This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/ProbLog/problog/tptree.yap
2010-09-07 23:21:14 +02:00

2010 lines
58 KiB
Prolog

%%% -*- Mode: Prolog; -*-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Date: 2010-09-07 23:20:03 +0200 (Tue, 07 Sep 2010) $
% $Revision: 4765 $
%
% This file is part of ProbLog
% http://dtai.cs.kuleuven.be/problog
%
% ProbLog was developed at Katholieke Universiteit Leuven
%
% Copyright 2008, 2009, 2010
% Katholieke Universiteit Leuven
%
% Main authors of this file:
% Angelika Kimmig, Vitor Santos Costa,Bernd Gutmann,
% Theofrastos Mantadelis, Guy Van den Broeck
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Artistic License 2.0
%
% Copyright (c) 2000-2006, The Perl Foundation.
%
% Everyone is permitted to copy and distribute verbatim copies of this
% license document, but changing it is not allowed. Preamble
%
% This license establishes the terms under which a given free software
% Package may be copied, modified, distributed, and/or
% redistributed. The intent is that the Copyright Holder maintains some
% artistic control over the development of that Package while still
% keeping the Package available as open source and free software.
%
% You are always permitted to make arrangements wholly outside of this
% license directly with the Copyright Holder of a given Package. If the
% terms of this license do not permit the full use that you propose to
% make of the Package, you should contact the Copyright Holder and seek
% a different licensing arrangement. Definitions
%
% "Copyright Holder" means the individual(s) or organization(s) named in
% the copyright notice for the entire Package.
%
% "Contributor" means any party that has contributed code or other
% material to the Package, in accordance with the Copyright Holder's
% procedures.
%
% "You" and "your" means any person who would like to copy, distribute,
% or modify the Package.
%
% "Package" means the collection of files distributed by the Copyright
% Holder, and derivatives of that collection and/or of those files. A
% given Package may consist of either the Standard Version, or a
% Modified Version.
%
% "Distribute" means providing a copy of the Package or making it
% accessible to anyone else, or in the case of a company or
% organization, to others outside of your company or organization.
%
% "Distributor Fee" means any fee that you charge for Distributing this
% Package or providing support for this Package to another party. It
% does not mean licensing fees.
%
% "Standard Version" refers to the Package if it has not been modified,
% or has been modified only in ways explicitly requested by the
% Copyright Holder.
%
% "Modified Version" means the Package, if it has been changed, and such
% changes were not explicitly requested by the Copyright Holder.
%
% "Original License" means this Artistic License as Distributed with the
% Standard Version of the Package, in its current version or as it may
% be modified by The Perl Foundation in the future.
%
% "Source" form means the source code, documentation source, and
% configuration files for the Package.
%
% "Compiled" form means the compiled bytecode, object code, binary, or
% any other form resulting from mechanical transformation or translation
% of the Source form.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Permission for Use and Modification Without Distribution
%
% (1) You are permitted to use the Standard Version and create and use
% Modified Versions for any purpose without restriction, provided that
% you do not Distribute the Modified Version.
%
% Permissions for Redistribution of the Standard Version
%
% (2) You may Distribute verbatim copies of the Source form of the
% Standard Version of this Package in any medium without restriction,
% either gratis or for a Distributor Fee, provided that you duplicate
% all of the original copyright notices and associated disclaimers. At
% your discretion, such verbatim copies may or may not include a
% Compiled form of the Package.
%
% (3) You may apply any bug fixes, portability changes, and other
% modifications made available from the Copyright Holder. The resulting
% Package will still be considered the Standard Version, and as such
% will be subject to the Original License.
%
% Distribution of Modified Versions of the Package as Source
%
% (4) You may Distribute your Modified Version as Source (either gratis
% or for a Distributor Fee, and with or without a Compiled form of the
% Modified Version) provided that you clearly document how it differs
% from the Standard Version, including, but not limited to, documenting
% any non-standard features, executables, or modules, and provided that
% you do at least ONE of the following:
%
% (a) make the Modified Version available to the Copyright Holder of the
% Standard Version, under the Original License, so that the Copyright
% Holder may include your modifications in the Standard Version. (b)
% ensure that installation of your Modified Version does not prevent the
% user installing or running the Standard Version. In addition, the
% modified Version must bear a name that is different from the name of
% the Standard Version. (c) allow anyone who receives a copy of the
% Modified Version to make the Source form of the Modified Version
% available to others under (i) the Original License or (ii) a license
% that permits the licensee to freely copy, modify and redistribute the
% Modified Version using the same licensing terms that apply to the copy
% that the licensee received, and requires that the Source form of the
% Modified Version, and of any works derived from it, be made freely
% available in that license fees are prohibited but Distributor Fees are
% allowed.
%
% Distribution of Compiled Forms of the Standard Version or
% Modified Versions without the Source
%
% (5) You may Distribute Compiled forms of the Standard Version without
% the Source, provided that you include complete instructions on how to
% get the Source of the Standard Version. Such instructions must be
% valid at the time of your distribution. If these instructions, at any
% time while you are carrying out such distribution, become invalid, you
% must provide new instructions on demand or cease further
% distribution. If you provide valid instructions or cease distribution
% within thirty days after you become aware that the instructions are
% invalid, then you do not forfeit any of your rights under this
% license.
%
% (6) You may Distribute a Modified Version in Compiled form without the
% Source, provided that you comply with Section 4 with respect to the
% Source of the Modified Version.
%
% Aggregating or Linking the Package
%
% (7) You may aggregate the Package (either the Standard Version or
% Modified Version) with other packages and Distribute the resulting
% aggregation provided that you do not charge a licensing fee for the
% Package. Distributor Fees are permitted, and licensing fees for other
% components in the aggregation are permitted. The terms of this license
% apply to the use and Distribution of the Standard or Modified Versions
% as included in the aggregation.
%
% (8) You are permitted to link Modified and Standard Versions with
% other works, to embed the Package in a larger work of your own, or to
% build stand-alone binary or bytecode versions of applications that
% include the Package, and Distribute the result without restriction,
% provided the result does not expose a direct interface to the Package.
%
% Items That are Not Considered Part of a Modified Version
%
% (9) Works (including, but not limited to, modules and scripts) that
% merely extend or make use of the Package, do not, by themselves, cause
% the Package to be a Modified Version. In addition, such works are not
% considered parts of the Package itself, and are not subject to the
% terms of this license.
%
% General Provisions
%
% (10) Any use, modification, and distribution of the Standard or
% Modified Versions is governed by this Artistic License. By using,
% modifying or distributing the Package, you accept this license. Do not
% use, modify, or distribute the Package, if you do not accept this
% license.
%
% (11) If your Modified Version has been derived from a Modified Version
% made by someone other than you, you are nevertheless required to
% ensure that your Modified Version complies with the requirements of
% this license.
%
% (12) This license does not grant you the right to use any trademark,
% service mark, tradename, or logo of the Copyright Holder.
%
% (13) This license includes the non-exclusive, worldwide,
% free-of-charge patent license to make, have made, use, offer to sell,
% sell, import and otherwise transfer the Package with respect to any
% patent claims licensable by the Copyright Holder that are necessarily
% infringed by the Package. If you institute patent litigation
% (including a cross-claim or counterclaim) against any party alleging
% that the Package constitutes direct or contributory patent
% infringement, then this Artistic License to you shall terminate on the
% date that such litigation is filed.
%
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% prefix-trees for managing a DNF
% remembers shortest prefix of a conjunction only (i.e. a*b+a*b*c results in a*b only, but b*a+a*b*c is not reduced)
% children are sorted, but branches aren't (to speed up search while keeping structure sharing from proof procedure)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
:- module(ptree, [init_ptree/1,
delete_ptree/1,
member_ptree/2,
enum_member_ptree/2,
insert_ptree/2,
delete_ptree/2,
edges_ptree/2,
count_ptree/2,
prune_check_ptree/2,
empty_ptree/1,
merge_ptree/2,
merge_ptree/3,
bdd_ptree/3,
bdd_struct_ptree/3,
bdd_ptree_map/4,
bdd_struct_ptree_map/4,
traverse_ptree/2, %theo
print_ptree/1, %theo
statistics_ptree/0, %theo
print_nested_ptree/1, %theo
trie_to_bdd_trie/5, %theo
trie_to_bdd_struct_trie/5,
nested_trie_to_bdd_trie/5, %theo
nested_trie_to_bdd_struct_trie/5,
ptree_decomposition/3,
ptree_decomposition_struct/3,
nested_ptree_to_BDD_script/3, %theo
nested_ptree_to_BDD_struct_script/3,
ptree_db_trie_opt_performed/3,
bdd_vars_script/1
]).
