6cc9e24976
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1957 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
225 lines
5.1 KiB
Prolog
225 lines
5.1 KiB
Prolog
:- module(hprolog,
|
|
[ append/2, % +ListOfLists, -List
|
|
nth/3, % ?Index, ?List, ?Element
|
|
substitute_eq/4, % +OldVal, +OldList, +NewVal, -NewList
|
|
memberchk_eq/2, % +Val, +List
|
|
intersect_eq/3, % +List1, +List2, -Intersection
|
|
list_difference_eq/3, % +List, -Subtract, -Rest
|
|
take/3, % +N, +List, -FirstElements
|
|
drop/3, % +N, +List, -LastElements
|
|
split_at/4, % +N, +List, -FirstElements, -LastElements
|
|
max_go_list/2, % +List, -Max
|
|
or_list/2, % +ListOfInts, -BitwiseOr
|
|
sublist/2, % ?Sublist, +List
|
|
bounded_sublist/3, % ?Sublist, +List, +Bound
|
|
min_list/2,
|
|
chr_delete/3,
|
|
init_store/2,
|
|
get_store/2,
|
|
update_store/2,
|
|
make_get_store_goal/3,
|
|
make_update_store_goal/3,
|
|
make_init_store_goal/3,
|
|
|
|
empty_ds/1,
|
|
ds_to_list/2,
|
|
get_ds/3,
|
|
put_ds/4
|
|
|
|
]).
|
|
:- use_module(library(lists)).
|
|
:- use_module(library(assoc)).
|
|
|
|
empty_ds(DS) :- empty_assoc(DS).
|
|
ds_to_list(DS,LIST) :- assoc_to_list(DS,LIST).
|
|
get_ds(A,B,C) :- get_assoc(A,B,C).
|
|
put_ds(A,B,C,D) :- put_assoc(A,B,C,D).
|
|
|
|
|
|
init_store(Name,Value) :- nb_setval(Name,Value).
|
|
|
|
get_store(Name,Value) :- nb_getval(Name,Value).
|
|
|
|
update_store(Name,Value) :- b_setval(Name,Value).
|
|
|
|
make_init_store_goal(Name,Value,Goal) :- Goal = nb_setval(Name,Value).
|
|
|
|
make_get_store_goal(Name,Value,Goal) :- Goal = nb_getval(Name,Value).
|
|
|
|
make_update_store_goal(Name,Value,Goal) :- Goal = b_setval(Name,Value).
|
|
|
|
|
|
/*******************************
|
|
* MORE LIST OPERATIONS *
|
|
*******************************/
|
|
|
|
% append(+ListOfLists, -List)
|
|
%
|
|
% Convert a one-level nested list into a flat one. E.g.
|
|
% append([[a,b], [c]], X) --> X = [a,b,c]. See also
|
|
% flatten/3.
|
|
|
|
append([],[]).
|
|
append([X],X) :- !.
|
|
append([X|Xs],L) :-
|
|
append(X,T,L),
|
|
append(Xs,T).
|
|
|
|
|
|
% nth(?Index, ?List, ?Element)
|
|
%
|
|
% Same as nth1/3
|
|
|
|
nth(Index, List, Element) :-
|
|
nth1(Index, List, Element).
|
|
|
|
|
|
% substitute_eq(+OldVal, +OldList, +NewVal, -NewList)
|
|
%
|
|
% Substitute OldVal by NewVal in OldList and unify the result
|
|
% with NewList.
|
|
|
|
substitute_eq(_, [], _, []) :- ! .
|
|
substitute_eq(X, [U|Us], Y, [V|Vs]) :-
|
|
( X == U
|
|
-> V = Y,
|
|
substitute_eq(X, Us, Y, Vs)
|
|
; V = U,
|
|
substitute_eq(X, Us, Y, Vs)
|
|
).
|
|
|
|
% memberchk_eq(+Val, +List)
|
|
%
|
|
% Deterministic check of membership using == rather than
|
|
% unification.
|
|
|
|
memberchk_eq(X, [Y|Ys]) :-
|
|
( X == Y
|
|
-> true
|
|
; memberchk_eq(X, Ys)
|
|
).
|
|
|
|
|
|
% list_difference_eq(+List, -Subtract, -Rest)
|
|
%
|
|
% Delete all elements of Subtract from List and unify the result
|
|
% with Rest. Element comparision is done using ==/2.
