
|
|
'$simple_conversion'(Exports, Tab, E).
|
|
'$simple_conversion'([F/N as NF|Exports], [F/N-NF/N|Tab], [NF/N|E]) :-
|
|
'$simple_conversion'(Exports, Tab, E).
|
|
'$simple_conversion'([F//N as BF|Exports], [F/N2-NF/N2|Tab], [NF/N2|E]) :-
|
|
N2 is N+1,
|
|
'$simple_conversion'(Exports, Tab, E).
|
|
'$simple_conversion'([op(Prio,Assoc,Name)|Exports], [op(Prio,Assoc,Name)|Tab], [op(Prio,Assoc,Name)|E]) :-
|
|
'$simple_conversion'(Exports, Tab, E).
|
|
|
|
'$clean_conversion'([], _, _, _, [], [], _).
|
|
'$clean_conversion'([(N1/A1 as N2)|Ps], List, Module, ContextModule, [N1/A1-N2/A1|Tab], [N2/A1|MyExports], Goal) :- !,
|
|
( lists:memberchk(N1/A1, List)
|
|
->
|
|
true
|
|
;
|
|
'$bad_export'((N1/A1 as A2), Module, ContextModule)
|
|
),
|
|
'$clean_conversion'(Ps, List, Module, ContextModule, Tab, MyExports, Goal).
|
|
'$clean_conversion'([N1/A1|Ps], List, Module, ContextModule, [N1/A1-N1/A1|Tab], [N1/A1|MyExports], Goal) :- !,
|
|
(
|
|
lists:memberchk(N1/A1, List)
|
|
->
|
|
true
|
|
;
|
|
'$bad_export'(N1/A1, Module, ContextModule)
|
|
),
|
|
'$clean_conversion'(Ps, List, Module, ContextModule, Tab, MyExports, Goal).
|
|
'$clean_conversion'([N1//A1|Ps], List, Module, ContextModule, [N1/A2-N1/A2|Tab], [N1/A2|MyExports], Goal) :- !,
|
|
A2 is A1+2,
|
|
(
|
|
lists:memberchk(N1/A2, List)
|
|
->
|
|
true
|
|
;
|
|
'$bad_export'(N1//A1, Module, ContextModule)
|
|
|
|
),
|
|
'$clean_conversion'(Ps, List, Module, ContextModule, Tab, MyExports, Goal).
|
|
'$clean_conversion'([N1//A1 as N2|Ps], List, Module, ContextModule, [N2/A2-N1/A2|Tab], [N2/A2|MyExports], Goal) :- !,
|
|
A2 is A1+2,
|
|
(
|
|
lists:memberchk(N2/A2, List)
|
|
->
|
|
true
|
|
;
|
|
'$bad_export'((N1//A1 as A2), Module, ContextModule)
|
|
),
|
|
'$clean_conversion'(Ps, List, Module, ContextModule, Tab, MyExports, Goal).
|
|
'$clean_conversion'([op(Prio,Assoc,Name)|Ps], List, Module, ContextModule, [op(Prio,Assoc,Name)|Tab], [op(Prio,Assoc,Name)|MyExports], Goal) :- !,
|
|
(
|
|
lists:memberchk(op(Prio,Assoc,Name), List)
|
|
->
|
|
true
|
|
;
|
|
'$bad_export'(op(Prio,Assoc,Name), Module, ContextModule)
|
|
),
|
|
'$clean_conversion'(Ps, List, Module, ContextModule, Tab, MyExports, Goal).
|
|
'$clean_conversion'([P|_], _List, _, _, _, _, Goal) :-
|
|
'$do_error'(domain_error(module_export_predicates,P), Goal).
|
|
|
|
'$bad_export'(_, _Module, _ContextModule) :- !.
|
|
'$bad_export'(Name/Arity, Module, ContextModule) :-
|
|
functor(P, Name, Arity),
|
|
predicate_property(Module:P, _), !,
|
|
print_message(warning, declaration(Name/Arity, Module, ContextModule, private)).
|
|
'$bad_export'(Name//Arity, Module, ContextModule) :-
|
|
Arity2 is Arity+2,
|
|
functor(P, Name, Arity2),
|
|
predicate_property(Module:P, _), !,
|
|
print_message(warning, declaration(Name/Arity, Module, ContextModule, private)).
|
|
'$bad_export'(Indicator, Module, ContextModule) :- !,
|
|
print_message(warning, declaration( Indicator, Module, ContextModule, undefined)).
|
|
|
|
'$neg_conversion'([], Exports, _, _, Exports, _).