% load library modules
:- ensure_loaded(library(tries)).
:- ensure_loaded(library(lists)).
:- ensure_loaded(library(system)).
:- ensure_loaded(library(ordsets)).
% load our own modules
:- ensure_loaded(flags).
% switch on all tests to reduce bug searching time
:- style_check(all).
:- yap_flag(unknown,error).
% this is a test to determine whether YAP provides the needed trie library
:- current_predicate(tries:trie_disable_hash/0)
->
trie_disable_hash;
print_message(warning,'The predicate tries:trie_disable_hash/0 does not exist. Please update trie library.').
%%%%%%%%%%%%%%%%%%%%%%%
% Define module flags
%%%%%%%%%%%%%%%%%%%%%%%
:- problog_define_flag(use_db_trie, problog_flag_validate_boolean, 'use the builtin trie 2 trie transformation', false).
:- problog_define_flag(db_trie_opt_lvl, problog_flag_validate_integer, 'optimization level for the trie 2 trie transformation', 0).
:- problog_define_flag(compare_opt_lvl, problog_flag_validate_boolean, 'comparison mode for optimization level', false).
:- problog_define_flag(db_min_prefix, problog_flag_validate_integer, 'minimum size of prefix for dbtrie to optimize', 2).
:- problog_define_flag(use_naive_trie, problog_flag_validate_boolean, 'use the naive algorithm to generate bdd scripts', false).
:- problog_define_flag(use_old_trie, problog_flag_validate_boolean, 'use the old trie 2 trie transformation no nested', true).
:- problog_define_flag(use_dec_trie, problog_flag_validate_boolean, 'use the decomposition method', false).
:- problog_define_flag(subset_check, problog_flag_validate_boolean, 'perform subset check in nested tries', true).
:- problog_define_flag(deref_terms, problog_flag_validate_boolean, 'deref BDD terms after last use', false).
:- problog_define_flag(trie_preprocess, problog_flag_validate_boolean, 'perform a preprocess step to nested tries', false).
:- problog_define_flag(refine_anclst, problog_flag_validate_boolean, 'refine the ancestor list with their childs', false).
:- problog_define_flag(anclst_represent,problog_flag_validate_in_list([list, integer]), 'represent the ancestor list', list).
%%%%%%%%%%%%%%%%%%%%%%%%
% ptree basics
%%%%%%%%%%%%%%%%%%%%%%%%
init_ptree(Trie) :-
trie_open(Trie).
delete_ptree(Trie) :-
trie_close(Trie), !.
delete_ptree(_).
empty_ptree(Trie) :-
trie_usage(Trie, 0, 0, 0).
traverse_ptree(Trie, List) :-
trie_traverse(Trie, Ref),
trie_get_entry(Ref, List).
traverse_ptree_mode(Mode) :-
trie_traverse_mode(Mode).
%%%%%%%%%%%%%%%%%%%%%%%%
% member
%%%%%%%%%%%%%%%%%%%%%%%%
% non-backtrackable (to check)
member_ptree(List, Trie) :-
trie_check_entry(Trie, List, _).
% backtrackable (to list)
enum_member_ptree(List, Trie) :-
trie_path(Trie, List).
trie_path(Trie, List) :-
trie_traverse(Trie, Ref),
trie_get_entry(Ref, List).
%%%%%%%%%%%%%%%%%%%%%%%%
% insert conjunction
%%%%%%%%%%%%%%%%%%%%%%%%
insert_ptree(false, _Trie) :-!.
insert_ptree(true, Trie) :-
!,
trie_delete(Trie),
trie_put_entry(Trie, [true], _).
insert_ptree(List, Trie) :-
(trie_check_entry(Trie, [true], _) -> % prune if there is a prob=1 proof
true
;
trie_put_entry(Trie, List, _)
).
%%%%%%%%%%%%%%%%%%%%%%%%
% delete conjunction
%%%%%%%%%%%%%%%%%%%%%%%%
delete_ptree(List, Trie) :-
trie_check_entry(Trie, List, Ref),
trie_remove_entry(Ref).
%%%%%%%%
% return list -Edges of all edge labels in ptree
% doesn't use any heuristic to order those for the BDD
% (automatic reordering has to do the job)
%%%%%%%%%
edges_ptree(Trie, []) :-
empty_ptree(Trie),
!.
edges_ptree(Trie, []) :-
trie_check_entry(Trie, [true], _),
!.
edges_ptree(Trie ,Edges) :-
setof(X, trie_literal(Trie, X), Edges).
trie_literal(Trie, X) :-
trie_traverse(Trie,Ref),
trie_get_entry(Ref, List),
member(X, List).
%%%%%%%%
% number of conjunctions in the tree
%%%%%%%%%
count_ptree(Trie, N) :-
trie_usage(Trie, N, _, _).
%%%%%%%%
% check whether some branch of ptree is a subset of conjunction List
% useful for pruning the search for proofs (optional due to time overhead)
% currently not implemented, just fails
%%%%%%%
prune_check_ptree(_List, _Trie) :-
format(user,'FAIL: prune check currently not supported~n',[]),
flush_output(user),
fail.
%%%%%%%%%%%%%
% merge two ptrees
% - take care not to loose proper prefixes that are proofs!
%%%%%%%%%%%%%%%
merge_ptree(T1, _) :-
trie_check_entry(T1, [true], _), !.
merge_ptree(_, T2) :-
trie_check_entry(T2, [true], _), !. % is this strange on the loop condition?
merge_ptree(T1, T2) :-
trie_join(T1, T2).
merge_ptree(T1, _, T3) :-
trie_check_entry(T1, [true], _),
!,
trie_open(T3),
trie_put_entry(T3, [true], _).
merge_ptree(_, T2, T3) :-
trie_check_entry(T2, [true], _),
!,
trie_open(T3),
trie_put_entry(T3, [true], _).
merge_ptree(T1, T2, T3) :-
trie_dup(T1, T3),
trie_join(T3, T2).
%%%%%%%%%%%%%%%%%%%%%%%%
% Write structural BDD script for given trie to file
% does NOT write a parameter file but unifies a list of used variables
%
% Specialized versions are:
% - bdd_ptree -> bdd_struct_ptree
% - bdd_ptree_map -> bdd_struct_ptree_map
% - nested_ptree_to_BDD_script -> nested_ptree_to_BDD_struct_script
% - trie_to_bdd_trie -> trie_to_bdd_struct_trie
% - nested_trie_to_bdd_trie -> nested_trie_to_bdd_struct_trie
% - ptree_decomposition -> ptree_decomposition_struct
% - bdd_ptree_script -> bdd_struct_ptree_script
%%%%%%%%%%%%%%%%%%%%%%%%
bdd_struct_ptree(Trie, FileBDD, Variables) :-
bdd_struct_ptree_script(Trie, FileBDD, Variables),
eraseall(map).
bdd_struct_ptree_map(Trie, FileBDD, Variables, Mapping) :-
bdd_struct_ptree_script(Trie, FileBDD, Variables),
findall(X, recorded(map, X, _), Map),
add_probs(Map, Mapping),
eraseall(map).
bdd_struct_ptree_script(Trie, FileBDD, Variables) :-
edges_ptree(Trie, Variables),
name_vars(Variables), % expected by output_compressed_script/1?
length(Variables, VarCount),
assert(c_num(1)),
bdd_pt(Trie, CT),
c_num(NN),
IntermediateSteps is NN - 1,
tell(FileBDD),
format('@BDD1~n~w~n~w~n~w~n', [VarCount, 0, IntermediateSteps]),
output_compressed_script(CT),
told,
retractall(c_num(_)),
retractall(compression(_, _)).
name_vars([]).
name_vars([A|B]) :-
(
A=not(ID)
->
get_var_name(ID,_)
;
get_var_name(A,_)
),
name_vars(B).