|
|
|
|
list_difference_eq([],_,[]).
|
|
list_difference_eq([X|Xs],Ys,L) :-
|
|
( memberchk_eq(X,Ys)
|
|
-> list_difference_eq(Xs,Ys,L)
|
|
; L = [X|T],
|
|
list_difference_eq(Xs,Ys,T)
|
|
).
|
|
|
|
% intersect_eq(+List1, +List2, -Intersection)
|
|
%
|
|
% Determine the intersection of two lists without unifying values.
|
|
|
|
intersect_eq([], _, []).
|
|
intersect_eq([X|Xs], Ys, L) :-
|
|
( memberchk_eq(X, Ys)
|
|
-> L = [X|T],
|
|
intersect_eq(Xs, Ys, T)
|
|
; intersect_eq(Xs, Ys, L)
|
|
).
|
|
|
|
|
|
% take(+N, +List, -FirstElements)
|
|
%
|
|
% Take the first N elements from List and unify this with
|
|
% FirstElements. The definition is based on the GNU-Prolog lists
|
|
% library. Implementation by Jan Wielemaker.
|
|
|
|
take(0, _, []) :- !.
|
|
take(N, [H|TA], [H|TB]) :-
|
|
N > 0,
|
|
N2 is N - 1,
|
|
take(N2, TA, TB).
|
|
|
|
% Drop the first N elements from List and unify the remainder with
|
|
% LastElements.
|
|
|
|
drop(0,LastElements,LastElements) :- !.
|
|
drop(N,[_|Tail],LastElements) :-
|
|
N > 0,
|
|
N1 is N - 1,
|
|
drop(N1,Tail,LastElements).
|
|
|
|
split_at(0,L,[],L) :- !.
|
|
split_at(N,[H|T],[H|L1],L2) :-
|
|
M is N -1,
|
|
split_at(M,T,L1,L2).
|
|
|
|
% max_go_list(+List, -Max)
|
|
%
|
|
% Return the maximum of List in the standard order of terms.
|
|
|
|
max_go_list([H|T], Max) :-
|
|
max_go_list(T, H, Max).
|
|
|
|
max_go_list([], Max, Max).
|
|
max_go_list([H|T], X, Max) :-
|
|
( H @=< X
|
|
-> max_go_list(T, X, Max)
|
|
; max_go_list(T, H, Max)
|
|
).
|
|
|
|
% or_list(+ListOfInts, -BitwiseOr)
|
|
%
|
|
% Do a bitwise disjuction over all integer members of ListOfInts.
|
|
|
|
or_list(L, Or) :-
|
|
or_list(L, 0, Or).
|
|
|
|
or_list([], Or, Or).
|
|
or_list([H|T], Or0, Or) :-
|
|
Or1 is H \/ Or0,
|
|
or_list(T, Or1, Or).
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
sublist(L, L).
|
|
sublist(Sub, [H|T]) :-
|
|
'$sublist1'(T, H, Sub).
|
|
|
|
'$sublist1'(Sub, _, Sub).
|
|
'$sublist1'([H|T], _, Sub) :-
|
|
'$sublist1'(T, H, Sub).
|
|
'$sublist1'([H|T], X, [X|Sub]) :-
|
|
'$sublist1'(T, H, Sub).
|
|
|
|
bounded_sublist(Sublist,_,_) :-
|
|
Sublist = [].
|
|
bounded_sublist(Sublist,[H|List],Bound) :-
|
|
Bound > 0,
|
|
(
|
|
Sublist = [H|Rest],
|
|
NBound is Bound - 1,
|
|
bounded_sublist(Rest,List,NBound)
|
|
;
|
|
bounded_sublist(Sublist,List,Bound)
|
|
).
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
min_list([H|T], Min) :-
|
|
'$min_list1'(T, H, Min).
|
|
|
|
'$min_list1'([], Min, Min).
|
|
'$min_list1'([H|T], X, Min) :-
|
|
( H>=X ->
|
|
'$min_list1'(T, X, Min)
|
|
; '$min_list1'(T, H, Min)
|
|
).
|
|
|
|
chr_delete([], _, []).
|
|
chr_delete([H|T], X, L) :-
|
|
( H==X ->
|
|
chr_delete(T, X, L)
|
|
; L=[H|RT],
|
|
chr_delete(T, X, RT)
|
|
).
|
|
|