|
|
'$neg_conversion'([N1/A1|Ps], List, Module, ContextModule, MyExports, Goal) :- !,
|
|
(
|
|
lists:delete(List, N1/A1, RList)
|
|
->
|
|
'$neg_conversion'(Ps, RList, Module, ContextModule, MyExports, Goal)
|
|
;
|
|
'$bad_export'(N1/A1, Module, ContextModule)
|
|
).
|
|
'$neg_conversion'([N1//A1|Ps], List, Module, ContextModule, MyExports, Goal) :- !,
|
|
A2 is A1+2,
|
|
(
|
|
lists:delete(List, N1/A2, RList)
|
|
->
|
|
'$neg_conversion'(Ps, RList, Module, ContextModule, MyExports, Goal)
|
|
;
|
|
'$bad_export'(N1//A1, Module, ContextModule)
|
|
).
|
|
'$neg_conversion'([op(Prio,Assoc,Name)|Ps], List, Module, ContextModule, MyExports, Goal) :- !,
|
|
(
|
|
lists:delete(List, op(Prio,Assoc,Name), RList)
|
|
->
|
|
'$neg_conversion'(Ps, RList, Module, ContextModule, MyExports, Goal)
|
|
;
|
|
'$bad_export'(op(Prio,Assoc,Name), Module, ContextModule)
|
|
).
|
|
'$clean_conversion'([P|_], _List, _, _, _, Goal) :-
|
|
'$do_error'(domain_error(module_export_predicates,P), Goal).
|
|
|
|
|
|
'$add_to_imports'([], _, _).
|
|
% no need to import from the actual module
|
|
'$add_to_imports'([T|Tab], Module, ContextModule) :-
|
|
'$do_import'(T, Module, ContextModule),
|
|
'$add_to_imports'(Tab, Module, ContextModule).
|
|
|
|
'$do_import'(op(Prio,Assoc,Name), _Mod, ContextMod) :-
|
|
op(Prio,Assoc,ContextMod:Name).
|
|
'$do_import'(N0/K0-N0/K0, Mod, Mod) :- !.
|
|
'$do_import'(_N/K-N1/K, _Mod, ContextMod) :-
|
|
recorded('$module','$module'(_F, ContextMod, MyExports,_),_),
|
|
once(lists:member(N1/K, MyExports)),
|
|
functor(S, N1, K),
|
|
% reexport predicates if they are undefined in the current module.
|
|
\+ '$undefined'(S,ContextMod), !.
|
|
'$do_import'( N/K-N1/K, Mod, ContextMod) :-
|
|
functor(G,N,K),
|
|
'$follow_import_chain'(Mod,G,M0,G0),
|
|
G0=..[N0|Args],
|
|
G1=..[N1|Args],
|
|
( '$check_import'(M0,ContextMod,N1,K) ->
|
|
( ContextMod = user ->
|
|
( recordzifnot('$import','$import'(M0,user,G0,G1,N1,K),_) -> true ; true)
|
|
;
|
|
( recordaifnot('$import','$import'(M0,ContextMod,G0,G1,N1,K),_) -> true ; true )
|
|
)
|
|
;
|
|
true
|
|
).
|
|
|
|
'$follow_import_chain'(M,G,M0,G0) :-
|
|
recorded('$import','$import'(M1,M,G1,G,_,_),_), M \= M1, !,
|
|
'$follow_import_chain'(M1,G1,M0,G0).
|
|
'$follow_import_chain'(M,G,M,G).
|
|
|
|
% trying to import Mod:N/K into ContextM
|
|
'$check_import'(Mod, ContextM, N, K) :-
|
|
recorded('$import','$import'(MI, ContextM, _, _, N,K),_R),
|
|
% dereference MI to M1, in order to find who
|
|
% is actually generating
|
|
( '$module_produced by'(M1, MI, N, K) -> true ; MI = M1 ),
|
|
( '$module_produced by'(M2, Mod, N, K) -> true ; Mod = M2 ),
|
|
M2 \= M1, !,
|
|
b_getval('$lf_status', TOpts),
|
|
'$lf_opt'(redefine_module, TOpts, Action),
|
|
'$redefine_action'(Action, M1, M2, M, ContextM, N/K).
|
|
'$check_import'(_,_,_,_).
|
|
|
|
'$redefine_action'(ask, M1, M2, M, _, N/K) :-
|
|
stream_property(user_input,tty(true)), !,
|
|
format(user_error,'NAME CLASH: ~w was already imported to module ~w;~n',[M1:N/K,M2]),
|
|
format(user_error,' Do you want to import it from ~w ? [y, n, e or h] ',M),
|
|
'$mod_scan'(C),
|
|
( C == e -> halt(1) ;
|
|
C == y ).