nested_ptree_to_BDD_struct_script(Trie, BDDFileName, Variables):-
tmpnam(TmpFile1),
tmpnam(TmpFile2),
open(TmpFile1, 'write', BDDS),
(generate_BDD_from_trie(Trie, Inter, BDDS) ->
next_intermediate_step(TMP), InterCNT is TMP - 1,
write(BDDS, Inter), nl(BDDS),
close(BDDS),
(get_used_vars(Variables, VarCNT);VarCNT = 0),
open(TmpFile2, 'write', HEADERS),
write(HEADERS, '@BDD1'), nl(HEADERS),
write(HEADERS, VarCNT), nl(HEADERS),
write(HEADERS, 0), nl(HEADERS),
write(HEADERS, InterCNT), nl(HEADERS),
close(HEADERS),
atomic_concat(['cat ', TmpFile2, ' ', TmpFile1, ' > ', BDDFileName], CMD),
shell(CMD),
delete_file(TmpFile1),
delete_file(TmpFile2),
cleanup_BDD_generation
;
close(BDDS),
(delete_file(TmpFile1);true),
(delete_file(TmpFile2);true),
cleanup_BDD_generation,
fail
).
trie_to_bdd_struct_trie(A, B, OutputFile, OptimizationLevel, Variables) :-
trie_to_depth_breadth_trie(A, B, LL, OptimizationLevel),
(atomic_concat('L', InterStep, LL) -> % what does this mean?
retractall(deref(_,_)),
(problog_flag(deref_terms, true) ->
asserta(deref(LL,no)),
mark_for_deref(B),
V = 3
;
V = 1
),
variables_in_dbtrie(B, Variables), %not the most efficient solution
length(Variables, VarCNT), %this 2 should be changed
tell(OutputFile),
write('@BDD'), write(V), nl,
write(VarCNT), nl,
write(0), nl,
write(InterStep), nl,
trie_write(B, LL),
write(LL), nl,
told
;
(is_state(LL) ->
Variables = []
;
Variables = [LL]
),
tell(OutputFile),
write('@BDD1'), nl,
write(1), nl,
write(0), nl,
write(1), nl,
get_var_name(LL, NLL),
write('L1 = '),write(NLL),nl,
write('L1'), nl,
told
).
nested_trie_to_bdd_struct_trie(A, B, OutputFile, OptimizationLevel, Variables):-
trie_nested_to_depth_breadth_trie(A, B, LL, OptimizationLevel, problog:problog_chktabled),
(islabel(LL) ->
retractall(deref(_,_)),
(problog_flag(deref_terms, true) ->
asserta(deref(LL,no)),
mark_for_deref(B),
V = 3
;
V = 1
),
variables_in_dbtrie(B, Variables), %not the most efficient solution
length(Variables, VarCNT), %this 2 should be changed
tell(OutputFile),
write('@BDD'), write(V), nl,
write(VarCNT), nl,
write(0), nl,
(LL = not(NegL)->
atomic_concat('L', NegStep, NegL),
number_atom(NegStepN, NegStep),
InterStep is NegStepN + 1,
atomic_concat('L', InterStep, FL),
write(InterStep), nl,
trie_write(B, FL),
write(FL), write(' = ~'), write(NegL), nl,
write(FL), nl
;
atomic_concat('L', InterStep, LL),
write(InterStep), nl,
trie_write(B, LL),
write(LL), nl
),
told
;
(is_state(LL) ->
Variables = []
;
Variables = [LL]
),
tell(OutputFile),
write('@BDD1'), nl,
write(1), nl,
write(0), nl,
write(1), nl,
get_var_name(LL, NLL),
write('L1 = '),write(NLL),nl,
write('L1'), nl,
told
).
ptree_decomposition_struct(Trie, BDDFileName, Variables) :-
tmpnam(TmpFile1),
tmpnam(TmpFile2),
nb_setval(next_inter_step, 1),
variables_in_dbtrie(Trie, Variables),
length(Variables, VarCnt),
tell(TmpFile1),
decompose_trie(Trie, Variables, L),
(islabel(L)->
atomic_concat('L', LCnt, L),
write(L),nl
;
LCnt = 1,
write('L1 = '),
(L == false ->
write('FALSE')
;
write(L)
), nl,
write('L1'), nl
),
told,
tell(TmpFile2),
write('@BDD1'),nl,
write(VarCnt),nl,
write('0'),nl,
write(LCnt),nl,
told,
atomic_concat(['cat ', TmpFile2, ' ', TmpFile1, ' > ', BDDFileName], CMD),
shell(CMD),
delete_file(TmpFile1),
delete_file(TmpFile2).
%%%%%%%%%%%%%%%%%%%%%%%%
% write BDD info for given ptree to file
% - initializes leaf BDDs (=variables) first
% - then compresses ptree to exploit subtree sharing
% - bdd_pt/1 does the work on the structure itself
%%%%%%%%%%%%%%%%%%%%%%%%
bdd_ptree(Trie, FileBDD, FileParam) :-
bdd_ptree_script(Trie, FileBDD, FileParam),
eraseall(map).
% version returning variable mapping
bdd_ptree_map(Trie, FileBDD, FileParam, Mapping) :-
bdd_ptree_script(Trie, FileBDD, FileParam),
findall(X, recorded(map, X, _), Map),
add_probs(Map, Mapping),
eraseall(map).
add_probs([], []).
add_probs([m(A,Name)|Map], [m(A, Name, Prob)|Mapping]) :-
% FIXME: Does this work with non-ground facts
problog:get_fact_probability(A, Prob),
add_probs(Map, Mapping).
% number of variables may be to high:
% counted on trie, but conversion to old tree representation
% transforms A*B+A to A (prefix-test)
bdd_ptree_script(Trie, FileBDD, FileParam) :-
edges_ptree(Trie, Edges),
tell(FileParam),
bdd_vars_script(Edges),
flush_output,
told,
length(Edges, VarCount),
assert(c_num(1)),
bdd_pt(Trie, CT),
c_num(NN),
IntermediateSteps is NN - 1,
tell(FileBDD),
format('@BDD1~n~w~n~w~n~w~n', [VarCount, 0, IntermediateSteps]),
output_compressed_script(CT),
told,
retractall(c_num(_)),
retractall(compression(_, _)).
% write parameter file by iterating over all var/not(var) occuring in the tree
bdd_vars_script([]).
bdd_vars_script([A|B]) :-
(
A=not(ID)
->
bdd_vars_script_intern(ID);
bdd_vars_script_intern(A)
),
bdd_vars_script(B).
bdd_vars_script_intern(A) :-
(
number(A)
->
(
% it's a ground fact
get_var_name(A,NameA),
(problog:decision_fact(A,_) ->
% it's a ground decision
(problog:problog_control(check,internal_strategy) ->
problog:get_fact_probability(A,P),
format('@~w~n~12f~n~w~n',[NameA,P,1])
;
format('@~w~n~12f~n~w~n',[NameA,0,1])
)
;
% it's a normal ProbLog fact
problog:get_fact_probability(A,P),
format('@~w~n~12f~n',[NameA,P])
)
); % it's somethin else, call the specialist
% it's a non-ground or continuous fact
bdd_vars_script_intern2(A)
).
bdd_vars_script_intern2(A) :-
get_var_name(A,NameA),
atom_chars(A,A_Chars),
once(append(Part1,[95|Part2],A_Chars)), % 95 = '_'
number_chars(ID,Part1),
( % let's check whether Part2 contains an 'l' (l=low)
member(108,Part2)
->
( % it does, so it's a continuous fact
problog:get_continuous_fact_parameters(ID,gaussian(Mu,Sigma)),
format('@~w~n0~n0~n~12f;~12f~n',[NameA,Mu,Sigma])
);
(
number_chars(Grounding_ID,Part2),
(problog:decision_fact(ID,_) ->
% it's a non-ground decision
(problog:problog_control(check,internal_strategy) ->
problog:grounding_is_known(Goal,Grounding_ID),
problog:dynamic_probability_fact_extract(Goal,P),
format('@~w~n~12f~n~w~n',[NameA,P,1])
;
format('@~w~n~12f~n~w~n',[NameA,0,1])
)
;
(problog:dynamic_probability_fact(ID) ->
problog:grounding_is_known(Goal,Grounding_ID),
problog:dynamic_probability_fact_extract(Goal,P)
;
problog:get_fact_probability(ID,P)
),
format('@~w~n~12f~n',[NameA,P])
)
)
).
%%%%%%%%%%%%%%%%%%%%%%%%
% find top level symbol for script
%%%%%%%%%%%%%%%%%%%%%%%%
% special cases: variable-free formulae
bdd_pt(Trie, false) :-
empty_ptree(Trie),
!,
once(retractall(c_num(_))),
once(assert(c_num(2))).
bdd_pt(Trie, true) :-
trie_check_entry(Trie, [true], _),
!,
once(retractall(c_num(_))),
once(assert(c_num(2))).
% general case: transform trie to nested tree structure for compression
bdd_pt(Trie, CT) :-
trie_to_tree(Trie, Tree),
once(compress_pt(Tree, CT)).
trie_to_tree(Trie, Tree) :-
findall(Path, trie_path(Trie, Path), Paths),
add_trees(Paths, [], Tree).
add_trees([], Tree, Tree).
add_trees([List|Paths], Tree0, Tree) :-
ins_pt(List, Tree0, TreeI),
add_trees(Paths, TreeI, Tree).
% default: prune if adding prefix of known proof(s)
ins_pt([], _T, []) :- !.
% alternative: keep extensions of prefix
% ins_pt([],T,T) :- !.
ins_pt([A|B], [s(A1, AT)|OldT], NewT) :-
compare(Comp, A1, A),
(Comp == = ->
(AT == [] ->
NewT=[s(A1, AT)|OldT]
;
NewT = [s(A1, NewAT)|OldT],
ins_pt(B, AT, NewAT))
;
Comp == > ->
NewT = [s(A1, AT)|Tree],
ins_pt([A|B], OldT, Tree)
;
NewT = [s(A, BTree), s(A1, AT)|OldT],
ins_pt(B, [], BTree)
).
ins_pt([A|B], [], [s(A, NewAT)]) :-
ins_pt(B, [], NewAT).
%%%%%%%%%%%%
% BDD compression: alternates and- and or-levels to build BDD bottom-up
% each sub-BDD will be either a conjunction of a one-node BDD with some BDD or a disjunction of BDDs
% uses the internal database to temporarily store a map of components
%%%%%%%%%%%%
% T is completely compressed and contains single variable
% i.e. T of form x12 or ~x34
compress_pt(T, TT) :-
atom(T),
test_var_name(T),
!,
get_next_name(TT),
assertz(compression(TT, [T])).
% T is completely compressed and contains subtrees
% i.e. T of form 'L56'
compress_pt(T, T) :-
atom(T).
% T not yet compressed
% i.e. T is a tree-term (nested list & s/2 structure)
% -> execute one layer of compression, then check again
compress_pt(T, CT) :-
\+ atom(T),
and_or_compression(T, IT),
compress_pt(IT, CT).
% transform tree-term T into tree-term CT where last two layers have been processed
% i.e. introduce names for subparts (-> Map) and replace (all occurrenes of) subparts by this names
and_or_compression(T, CT) :-
and_comp(T, AT),
or_comp(AT, CT).
% replace leaves that are single child by variable representing father-AND-child
and_comp(T, AT) :-
all_leaves_pt(T, Leaves),
compression_mapping(Leaves, Map),
replace_pt(T, Map, AT).
% replace list of siblings by variable representing their disjunction
or_comp(T, AT) :-
all_leaflists_pt(T, Leaves),
compression_mapping(Leaves, Map),
replace_pt(T, Map, AT).
all_leaves_pt(T, L) :-
all(X, some_leaf_pt(T, X), L).
some_leaf_pt([s(A, [])|_], s(A,[])).
some_leaf_pt([s(A, L)|_], s(A, L)) :-
not_or_atom(L).
some_leaf_pt([s(_, L)|_], X) :-
some_leaf_pt(L, X).
some_leaf_pt([_|L],X) :-
some_leaf_pt(L,X).
all_leaflists_pt(L, [L]) :-
atomlist(L), !.
all_leaflists_pt(T, L) :-
all(X,some_leaflist_pt(T, X), L), !.
all_leaflists_pt(_, []).
some_leaflist_pt([s(_, L)|_], L) :-
atomlist(L).
some_leaflist_pt([s(_, L)|_], X) :-
some_leaflist_pt(L, X).
some_leaflist_pt([_|L], X) :-
some_leaflist_pt(L, X).
not_or_atom(T) :-
(
T = not(T0)
->
atom(T0);
atom(T)
).
atomlist([]).
atomlist([A|B]) :-
not_or_atom(A),
atomlist(B).
% for each subtree that will be compressed, add its name
% only introduce 'L'-based names when subtree composes elements, store these in compression/2 for printing the script
compression_mapping([], []).
compression_mapping([First|B], [N-First|BB]) :-
(
First = s(A0, []) % subtree is literal -> use variable's name x17 from map (add ~ for negative case)
->
(
A0 = not(A)
->
(
recorded(map, m(A, Tmp), _), %check
atomic_concat(['~', Tmp], N)
);
recorded(map, m(A0, N), _) %check
)
;
(First = s(A, L), not_or_atom(L)) % subtree is node with single completely reduced child -> use next 'L'-based name
-> (get_next_name(N),
assertz(compression(N, s(A, L))))
;
(First = [L], not_or_atom(L)) % subtree is an OR with a single completely reduced element -> use element's name
-> N = L
;
(atomlist(First), % subtree is an OR with only (>1) completely reduced elements -> use next 'L'-based name
get_next_name(N),
assertz(compression(N, First)))
),
compression_mapping(B, BB).
% replace_pt(+T,+Map,-NT)
% given the tree-term T and the Map of Name-Subtree entries, replace each occurence of Subtree in T with Name -> result NT
replace_pt(T, [], T).
replace_pt([], _, []).
replace_pt(L, M, R) :-
atomlist(L),
member(R-L, M),
!.
replace_pt([L|LL], [M|MM], R) :-
replace_pt_list([L|LL], [M|MM], R).
replace_pt_list([T|Tree], [M|Map], [C|Compr]) :-
replace_pt_single(T, [M|Map], C),
replace_pt_list(Tree, [M|Map], Compr).
replace_pt_list([], _, []).
replace_pt_single(s(A, T), [M|Map], Res) :-
atomlist(T),
member(Res-s(A, T), [M|Map]),
!.
replace_pt_single(s(A, T), [M|Map], s(A, Res)) :-
atomlist(T),
member(Res-T, [M|Map]),
!.
replace_pt_single(s(A, T), [M|Map], Res) :-
member(Res-s(A, T), [M|Map]),
!.
replace_pt_single(s(A, T), [M|Map], s(A, TT)) :-
!,
replace_pt_list(T, [M|Map], TT).
replace_pt_single(A, _, A) :-
not_or_atom(A).
%%%%%%%%%%%%
% output for script
% input argument is compressed tree, i.e. true/false or name assigned in last compression step
%%%%%%%%%%%%
output_compressed_script(false) :-
!,
format('L1 = FALSE~nL1~n', []).
output_compressed_script(true) :-
!,
format('L1 = TRUE~nL1~n', []).
% for each name-subtree pair, write corresponding line to script, e.g. L17 = x4 * L16
% stop after writing definition of root (last entry in compression/2), add it's name to mark end of script
output_compressed_script(T) :-
once(retract(compression(Short, Long))),
(T = Short ->
format('~w = ', [Short]),
format_compression_script(Long),
format('~w~n', [Short])
;
format('~w = ', [Short]),
format_compression_script(Long),
output_compressed_script(T)).
format_compression_script(s(A0, B0)) :-
% checkme
(
A0 = not(A)
->
(
recorded(map, m(A, C), _),
format('~~~w * ~w~n', [C, B0])
) ;
(
recorded(map, m(A0, C), _),
format('~w * ~w~n', [C, B0])
)
).
format_compression_script([A]) :-
format('~w~n', [A]).
format_compression_script([A, B|C]) :-
format('~w + ', [A]),
format_compression_script([B|C]).
%%%%%%%%%%%%%%%%%%%%%%%%
% auxiliaries for translation to BDD
%%%%%%%%%%%%%%%%%%%%%%%%
% prefix the current counter with "L"
get_next_name(Name) :-
retract(c_num(N)),
NN is N + 1,
assert(c_num(NN)),
atomic_concat('L', N, Name).
% create BDD-var as fact id prefixed by x
% learning.yap relies on this format!
% when changing, also adapt test_var_name/1 below
get_var_name(true, 'TRUE') :-!.
get_var_name(false, 'FALSE') :-!.
get_var_name(A, NameA) :-
atomic_concat([x, A], NameA),
(
recorded(map, m(A, NameA), _)
->
true
;
recorda(map, m(A, NameA), _)
).
% test used by base case of compression mapping to detect single-variable tree
% has to match above naming scheme
test_var_name(T) :-
atomic_concat(x, _, T).
test_var_name(T) :-
atomic_concat('~x', _, T).
% Theo debuging additions
print_ptree(Trie):-
trie_print(Trie).
statistics_ptree:-
trie_stats(Memory,Tries,Entries,Nodes),
write('--------------------------------'),nl,
write('Memory: '),write(Memory),nl,
write('Tries: '), write(Tries),nl,
write('Entries: '), write(Entries),nl,
write('Nodes: '), write(Nodes),nl,
write('--------------------------------'),nl.