|
|
'$redefine_action'(true, M1, _, _, _, _) :- !,
|
|
recorded('$module','$module'(F, M1, _MyExports,_Line),_),
|
|
unload_file(F).
|
|
'$redefine_action'(false, M1, M2, M, ContextM, N/K) :-
|
|
recorded('$module','$module'(F, ContextM, _MyExports,_Line),_),
|
|
'$current_module'(_, M2),
|
|
'$do_error'(permission_error(import,M1:N/K,redefined,M2),F).
|
|
|
|
'$mod_scan'(C) :-
|
|
get_char(C),
|
|
'$skipeol'(C),
|
|
(C == y -> true; C == n).
|
|
|
|
% I assume the clause has been processed, so the
|
|
% var case is long gone! Yes :)
|
|
'$clean_cuts'(G,(yap_hacks:current_choicepoint(DCP),NG)) :-
|
|
'$conj_has_cuts'(G,DCP,NG,OK), OK == ok, !.
|
|
'$clean_cuts'(G,G).
|
|
|
|
'$conj_has_cuts'(V,_,V, _) :- var(V), !.
|
|
'$conj_has_cuts'(!,DCP,'$$cut_by'(DCP), ok) :- !.
|
|
'$conj_has_cuts'((G1,G2),DCP,(NG1,NG2), OK) :- !,
|
|
'$conj_has_cuts'(G1, DCP, NG1, OK),
|
|
'$conj_has_cuts'(G2, DCP, NG2, OK).
|
|
'$conj_has_cuts'((G1;G2),DCP,(NG1;NG2), OK) :- !,
|
|
'$conj_has_cuts'(G1, DCP, NG1, OK),
|
|
'$conj_has_cuts'(G2, DCP, NG2, OK).
|
|
'$conj_has_cuts'((G1->G2),DCP,(G1;NG2), OK) :- !,
|
|
% G1: the system must have done it already
|
|
'$conj_has_cuts'(G2, DCP, NG2, OK).
|
|
'$conj_has_cuts'((G1*->G2),DCP,(G1;NG2), OK) :- !,
|
|
% G1: the system must have done it already
|
|
'$conj_has_cuts'(G2, DCP, NG2, OK).
|
|
'$conj_has_cuts'(if(G1,G2,G3),DCP,if(G1,NG2,NG3), OK) :- !,
|
|
% G1: the system must have done it already
|
|
'$conj_has_cuts'(G2, DCP, NG2, OK),
|
|
'$conj_has_cuts'(G3, DCP, NG3, OK).
|
|
'$conj_has_cuts'(G,_,G, _).
|
|
|
|
/**
|
|
set_base_module( +ExportingModule ) is det
|
|
All exported predicates from _ExportingModule_ are automatically available to the
|
|
current source module.
|
|
|
|
This built-in was introduced by SWI-Prolog. In YAP, by default, modules only
|
|
inherit from `prolog`. This extension allows predicates in the current
|
|
module (see module/2 and module/1) to inherit from `user` or other modules.
|
|
|
|
*/
|
|
set_base_module(ExportingModule) :-
|
|
var(ExportingModule),
|
|
'$do_error'(instantiation_error,set_base_module(ExportingModule)).
|
|
set_base_module(ExportingModule) :-
|
|
atom(ExportingModule), !,
|
|
'$current_module'(Mod),
|
|
retractall(prolg:'$parent_module'(Mod,_)),
|
|
asserta(prolog:'$parent_module'(Mod,ExportingModule)).
|
|
set_base_module(ExportingModule) :-
|
|
'$do_error'(type_error(atom,ExportingModule),set_base_module(ExportingModule)).
|
|
|
|
/**
|
|
import_module( +ImportingModule, +ExportingModule ) is det
|
|
All exported predicates from _ExportingModule_ are automatically available to the
|
|
source module _ImportModule_.
|
|
|
|
This innovation was introduced by SWI-Prolog. By default, modules only
|
|
inherit from `prolog`. This extension allows predicates in any module
|
|
to inherit from `user`oe other modules.
|
|
|
|
*/
|
|
import_module(Mod, ImportModule) :-
|
|
var(Mod),
|
|
'$do_error'(instantiation_error,import_module(Mod, ImportModule)).
|
|
import_module(Mod, ImportModule) :-
|
|
atom(Mod), !,
|
|
prolog:'$parent_module'(Mod,ImportModule).