:- dynamic nested_ptree_printed/1.
print_nested_ptree(Trie):-
retractall(nested_ptree_printed(_)),
print_nested_ptree(Trie, 0, ' '),
retractall(nested_ptree_printed(_)).
print_nested_ptree(Trie, _, _):-
nested_ptree_printed(Trie), !.
print_nested_ptree(Trie, Level, Space):-
spacy_print(begin(t(Trie)), Level, Space),
fail.
print_nested_ptree(Trie, Level, Space):-
assert(nested_ptree_printed(Trie)),
trie_path(Trie, Path),
NewLevel is Level + 1,
spacy_print(Path, NewLevel, Space),
(member(t(Hash), Path); member(not(t(Hash)), Path)),
problog:problog_chktabled(Hash, SubTrie),
NewLevel2 is NewLevel + 1,
print_nested_ptree(SubTrie, NewLevel2, Space),
fail.
print_nested_ptree(Trie, Level, Space):-
spacy_print(end(t(Trie)), Level, Space).
spacy_print(Msg, 0, _):-
write(Msg), nl, !.
spacy_print(Msg, Level, Space):-
Level > 0,
write(Space),
NewLevel is Level - 1,
spacy_print(Msg, NewLevel, Space).
% Theo Naive method works with Nested Trie to BDD Script
:-dynamic(get_used_vars/2).
:-dynamic(generated_trie/2).
:-dynamic(next_intermediate_step/1).
%
% This needs to be modified
% Include nasty code of temporary file usage
% also it is OS depended (requires the cat utility)
%
nested_ptree_to_BDD_script(Trie, BDDFileName, VarFileName):-
tmpnam(TmpFile1),
tmpnam(TmpFile2),
open(TmpFile1, 'write', BDDS),
(generate_BDD_from_trie(Trie, Inter, BDDS) ->
next_intermediate_step(TMP), InterCNT is TMP - 1,
write(BDDS, Inter), nl(BDDS),
close(BDDS),
(get_used_vars(Vars, VarCNT);VarCNT = 0),
open(TmpFile2, 'write', HEADERS),
write(HEADERS, '@BDD1'), nl(HEADERS),
write(HEADERS, VarCNT), nl(HEADERS),
write(HEADERS, 0), nl(HEADERS),
write(HEADERS, InterCNT), nl(HEADERS),
close(HEADERS),
atomic_concat(['cat ', TmpFile2, ' ', TmpFile1, ' > ', BDDFileName], CMD),
shell(CMD),
delete_file(TmpFile1),
delete_file(TmpFile2),
open(VarFileName, 'write', VarStream),
bddvars_to_script(Vars, VarStream),
close(VarStream),
cleanup_BDD_generation
;
close(BDDS),
(delete_file(TmpFile1);true),
(delete_file(TmpFile2);true),
cleanup_BDD_generation,
fail
).
cleanup_BDD_generation:-
retractall(get_used_vars(_, _)),
retractall(generated_trie(_, _)),
retractall(next_intermediate_step(_)).
generate_BDD_from_trie(Trie, TrieInter, Stream):-
empty_ptree(Trie), !,
get_next_intermediate_step(TrieInter),
write(Stream, TrieInter), write(Stream, ' = FALSE'), nl(Stream), !.
generate_BDD_from_trie(Trie, TrieInter, _Stream):-
clause(generated_trie(STrie, TrieInter), true),
STrie = Trie, !.
generate_BDD_from_trie(Trie, TrieInter, Stream):-
findall(LineInter, (
trie_path(Trie, L),
generate_line(L, LineTerms, LineInter, Stream),
write_bdd_line(LineTerms, LineInter, '*', Stream)
), OrLineTerms),
(OrLineTerms = [Inter|[]] ->
TrieInter = Inter
;
get_next_intermediate_step(TrieInter),
write_bdd_line(OrLineTerms, TrieInter, '+', Stream)
),
assert(generated_trie(Trie, TrieInter)).
write_bdd_line([], _LineInter, _Operator, _Stream):-!.
write_bdd_line(LineTerms, LineInter, Operator, Stream):-
write(Stream, LineInter), write(Stream, '='),
write_bdd_lineterm(LineTerms, Operator, Stream).
write_bdd_lineterm([LineTerm|[]], _Operator, Stream):-
write(Stream, LineTerm), nl(Stream), !.
write_bdd_lineterm([LineTerm|LineTerms], Operator, Stream):-
write(Stream, LineTerm), write(Stream, Operator),
write_bdd_lineterm(LineTerms, Operator, Stream).
generate_line([], [], Inter, _Stream):-
!, get_next_intermediate_step(Inter).
generate_line([neg(t(Hash))|L], [TrieInter|T] , Inter, Stream):-
!, problog:problog_chktabled(Hash, Trie),
generate_BDD_from_trie(Trie, TrieInterTmp, Stream),
atomic_concat(['~', TrieInterTmp], TrieInter),
generate_line(L, T, Inter, Stream).
generate_line([t(Hash)|L], [TrieInter|T] , Inter, Stream):-
!, problog:problog_chktabled(Hash, Trie),
generate_BDD_from_trie(Trie, TrieInter, Stream),
generate_line(L, T, Inter, Stream).
generate_line([V|L], [BDDV|T], Inter, Stream):-
make_bdd_var(V, BDDV),
generate_line(L, T, Inter, Stream).
%
% Currently it is dublicate with bdd_vars_script predicate
% finally should be merged
%
bddvars_to_script([], _Stream):-!.
bddvars_to_script([H|T], Stream):-
(number(H) ->
CurVar = H
;
atom_chars(H, H_Chars),
% 95 = '_'
append(Part1, [95|Part2], H_Chars),
number_chars(CurVar, Part1),
number_chars(Grounding_ID, Part2)
),
(problog:dynamic_probability_fact(CurVar) ->
problog:grounding_is_known(Goal, Grounding_ID),
problog:dynamic_probability_fact_extract(Goal, P)
;
problog:get_fact_probability(CurVar, P)
),
get_var_name(H, VarName),
format(Stream, '@~w~n~12f~n', [VarName, P]),
bddvars_to_script(T, Stream).
get_next_intermediate_step('L1'):-
not(clause(next_intermediate_step(_), _)), !,
assert(next_intermediate_step(2)).
get_next_intermediate_step(Inter):-
next_intermediate_step(InterStep),
retract(next_intermediate_step(InterStep)),
NextInterStep is InterStep + 1,
assert(next_intermediate_step(NextInterStep)),
atomic_concat(['L', InterStep], Inter).
make_bdd_var('true', 'TRUE'):-!.
make_bdd_var('false', 'FALSE'):-!.
/*make_bdd_var(neg(V), NotVName):-
!, make_bdd_var(not(V), NotVName).*/
make_bdd_var(not(V), NotVName):-
!,
get_var_name(V, VName),
atomic_concat(['~', VName], NotVName),
add_to_vars(V).
make_bdd_var(V, VName):-
get_var_name(V, VName),
add_to_vars(V).
add_to_vars(V):-
clause(get_used_vars(Vars, _Cnt), true),
memberchk(V, Vars),!.
add_to_vars(V):-
clause(get_used_vars(Vars, Cnt), true), !,
retract(get_used_vars(Vars, Cnt)),
NewCnt is Cnt + 1,
assert(get_used_vars([V|Vars], NewCnt)).
add_to_vars(V):-
assert(get_used_vars([V], 1)).
%%%%%%%%%%%%%%% depth breadth builtin support %%%%%%%%%%%%%%%%%
%%%
%%% Pending:
%%% 1) Replace term in trie, written in C level
%%% *2) Support for false, true and 1 var
%%% 3) Decide if it is necessary to propagete loop from child
%%% 4) Possible memory leak with [true] (go(0))
%%% *5) Handle correctly the trie_replace when not(false), not(true)
%%% 6) Compare sort with a good insert sort
%%% 7) Have a look to the write to file predicates
%%%
variables_in_dbtrie(Trie, []):-
empty_ptree(Trie), !.
variables_in_dbtrie(Trie, L):-
all(V, variable_in_dbtrie(Trie,V), L).
variable_in_dbtrie(Trie, V):-
trie_traverse(Trie, R),
trie_get_entry(R, L),
get_next_variable(NV, L),
get_variable(NV, V).
get_next_variable(V, depth(L, _S)):-
member(V, L),
not(islabel(V)).
get_next_variable(V, breadth(L, _S)):-
member(V, L),
not(islabel(V)).
get_next_variable(V, L):-
member(V, L),
not(islabel(V)),
not(isnestedtrie(V)).
get_variable(not(V), R):-
!, get_variable(V, R).
get_variable(R, R).
%trie_get_depth_breadth_reduction_opt_level_count(1, CNT1),
%trie_get_depth_breadth_reduction_opt_level_count(2, CNT2),
%trie_get_depth_breadth_reduction_opt_level_count(3, CNT3),
%writeln([CNT1, CNT2, CNT3]),
%trie_print(B),
trie_to_bdd_trie(A, B, OutputFile, OptimizationLevel, FileParam):-
trie_to_depth_breadth_trie(A, B, LL, OptimizationLevel),
(islabel(LL) ->
atomic_concat('L', InterStep, LL),
retractall(deref(_,_)),
(problog_flag(deref_terms, true) ->
asserta(deref(LL,no)),
mark_for_deref(B),
V = 3
;
V = 1
),
variables_in_dbtrie(B, Edges), %not the most efficient solution
length(Edges, VarCNT), %this 2 should be changed
tell(FileParam),
bdd_vars_script(Edges),
told,
tell(OutputFile),
write('@BDD'), write(V), nl,
write(VarCNT), nl,
write(0), nl,
write(InterStep), nl,
trie_write(B, LL),
write(LL), nl,
told
;
(is_state(LL) ->
Edges = []
;
Edges = [LL]
),
tell(FileParam),
bdd_vars_script(Edges),
told,
tell(OutputFile),
write('@BDD1'), nl,
write(1), nl,
write(0), nl,
write(1), nl,
(LL = not(ID) ->
get_var_name(ID, NLL),
write('L1 = ~'), write(NLL),nl
;
get_var_name(LL, NLL),
write('L1 = '), write(NLL),nl
),
write('L1'), nl,
told
).
is_state(true).
is_state(false).
nested_trie_to_bdd_trie(A, B, OutputFile, OptimizationLevel, FileParam):-
trie_nested_to_depth_breadth_trie(A, B, LL, OptimizationLevel, problog:problog_chktabled),
(islabel(LL) ->
retractall(deref(_,_)),
(problog_flag(deref_terms, true) ->
asserta(deref(LL,no)),
mark_for_deref(B),
V = 3
;
V = 1
),
variables_in_dbtrie(B, Edges), %not the most efficient solution
length(Edges, VarCNT), %this 2 should be changed
tell(FileParam),
bdd_vars_script(Edges),
told,
tell(OutputFile),
write('@BDD'), write(V), nl,
write(VarCNT), nl,
write(0), nl,
(LL = not(NegL)->
atomic_concat('L', NegStep, NegL),
number_atom(NegStepN, NegStep),
InterStep is NegStepN + 1,
atomic_concat('L', InterStep, FL),
write(InterStep), nl,
trie_write(B, FL),
write(FL), write(' = ~'), write(NegL), nl,
write(FL), nl
;
atomic_concat('L', InterStep, LL),
write(InterStep), nl,
trie_write(B, LL),
write(LL), nl
),
told
;
(is_state(LL) ->
Edges = []
;
Edges = [LL]
),
tell(FileParam),
bdd_vars_script(Edges),
told,
tell(OutputFile),
write('@BDD1'), nl,
write(1), nl,
write(0), nl,
write(1), nl,
get_var_name(LL, NLL),
write('L1 = '),write(NLL),nl,
write('L1'), nl,
told
).
/*
variables_in_dbtrie(B, Edges), %not the most efficient solution
length(Edges, VarCNT), %this 2 should be changed
tell(FileParam),
bdd_vars_script(Edges),
told,
(atomic_concat('L', InterStep, LL) ->
tell(OutputFile),
write('@BDD1'), nl,
write(VarCNT), nl,
write(0), nl,
write(InterStep), nl,
trie_write(B, LL),
write(LL), nl,
told
;
tell(OutputFile),
write('@BDD1'), nl,
write(1), nl,
write(0), nl,
write(1), nl,
fix(LL, NLL),
write('L1 = '),write(NLL),nl,
write('L1'), nl,
told
).
fix(false, 'FALSE'):-!.
fix(true, 'TRUE'):-!.
fix(A, A).
*/
preprocess(Index, DepthBreadthTrie, OptimizationLevel, StartCount, FinalEndCount):-
problog:problog_chktabled(Index, Trie), !,
trie_dup(Trie, CopyTrie),
initialise_ancestors(Ancestors),
make_nested_trie_base_cases(CopyTrie, t(Index), DepthBreadthTrie, OptimizationLevel, StartCount, EndCount, Ancestors),
trie_close(CopyTrie),
Next is Index + 1,
preprocess(Next, DepthBreadthTrie, OptimizationLevel, EndCount, FinalEndCount).
preprocess(_, _, _, FinalEndCount, FinalEndCount).
make_nested_trie_base_cases(Trie, t(ID), DepthBreadthTrie, OptimizationLevel, StartCount, FinalEndCount, Ancestors):-
trie_to_depth_breadth_trie(Trie, DepthBreadthTrie, Label, OptimizationLevel, StartCount, EndCount),
(not(Label = t(_)) ->
FinalEndCount = EndCount,
problog:problog_chktabled(ID, RTrie),!,
get_set_trie_from_id(t(ID), Label, RTrie, Ancestors, _, Ancestors)
;
trie_get_depth_breadth_reduction_entry(NestedEntry),
trie_replace_entry(Trie, NestedEntry, Label, false),
add_to_ancestors(Label, Ancestors, NewAncestors),
make_nested_trie_base_cases(Trie, t(ID), DepthBreadthTrie, OptimizationLevel, EndCount, FinalEndCount, NewAncestors)
).
trie_nested_to_depth_breadth_trie(Trie, DepthBreadthTrie, FinalLabel, OptimizationLevel, Module:GetTriePredicate):-
integer(OptimizationLevel),
trie_open(DepthBreadthTrie),
(problog_flag(trie_preprocess, true) ->
preprocess(1, DepthBreadthTrie, OptimizationLevel, 0, StartCount)
;
StartCount = 0
),
initialise_ancestors(Ancestors),
initialise_ancestors(Childs),
trie_nested_to_db_trie(Trie, DepthBreadthTrie, FinalLabel, OptimizationLevel, StartCount, _, Module:GetTriePredicate, Ancestors, _, _, Childs),
eraseall(problog_trie_table).
trie_nested_to_db_trie(Trie, DepthBreadthTrie, FinalLabel, OptimizationLevel, StartCount, FinalEndCount, Module:GetTriePredicate, AncestorList, ContainsLoop, Childs, ChildsAcc):-
trie_dup(Trie, CopyTrie),
nested_trie_to_db_trie(CopyTrie, DepthBreadthTrie, FinalLabel, OptimizationLevel, StartCount, FinalEndCount, Module:GetTriePredicate, AncestorList, ContainsLoop, Childs, ChildsAcc),
trie_close(CopyTrie).
nested_trie_to_db_trie(Trie, DepthBreadthTrie, FinalLabel, OptimizationLevel, StartCount, FinalEndCount, Module:GetTriePredicate, Ancestors, ContainsLoop, Childs, ChildsAcc):-
trie_to_depth_breadth_trie(Trie, DepthBreadthTrie, Label, OptimizationLevel, StartCount, EndCount),
(not(Label = t(_)) ->
(var(ContainsLoop) ->
ContainsLoop = false
;
true
),
FinalLabel = Label,
FinalEndCount = EndCount,
Childs = ChildsAcc
;
trie_get_depth_breadth_reduction_entry(NestedEntry),
trie_get_entry(NestedEntry, Proof),
(loopcheck(Proof, Ancestors) -> % to fix
ContainsLoop = true,
NewLabel = false,
NewEndCount = EndCount
;
% writeln(in(Label)),
get_set_trie_from_id(Label, NewLabel, NestedTrie, Ancestors, Module:GetTriePredicate, ChildChilds),
% writeln(out(NewLabel)),
(nonvar(NewLabel) ->
NewEndCount = EndCount
;
add_to_ancestors(Label, Ancestors, CurAncestors),
initialise_ancestors(ChildChildsAcc),
trie_nested_to_db_trie(NestedTrie, DepthBreadthTrie, NewLabel, OptimizationLevel, EndCount, NewEndCount, Module:GetTriePredicate, CurAncestors, CheckLoop, ChildChilds, ChildChildsAcc),
(CheckLoop ->
StoreAncestors = CurAncestors
;
initialise_ancestors(StoreAncestors)
),
get_set_trie_from_id(Label, NewLabel, NestedTrie, StoreAncestors, Module:GetTriePredicate, ChildChilds)
)
),
trie_replace_entry(Trie, NestedEntry, Label, NewLabel),
(problog_flag(refine_anclst, true) ->
combine_ancestors(ChildsAcc, ChildChilds, AllChilds),
add_to_ancestors(Label, AllChilds, FAllChilds)
;
initialise_ancestors(FAllChilds)
),
nested_trie_to_db_trie(Trie, DepthBreadthTrie, FinalLabel, OptimizationLevel, NewEndCount, FinalEndCount, Module:GetTriePredicate, Ancestors, ContainsLoop, Childs, FAllChilds)
).