|
|
import_module(Mod, EM) :-
|
|
'$do_error'(type_error(atom,Mod),import_module(Mod, EM)).
|
|
|
|
add_import_module(Mod, ImportModule, Pos) :-
|
|
var(Mod),
|
|
'$do_error'(instantiation_error,add_import_module(Mod, ImportModule, Pos)).
|
|
add_import_module(Mod, ImportModule, Pos) :-
|
|
var(Pos),
|
|
'$do_error'(instantiation_error,add_import_module(Mod, ImportModule, Pos)).
|
|
add_import_module(Mod, ImportModule, start) :-
|
|
atom(Mod), !,
|
|
retractall(prolog:'$parent_module'(Mod,ImportModule)),
|
|
asserta(prolog:'$parent_module'(Mod,ImportModule)).
|
|
add_import_module(Mod, ImportModule, end) :-
|
|
atom(Mod), !,
|
|
retractall(prolog:'$parent_module'(Mod,ImportModule)),
|
|
assertz(prolog:'$parent_module'(Mod,ImportModule)).
|
|
add_import_module(Mod, ImportModule, Pos) :-
|
|
\+ atom(Mod), !,
|
|
'$do_error'(type_error(atom,Mod),add_import_module(Mod, ImportModule, Pos)).
|
|
add_import_module(Mod, ImportModule, Pos) :-
|
|
'$do_error'(domain_error(start_end,Pos),add_import_module(Mod, ImportModule, Pos)).
|
|
|
|
delete_import_module(Mod, ImportModule) :-
|
|
var(Mod),
|
|
'$do_error'(instantiation_error,delete_import_module(Mod, ImportModule)).
|
|
delete_import_module(Mod, ImportModule) :-
|
|
var(ImportModule),
|
|
'$do_error'(instantiation_error,delete_import_module(Mod, ImportModule)).
|
|
delete_import_module(Mod, ImportModule) :-
|
|
atom(Mod),
|
|
atom(ImportModule), !,
|
|
retractall(prolog:'$parent_module'(Mod,ImportModule)).
|
|
delete_import_module(Mod, ImportModule) :-
|
|
\+ atom(Mod), !,
|
|
'$do_error'(type_error(atom,Mod),delete_import_module(Mod, ImportModule)).
|
|
delete_import_module(Mod, ImportModule) :-
|
|
'$do_error'(type_error(atom,ImportModule),delete_import_module(Mod, ImportModule)).
|
|
|
|
'$set_source_module'(Source0, SourceF) :-
|
|
prolog_load_context(module, Source0), !,
|
|
module(SourceF).
|
|
'$set_source_module'(Source0, SourceF) :-
|
|
current_module(Source0, SourceF).
|
|
|
|
module_property(Mod, class(L)) :-
|
|
'$module_class'(Mod, L).
|
|
module_property(Mod, line_count(L)) :-
|
|
recorded('$module','$module'(_F,Mod,_,L),_).
|
|
module_property(Mod, file(F)) :-
|
|
recorded('$module','$module'(F,Mod,_,_),_).
|
|
module_property(Mod, exports(Es)) :-
|
|
recorded('$module','$module'(_,Mod,Es,_),_).
|
|
|
|
'$module_class'(Mod, system) :- '$system_module'( Mod ).
|
|
'$module_class'(Mod, library) :- '$library_module'( Mod ).
|
|
'$module_class'(Mod, user) :- '$user_module'( Mod ).
|
|
'$module_class'(_, temporary) :- fail.
|
|
'$module_class'(_, test) :- fail.
|
|
'$module_class'(_, development) :- fail.
|
|
|
|
'$library_module'(M1) :-
|
|
recorded('$module','$module'(F, M1, _MyExports,_Line),_),
|
|
user:library_directory(D),
|
|
sub_atom(F, 0, _, _, D).
|
|
|
|
'$user_module'( Mod ) :-
|
|
\+ '$library_module'( Mod),
|
|
\+ '$system_module'( Mod).
|
|
|
|
ls_imports :-
|
|
recorded('$import','$import'(M0,M,G0,G,_N,_K),_R),
|
|
numbervars(G0+G, 0, _),
|
|
format('~a:~w <- ~a:~w~n', [M, G, M0, G0]),
|
|
fail.
|
|
ls_imports.
|
|
|
|
|
|
'$system_module'('$swi').
|
|
'$system_module'('$win_menu').
|
|
'$system_module'('prolog').
|
|
'$system_module'('system').
|
|
'$system_module'('$attributes').
|
|
|
|
/**
|
|
|
|
@}
|
|
|
|
@}
|
|
|
|
**/
|