initialise_ancestors(Ancestors):-
(problog_flag(anclst_represent, list) ->
Ancestors = []
;
Ancestors = 0
).
add_to_ancestors(t(ID), Ancestors, NewAncestors):-
(problog_flag(anclst_represent, list) ->
ord_union(Ancestors, [t(ID)], NewAncestors)
;
NewAncestors is Ancestors \/ (1 << (ID - 1))
).
combine_ancestors(Ancestors, AddAncestors, Ancestors):-
var(AddAncestors), !.
combine_ancestors(Ancestors, AddAncestors, AllAncestors):-
(problog_flag(anclst_represent, list) ->
ord_union(Ancestors, AddAncestors, AllAncestors)
;
AllAncestors is Ancestors \/ AddAncestors
).
my_trie_print(T):-
trie_traverse(T, R),
trie_get_entry(R, E),
writeln(E),
fail.
my_trie_print(_T).
loopcheck(Proof, AncestorList):-
contains_nested_trie(Proof, ID),
% memberchk(t(ID), AncestorList).
% writeln(chk_id(ID, AncestorList)),
chk_id(ID, AncestorList), !.
chk_id(ID, AncestorList):-
(problog_flag(anclst_represent, list) ->
memberchk(t(ID), AncestorList)
;
(AncestorList /\ (1 << (ID - 1))) > 0
).
chk_id(ID, AncestorList):-
get_negated_synonym_id(ID, NegID),
% writeln(get_negated_synonym_id(ID, NegID)),
(problog_flag(anclst_represent, list) ->
memberchk(t(NegID), AncestorList)
;
(AncestorList /\ (1 << (NegID - 1))) > 0
).
% % can also check for a proof with A, not(A)
%
% get_negated_synonym_id(ID, NegID):-
% tabling:problog_tabling_get_negated_from_id(ID, Ref),
% recorded(problog_table, store(_, NegID, _, _, _), Ref).
get_negated_synonym_id(ID, NegID):-
tabling:has_synonyms,
recorded(problog_table, store(Pred, ID, _, _, _), _),
Pred =.. [Name0|Args],
atomic_concat(problog_, Name1, Name0),
atomic_concat(Name, '_original', Name1),
(recorded(problog_table_synonyms, negated(Name, NotName1), _);
recorded(problog_table_synonyms, negated(NotName1, Name), _)),
atomic_concat([problog_, NotName1, '_original'], NotName),
NegPred =.. [NotName|Args],
recorded(problog_table, store(NegPred, NegID, _, _, _), _).
is_nested_trie(T):-
nonvar(T),
is_nested_trie(T, _).
is_nested_trie(NT, ID):-
nonvar(NT),
NT = not(T), !,
is_nested_trie(T, ID).
is_nested_trie(t(ID), ID).
contains_nested_trie(L, ID):-
member(T, L),
is_nested_trie(T, ID).
subset([],_):-!.
subset(_,[]):-!,fail.
subset([H|T1], [H|T2]):-
subset(T1, T2).
subset([H1|T1], [H2|T2]):-
compare(>, H1, H2),
subset([H1|T1],T2).
get_set_trie_from_id(t(ID), L, T, AncestorList, _GetTriePredicate, Childs):-
nonvar(ID),
atomic(L),
nonvar(AncestorList),
nonvar(T), !,
(problog_flag(refine_anclst, true) ->
(problog_flag(anclst_represent, list) ->
ord_intersection(AncestorList, Childs, RefinedAncestorList)
;
RefinedAncestorList is AncestorList /\ Childs
)
;
RefinedAncestorList = AncestorList
),
recordz(problog_trie_table, get_step_from_id(ID, L, T, RefinedAncestorList, Childs), _).
get_set_trie_from_id(t(ID), L, T, SuperSetAncestorList, _GetTriePredicate, Childs):-
% (clause(theo,_) ->writeln(get_set_trie_from_id(t(ID), L, T, SuperSetAncestorList, _GetTriePredicate, Childs));true),
recorded(problog_trie_table, get_step_from_id(ID, L, T, AncestorList, StoredChilds), _),
(problog_flag(refine_anclst, true) ->
StoredChilds = Childs
;
true
),
(problog_flag(subset_check, true) ->
(problog_flag(anclst_represent, list) ->
subset(AncestorList, SuperSetAncestorList)
;
AncestorList is AncestorList /\ SuperSetAncestorList
% writeln(hi)
)
;
AncestorList = SuperSetAncestorList
), !.
get_set_trie_from_id(t(ID), _L, T, _SuperSetAncestorList, _GetTriePredicate, _):-
recorded(problog_trie_table, get_step_from_id(ID, _, T, _AncestorList, _Childs), _), !.
get_set_trie_from_id(t(ID), _L, T, _AncestorList, Module:GetTriePredicate, _):-
Goal =.. [GetTriePredicate, ID, T],
call(Module:Goal).
trie_replace_entry(_Trie, Entry, _E, false):-
!, trie_remove_entry(Entry).
trie_replace_entry(Trie, Entry, E, true):-
!, trie_get_entry(Entry, Proof),
delete(Proof, E, NewProof),
(NewProof = [] ->
trie_delete(Trie),
trie_put_entry(Trie, [true], _)
;
trie_remove_entry(Entry),
trie_put_entry(Trie, NewProof, _)
).
/*trie_replace_entry(Trie, Entry, E, R):-
trie_get_entry(Entry, List),
replace_in_list(List, NewProof, E, R),
trie_remove_entry(Entry),
trie_put_entry(Trie, NewProof, _).*/
/*trie_replace_entry(Trie, _Entry, E, R):-
trie_replace_term2(Trie, E, R).*/
trie_replace_entry(Trie, _Entry, t(ID), R):-
trie_replace_nested_trie(Trie, ID, R).
trie_replace_term2(Trie, OldTerm, NewTerm):-
trie_dup(Trie, A),
%writeln(trie),
%my_trie_print(A),
trie_delete(Trie),
trie_replace_term(A, Trie, OldTerm, NewTerm),
trie_close(A).
trie_delete(Trie):-
trie_traverse(Trie, R),
trie_remove_entry(R),
fail.
trie_delete(_Trie).
trie_replace_term(Trie, NewTrie, OldTerm, NewTerm):-
trie_traverse(Trie, R),
trie_get_entry(R, L),
replace_in_list(L, NL, OldTerm, NewTerm),
trie_put_entry(NewTrie, NL, _),
fail.
trie_replace_term(_Trie, _NewTrie, _OldTerm, _NewTerm).
replace_in_list([],[],_,_):-!.
replace_in_list([H|T], [N|NT], H, N):-
!, replace_in_list(T, NT, H, N).
replace_in_list([H|T], [NH|NT], R, N):-
functor(H, _, 1), !,
replace_in_functor(H, NH, R, N),
replace_in_list(T, NT, R, N).
replace_in_list([H|T], [H|NT], R, N):-
replace_in_list(T, NT, R, N).
replace_in_functor(F, NF, T, R):-
F =.. L,
replace_in_list(L, NL, T, R),
NF =.. NL.
trie_write(T, MAXL):-
atomic_concat('L', MAXLA, MAXL),
atom_number(MAXLA, MAXLN),
trie_traverse(T, R),
trie_get_entry(R, L),
%write(user_output, L),nl(user_output),
(dnfbddformat(L, MAXLN) ->
true
;
write(user_error, warning(L, not_processed)), nl(user_error)
),
fail.
trie_write(_, _).
dnfbddformat(depth(T, L), MAXL):-
atomic_concat('L', LA, L),
atom_number(LA, LN),
MAXL >= LN,
seperate(T, Li, V),
%sort(Li, SL),
%reverse(SL, RSL),
append(Li, V, R),
bddlineformat(R, L, ' * '),
forall(deref(I, L), (
atomic_concat('L', D, I),
write('D'), write(D), nl
)).
dnfbddformat(breadth(T, L), MAXL):-
atomic_concat('L', LA, L),
atom_number(LA, LN),
MAXL >= LN,
seperate(T, Li, V),
%sort(Li, SL),
%reverse(SL, RSL),
append(V, Li, R),
bddlineformat(R, L, ' + '),
forall(deref(I, L), (
atomic_concat('L', D, I),
write('D'), write(D), nl
)).
bddlineformat([not(H)|T], O):-
write('~'), !,
bddlineformat([H|T], O).
bddlineformat([H], _O):-
(islabel(H) ->
Var = H
;
get_var_name(H, Var)
),
write(Var), nl, !.
bddlineformat([H|T], O):-
(islabel(H) ->
Var = H
;
get_var_name(H, Var)
),
write(Var), write(O),
bddlineformat(T, O).
/*
bddlineformat([not(H)], O):-
!, write('~'),
bddlineformat([H], O).
bddlineformat([H], _O):-!,
(islabel(H) ->
VarName = H
;
get_var_name(H, VarName)
),
write(VarName), nl.
bddlineformat([not(H)|T], O):-
!, write('~'),
bddlineformat([H|T], O).
bddlineformat([H|T], O):-
(islabel(H) ->
VarName = H
;
get_var_name(H, VarName)
),
write(VarName), write(O),
bddlineformat(T, O).*/
bddlineformat(T, L, O):-
(islabel(L) ->
write(L), write(' = '),
bddlineformat(T, O)
;
write(user_output,bdd_script_error([L,T,O])),nl(user_output)
).
islabel(not(L)):-
!, islabel(L).
islabel(Label):-
atom(Label),
atomic_concat('L', _, Label).
isnestedtrie(not(T)):-
!, isnestedtrie(T).
isnestedtrie(t(_T)).
seperate([], [], []).
seperate([H|T], [H|Labels], Vars):-
islabel(H), !,
seperate(T, Labels, Vars).
seperate([H|T], Labels, [H|Vars]):-
seperate(T, Labels, Vars).
ptree_decomposition(Trie, BDDFileName, VarFileName) :-
tmpnam(TmpFile1),
tmpnam(TmpFile2),
nb_setval(next_inter_step, 1),
variables_in_dbtrie(Trie, T),
length(T, VarCnt),
tell(VarFileName),
bdd_vars_script(T),
told,
tell(TmpFile1),
decompose_trie(Trie, T, L),
(islabel(L)->
atomic_concat('L', LCnt, L),
write(L),nl
;
LCnt = 1,
write('L1 = '),
(L == false ->
write('FALSE')
;
write(L)
), nl,
write('L1'), nl
),
told,
tell(TmpFile2),
write('@BDD1'),nl,
write(VarCnt),nl,
write('0'),nl,
write(LCnt),nl,
told,
atomic_concat(['cat ', TmpFile2, ' ', TmpFile1, ' > ', BDDFileName], CMD),
shell(CMD),
delete_file(TmpFile1),
delete_file(TmpFile2).
get_next_inter_step(I):-
nb_getval(next_inter_step, I),
NI is I + 1,
nb_setval(next_inter_step, NI).
decompose_trie(Trie, _, false):-
empty_ptree(Trie), !.
decompose_trie(Trie, [H|[]], Var):-
trie_usage(Trie, 1, _, _),
get_var_name(H, VarA),
trie_check_entry(Trie, [L], _R),
(not(H) == L ->
Var = not(VarA)
,
Var = VarA
),
!.
decompose_trie(Trie, _, 'TRUE'):-
trie_check_entry(Trie, [true], _R),!.
decompose_trie(Trie, [H|_T], L3):-
trie_open(TrieWith),
trie_open(TrieWithNeg),
trie_open(TrieWithOut),
trie_seperate(Trie, H, TrieWith, TrieWithNeg, TrieWithOut),
/*trie_print(Trie),
dwriteln('-----------'),
trie_print(TrieWith),
dwriteln('-----------'),
trie_print(TrieWithNeg),
dwriteln('-----------'),
trie_print(TrieWithOut),
dwriteln('-----------'),*/
variables_in_dbtrie(TrieWith, T1),
variables_in_dbtrie(TrieWithNeg, T2),
variables_in_dbtrie(TrieWithOut, T3),
%dwriteln([T1, not(T2), T3]),
decompose_trie(TrieWith, T1, LWith),
trie_close(TrieWith),
decompose_trie(TrieWithNeg, T2, LWithNeg),
trie_close(TrieWithNeg),
decompose_trie(TrieWithOut, T3, LWithOut),
trie_close(TrieWithOut),
get_var_name(H, Var),
%dwriteln([Var, ' * ', LWith, ' + ~', Var, ' * ', LWithNeg, ' + ', LWithOut]),
(LWith == false ->
L1 = false
;
(Var == 'TRUE' ->
L1 = LWith
;
(LWith == 'TRUE' ->
L1 = Var
;
get_next_inter_step(I),
atomic_concat(['L', I], L1),
atomic_concat([L1, ' = ', Var, '*', LWith], W1),
write(W1), nl
)
)
),
(LWithNeg == false ->
L2 = false
;
(Var == 'TRUE' ->
L2 = false
;
(LWithNeg == 'TRUE' ->
atomic_concat(['~', Var], L2)
;
get_next_inter_step(I2),
atomic_concat(['L', I2], L2),
atomic_concat([L2, ' = ~', Var, '*', LWithNeg], W2),
write(W2), nl
)
)
),
(one_true(L1, L2, LWithOut) ->
L3 = 'TRUE'
;
(all_false(L1, L2, LWithOut)->
L3 = false
;
(one_non_false(L1, L2, LWithOut, L3) ->
true
;
get_next_inter_step(I3),
atomic_concat(['L', I3], L3),
write(L3), write(' = '),
non_false([L1,L2,LWithOut], [First|Rest]),
write(First),
forall(member(NonFalse, Rest), (write('+'), write(NonFalse))),
nl
)
)
).
dwriteln(A):-
write(user_error, A),nl(user_error),flush_output.
non_false([], []):-!.
non_false([H|T], [H|NT]):-
not(H == false),
non_false(T, NT).
non_false([H|T], NT):-
H == false,
non_false(T, NT).
one_true('TRUE', _, _):-!.
one_true(_, 'TRUE', _):-!.
one_true(_, _, 'TRUE'):-!.
all_false(false,false,false).
one_non_false(L, false, false, L):-
not(L == false), !.
one_non_false(false, L, false, L):-
not(L == false), !.
one_non_false(false, false, L, L):-
not(L == false), !.
trie_seperate(Trie, Var, TrieWith, TrieWithNeg, TrieWithOut):-
trie_traverse(Trie, R),
trie_get_entry(R, Proof),
(memberchk(Var, Proof) ->
remove_from_list(Var, Proof, NProof),
(NProof == [] ->
trie_put_entry(TrieWith, [true], _)
;
trie_put_entry(TrieWith, NProof, _)
)
;
(memberchk(not(Var), Proof) ->
remove_from_list(not(Var), Proof, NProof),
(NProof == [] ->
trie_put_entry(TrieWithNeg, [true], _)
;
trie_put_entry(TrieWithNeg, NProof, _)
)
;
trie_put_entry(TrieWithOut, Proof, _)
)
),
fail.
trie_seperate(_Trie, _Var, _TrieWith, _TrieWithNeg, _TrieWithOut).
remove_from_list(_E, [], []):-!.
remove_from_list(E, [E|T], NT):-
!, remove_from_list(E, T, NT).
remove_from_list(E, [A|T], [A|NT]):-
remove_from_list(E, T, NT).
ptree_db_trie_opt_performed(LVL1, LVL2, LVL3):-
trie_get_depth_breadth_reduction_opt_level_count(1, LVL1),
trie_get_depth_breadth_reduction_opt_level_count(2, LVL2),
trie_get_depth_breadth_reduction_opt_level_count(3, LVL3).
:- dynamic deref/2.
mark_for_deref(DB_Trie):-
traverse_ptree_mode(OLD),
traverse_ptree_mode(backward),
mark_deref(DB_Trie),
traverse_ptree_mode(OLD).
mark_deref(DB_Trie):-
traverse_ptree(DB_Trie, DB_Term),
(DB_Term = depth(List, Inter); DB_Term = breadth(List, Inter)),
member(L, List),
((islabel(L), not(deref(L, _))) ->
asserta(deref(L, Inter))
;
true
),
fail.
mark_deref(_).
% end of Theo